
ZapoTEX: User’s Manual (EARLY DRAFT)

Vincent H

October 29, 2011

Note: this is a very early draft of a very experimental program. . .

Contents

1 Introduction 2
1.1 Use Cases . 2
1.2 Example Rendered Code . 2
1.3 Help Page of the ZapoTEX Program 3

2 Code as equations 3

3 Literate programming 5

4 Kinds, aliases and other beautifications 5
4.1 Kinds . 5
4.2 Basic Beautification . 6
4.3 Simple Aliases . 7
4.4 Generalised Aliases . 7

5 Supported Languages 9
5.1 Sample Prolog Code . 10
5.2 Sample B Code . 10

6 Default Vocabularies 10

7 Planned Features 13

1

1 Introduction

ZapoTEX is essentially a pretty-printer which takes OCaml, Prolog or B

specification source code as input and outputs corresponding LATEX. It
is highly customisable and supports extensive syntax highlighting, and
on-the-fly definition of LATEX aliases for common identifiers, operators etc.

Most of this manual focuses on OCaml, because it is the first language which
was implemented in ZapoTEX. However the same mechanisms apply to
any supported language.

1.1 Use Cases

� Writing articles and/or reports which present algorithms written in
Caml, or simply code snippets. In this case, the code is embedded in
the document in the same way mathematical expressions are, and
ZapoTEX acts as a preprocessor for the LATEX document. See section 2.

� Limited literate programming in OCaml; in that case, LATEX code
appears as special comments in the source. Refer to section 3.

1.2 Example Rendered Code

1 (** Some types *)

2 val fold← : (α → β → α) → α → β list → α
3 val fold→ : (α → β → β) → α list → β → β
4 type α seq = Nil | Cons of α × α seq
5

6 (** This is a documentation comment... *)

7 let rec fold← f accu = function

8 | [] → accu (* some regular comment *)

9 | a::l → fold← f (f accu a) l

10

11 (* nested (* comments (* are (* cool *) but *) should *)

12 not be abused *)

13 let rec fold→ f l accu = match l with

14 | [] → accu

15 | a::l → f a (fold→ f l accu)

2

16

17 let some_aliases x X = List.find (fun ξ → ξ 6 x && ξ , x / 2) X

1.3 Help Page of the ZapoTEX Program

** ZapoTeX (zapotex)

** by Vincent HUGOT

** email : vincent.hugot@gmail.com

** web : vincent-hugot.com

Usage (Caml code -> LaTeX prettifier):

--tex ’file.z.tex’ > ’file.tex’

Takes a LaTeX file containing code formulae, and outputs a pure LaTeX file

on the standard output, which can then be compiled by LaTeX. The Caml code

is prettified according to the customisable definitions in zapoml.tex.

--ml ’file.ml’ > ’file.tex’

Takes a Caml source file, and outputs corresponding prettified LaTeX version

which can then be input into a LaTeX document.

--pl ’file.pl’ > ’file.tex’ Same for Prolog sources.

--B ’file.B’ > ’file.tex’ Same for B sources.

Usage (miscellaneous):

--euroZone,-e ’file1.tex’ ... ’fileN.tex’

Removes all deprecated $$..$$ math constructs in each file and replaces

them by \[..\]. A backup of each file is made before this operation.

If --inline is passed before, also does inline replace: x -> \(x\).

--accents,-a [BROKEN IMPLEMENTATION | DO NOT USE]

--dump-vocabularies

Outputs LaTeX code detailing the list of all kind definitions, aliases

and generaliases predefined in ZapoTeX for each supported language.

--help Displays this help page

2 Code as equations

To use ZapoTEX in that way, you only need to keep three things in mind:

3

� Your document must input the file zapoml.tex, which defines how
lexical constructs of Caml code (such as types, keywords, operators
etc) should be rendered. This file can be tweaked to the user’s liking.

� Enclose Caml code between ## tags, in the same way that display math
is between $$ in TEX. If the opening tag is ### instead of ##, the code
is centred; the closing tag is always ##.

� To compile, pre-process your document, say, doc.z.tex, using ZapoTEX:
zapotex �tex doc.z.tex > doc.tex. The generated documentdoc.tex
is then a perfectly ordinary LATEX file, which can be compiled as usual.

Example: the following LATEX code:

\dots note that the type constructor ##Cons of ’a * ’a seq##

is generally denoted\dots

is rendered:
. . . note that the type constructor Cons of α × α seq is generally de-
noted. . .

Practical notes:

� I recommend the following naming convention: A LATEX file containing
ZapoTEX Caml code should have the extension .z.tex, and the
product of a run of ZapoTEX on it should be named the same, without
the .z. So a typical ZapoTEX run should follow the pattern:

zapotex �tex X.z.tex > X.tex

� Note that ZapoTEX is perfectly compatible with both LATEX and
PDFLATEX.

� ZapoTEX’s running time is completely negligible before that of LATEX.

� Note that you cannot have your LATEX document d input other docu-
ments dk, k ∈ 1..n, containing ZapoTEX markup. In that case, you need
to run ZapoTEX on each of the external documents dk first, yielding,
say, zk, and make it so that the main document d inputs the zk instead
of the dk. This remark is of course irrelevant if you are preparing a
short exam subject, as you probably have only a single .z.tex file; but
in a more complex project, you will need to take that into account. I

4

recommend writing a small shell script to automate the build process.
It is also possible to write a LATEX package using shell escape to run
ZapoTEX on the fly. I might do it if I ever need that, but that’s probably
not anytime soon. See Section 7 for related planned features.

3 Literate programming

In that case, I simply mean the ability to write LATEX into source code
comments and have it render correctly. This was supported by DumBeX
and PLTeX, but I have not rewritten those features yet. Simply because I
have not needed them again. If you need them, drop me an email.

4 Kinds, aliases and other beautifications

Keywords of the language and type constructors, for instance, are different
objects and should be displayed differently. Furthermore, some identifiers
and operators are crude ASCII replacements for Greek letters, mathematical
symbols and so on. For instance ’a should really be α and <> stands for ,.
ZapoTEX defines a number of standard aliases (such as these), and enables
the user to define her own easily.

4.1 Kinds

Each lexical construct of the language is associated to a kind; for instance,
it can be a keyword, a variable, a type constructor, etc. Depending on its
kind, a lexical element can be typeset differently by ZapoTEX. For instance,
by default Caml keywords such as open are typeset in black, bold face,
whereas a type such as float is written in a blue, italic sans-serif font. Most
of Caml’s keywords and types are predefined, but the user can of course
add her own using ZapoTEX commands. Consider

##let foo x = ... return x##\\

%## keyword return ##%

##let foo x = ... return x##

let foo x = ... return x

let foo x = ... return x

or

5

%## type valuation ; lident valuation ##%

##let eval (valuation : valuation) etc = ...##

let eval (valuation : valuation) etc = ...

Note that here we defined “valuation” to be both a declared type and a
lowercase identifier, and ZapoTEX used a heuristic to decide which instance
was which, even though such a question cannot be decided at the lexical
level in general (ZapoTEX acts as a lexer, not as a parser).

This (a single identifier having two kinds) may seem a very special case,
but in fact it arises frequently even within just-out-of-the-box OCaml. For
instance, consider the declaration

let (a : int ref) = ref 0

We see here that “ref” appears once as a type, an another time as the
function ref : α → α ref . . . except that it is typeset as a keyword instead
of a lowercase identifier. I chose to consider it a keyword because of its
special status as sole constructor of the built-in reference type α ref . Thus
ZapoTEX predefines ref as having the two kinds type and keyword. If you
don’t like this, do

%## rm kind ref; type ref; lident ref ##%

and then in the expression [let (a : int ref) = ref 0], ref appears as a
simple identifier instead of a keyword, when it is not a type. Or you could
only define it as a type [let (a : int ref) = ref 0], or only as a lowercase
identifier [let (a : int ref) = ref 0], which is equivalent to giving no
kind definition for it.

Of course this digression on ref merely serves to illustrate kinds; the
default settings for ref (type or keyword) are quite good in my opinion,
and I recommend you leave them alone.

4.2 Basic Beautification

Patterns for primes and subscripts in lowercase identifiers are detected and
rendered adequately by ZapoTEX:

##x y x_y x_yz x_1 x_23 long_x long_0 long_42 other_text ##\\

##x x’ x’’ x’’’ x’’’’ o’harra o’harra’ o’harra’’ o’harra’’’##\\

##_X _X’ _X’’ _X’’’ alpha alpha’ alpha’’##

6

x y xy x_yz x1 x23 longx long0 long42 other_text

x x′ x′′ x′′′ x′′′′ o’harra o’harra′ o’harra′′ o’harra′′′

X X
′
X
′′
X
′′′ α α′ α′′

Note that this integrates with aliases (see below), simple or generalised: for
instance there is an alias for alpha, but not for alpha’. So ZapoTEX tries to
find an alias for alpha’, finds none, isolates the primes, and tries to find an
alias for the prime-less alpha, succeeds, and thus renders α′ . Thus there is
no need to define primed versions of your aliases: the base symbol suffices.

4.3 Simple Aliases

With simple aliases, a given identifier is automatically replaced by some
specific LATEX code. Aliases are defined using the ZapoTEX command alias,
in special comments:

%##%

alias x "new_x", y "new_y" ;

alias math a "a", b "b";

alias math square "x^2";

alias bold math cube "x^3"

%##%

##x y a b square cube##

is rendered: new_x new_y a b x2 x3 . Note that aliases can be removed if
they become inappropriate in another part of the document:

%## rm alias square ##%

The same code is now rendered: new_x new_y a b square x3 .

There are about ninety predefined aliases in ZapoTEX; they are all listed in
section 6[p10].

4.4 Generalised Aliases

Generalised aliases enable the user to define whole families of aliases in one
command. This is done using regular expressions. Let us have fun and say
that x”n should be translated into xn, for any letter x and any number n.

7

%##% galias math POWERS

"\([A-Za-z]\)’’\([0-9]+\)" "{\1}^{\2}"

%##%

##something other’’x other’’3 x’’3 y’’5 A’’67 B’’C##

is rendered as: something other”x other”3 x3 y5 A67 B”C . In a nutshell,
anything that matches the pattern is translated, while the rest is simply
dealt with as usual. Just as with simple aliases, generalised aliases can be
removed. The only difference is that instead of using simply the “left part”
of the binding – which was practical for simple aliases as it was a single
identifier, but is not practical here as we have a nasty regular expression –
we will refer to a generalised alias binding by its given identifier, which, in
this case, is “POWERS”.

##X’’8##

%## rm galias POWERS ##%

##X’’8##

Yields X8 X”8 . In general, I recommend the convention of always naming
generalised aliases in FULL CAPS.

Let us now look at another fun possibility: list enumerations. The aim
here is to define a shorthand naming convention for lists whose elements
are named and enumerated. Consider the following code and its ZapoTEX
rendering:

%##% galias ENUM

"\([A-Za-z]+\)’’\([A-Za-z0-9]+\)’\([A-Za-z0-9]+\)"

"[\1${}_{\text{\2}};\dots;\text{\1}{}_{\text{\3}}$]"

%##%

Let us see: ##q’’1’n and p’’1’n and something’’foo’bar##

Let us see: [q1; . . . ; qn] and [p1; . . . ; pn] and [somethingfoo; . . . ; somethingbar] .

In practice, we have used this to define a few simple default generalised
aliases which provide easy access to special math fonts. For instance:

x _x _X __x __X _’x _’X

x _x X __x X x X

Those default generalised aliases are listed in Section 6.

8

5 Supported Languages

At the time of writing, ZapoTEX supports the following languages:

OCaml Prolog B

code *ml *pl *b

inline ##..## #pl#..## #b#..##

display ###..## #PL#..## #B#..##

command %##..##% %#pl#..##% %#b#..##%

- comms. (*#..*) /*#..*/ /*#..*/

where code corresponds to the vocabulary code used in “dump” commands,
(see Section 6), inline is the ZapoTEX markup for inline mode (where ..

represents the actual source code), display is the markup for display (centred)
mode, and command is the markup for ZapoTEX commands. Note that kind
definitions, aliases, generalised aliases etc are specific to a given language.
For instance the aliases of OCaml don’t mix with those of Prolog. They have
no reason to. Collectively, this is called the vocabulary of a language. Com-
mands which affect a vocabulary (for instance by creating a new alias) will
only deal with the vocabulary corresponding to the command environment
they are invoked in. For instance %##keyword foo##% will only add the
keyword "foo" for the OCaml language, and %#pl#keyword foo##% will do
the same thing exclusively for Prolog.

Instances of ’%’ are ignored while in command mode (treated as whitespace),
so you can keep all the commands commented (from LATEX’s point of view).
This is sometimes convenient if you work in an editor which does syntactic
coloration for TEX code. The same applies when command mode is accessed
through command comments. Those are comments of a special form (see
table) embedded within source code, which are not rendered as LATEX by
ZapoTEX but instead are interpreted as ZapoTEX commands. Not that this
applies regardless of whether the comment appears in a stand-alone source
file or within code embedded in a ZapoTEX LATEX file. For instance

#B# /*# alias math test "\ds\int_a^b f(x)\;\textrm{d}x"

*/ A >< B /: test ##

Renders the following (utterly nonsensical) B code:

A � B <
∫ b

a
f (x) dx

This is functionally equivalent to

9

%## alias math test "\ds\int_a^b f(x)\;\textrm{d}x" ##%

#B# A >< B /: test ##

5.1 Sample Prolog Code

#pl#

/* a /* b /* c */ d */ e */ % blah some comment

ord_intersect__(>=, H1, T1, _H2, T2) :-

ord_intersect_(T2, H1, T1). ##

18 /* a /* b /* c */ d */ e */ % blah some comment

19 ord_intersect__(>=, H1, T1, _H2, T2) `

20 ord_intersect_(T2, H1, T1).

5.2 Sample B Code

#b#

transitive_reflexive_closure = closure(relation) \/ closure(Relation) &

transitive_closure = closure1(relation) \/ closure1(Relation)&

x : direct >< product <=> x /: parallel || product &

lambda_expression = % x . (x : 1..n /\ K..L | x** 2 - Y**x) & ##

21 transitive_reflexive_closure = relation∗ ∪ Relation∗ ∧
22 transitive_closure = relation+

∪ Relation+
∧

23 x ∈ direct � product⇔ x < parallel ‖ product ∧
24 lambda_expression = λ x . (x ∈ ~1,n� ∩ ~K,L� | x2 - Yx) ∧

6 Default Vocabularies

Here is the complete list of default (predefined) vocabularies – that is to
say kind definitions, aliases and generalised aliases, – as generated by the
--dump-vocabularies ZapoTEX command switch. Of course the user is
free to remove any and all aliases she does not like; please refer to sections
4.3 and 4.4 for more information.

Note that similar dumps can be effected at any place within a document by
using the dump command. For instance %## dump *b, *pl ##% will dump
the current vocabularies for B and Prolog.

10

Language: B

Kinds assignment: 31 definitions.

keyword :: (VARIANT VARIABLES OR VAR ELSE BEGIN INVARIANT THEN BE skip

SELECT WHEN MODEL WHERE PRE CHOICE SETS IN MACHINE END IF ELSIF INITIALISATION

DEFINITIONS CONSTRAINTS ANY LET OPERATIONS PROPERTIES EITHER CONSTANTS

)

Simple Aliases: 117 bindings.

! → ∀ ; # → ∃ ; % → λ ; & → ∧ ; * → × ; +-> → →p ; +-» →

�p ; �> → → ; �» → � ; -> → → ; /: → < ; /<: → * ; /«: →

⊂/ ; /= → , ; /\ → ∩ ; /|\ → ↑ ; : → ∈ ; :: → :∈ ; < → < ; <+

→ C− ; <- → ← ; <� → ←− ; <-> → ↔ ; <: → ⊆ ; «: → ⊂ ; «| →

C− ; <= → ≤ ; <=> → ⇔ ; <| → C ; == →

/

= ; ==> → =⇒ ; => → ⇒

; > → > ; >+> → �p ; >+» → �→p ; >-> → � ; >-» → �→ ; >< →

� ; >= → ≥ ; BOOL → B ; FIN → F ; FIN1 → F1 ; INT → Zrep ; INTEGER

→ Z ; INTER →
⋂

; NAT → Nrep ; NAT1 → N+
rep ; NATURAL → N ; NATURAL1

→ N+ ; PI →
∏

; POW → P ; POW1 → P1 ; SIGMA →
∑

; STRING → S

; UNION →
⋃

; \/ → ∪ ; \|/ → ↓ ; ^ → a ; aleph → ℵ ; alpha →

α ; beta → β ; beth → i ; chi → χ ; daleth → k ; delta → δ ; ell

→ ` ; epsilon → ε ; eta → η ; eth → ð ; gDelta → ∆ ; gGamma → Γ

; gLambda → Λ ; gOmega → Ω ; gPhi → Φ ; gPi → Π ; gPsi → Ψ ; gSigma

→ Σ ; gTheta → Θ ; gUpsilon → Υ ; gXi → Ξ ; gamma → γ ; gimel →

ג ; inter →
⋂

; iota → ι ; kappa → κ ; lambda → λ ; mho → f ; mu

→ µ ; nabla → ∇ ; not → ¬ ; nu → ν ; omega → ω ; or → ∨ ; partial

→ ∂ ; phi → φ ; pi → π ; psi → ψ ; rho → ρ ; sigma → σ ; tau →

τ ; theta → θ ; union →
⋃

; upsilon → υ ; varepsilon → ε ; varphi

→ ϕ ; varpi → $; varrho → % ; varsigma → ς ; vartheta → ϑ ; xi

→ ξ ; zeta → ζ ; {} → ∅ ; | → | ; |-> → 7→ ; |> → B ; |» → B− ;

|| → ‖ ;

Generalised Aliases: no binding.

Language: OCaml

Kinds assignment: 79 definitions.

flow :: (failwith exit raise invalid_arg)

type :: (array list ref open_flag format int64 float char out_channel unit fp-
class in_channel int option int32 bool format4 exn string)

keyword :: (functor when while initializer mutable struct land downto

ref match rec try done object as mod fun type val new false function

true asr external to lxor module exception inherit begin in if constraint

11

include lsr lsl class virtual end assert for with else lazy private let

or then sig do of lor open method and)

Simple Aliases: 95 bindings.

!= → ,φ ; ’a → α ; ’b → β ; ’c → γ ; ’d → δ ; ’e → ε ; ’f → ζ ;

’g → η ; ’h → θ ; ’i → κ ; ’j → λ ; ’k → µ ; ’l → ν ; ’m → ξ ;

’n → π ; ’o → ρ ; ’p → σ ; ’q → τ ; ’r → ϕ ; ’s → χ ; ’t → ψ ;

’u → ω ; ’v → Γ ; ’w → ∆ ; ’x → Θ ; ’y → Λ ; ’z → Ξ ; * → × ;

*. → ×. ; + → + ; +. → +. ; - → − ; -. → −. ; -> → → ; / →

/ ; /. → /. ; < → < ; <- → ← ; <= → 6 ; <> → , ; = → = ; == →

=φ ; > → > ; >= → > ; _delta → ∆ ; _gamma → Γ ; _lambda → Λ ; _omega

→ Ω ; _phi → Φ ; _pi → Π ; _psi → Ψ ; _sigma → Σ ; _theta → Θ

; _upsilon → Υ ; _xi → Ξ ; aleph → ℵ ; alpha → α ; beta → β ; beth

→ i ; chi → χ ; daleth → k ; delta → δ ; ell → ` ; epsilon → ε
; eta → η ; eth → ð ; fold_left → fold← ; fold_right → fold→ ; gamma

→ γ ; gimel → ג ; iota → ι ; kappa → κ ; lambda → λ ; mho → f ;

mu → µ ; nabla → ∇ ; nu → ν ; omega → ω ; partial → ∂ ; phi → φ
; pi → π ; psi → ψ ; rho → ρ ; sigma → σ ; tau → τ ; theta → θ
; upsilon → υ ; varepsilon → ε ; varphi → ϕ ; varpi → $; varrho

→ % ; varsigma → ς ; vartheta → ϑ ; xi → ξ ; zeta → ζ ;

Generalised Aliases: three bindings.

math : MATHCAL :: "_\([A-Z]\)$" → "\mathcal{\1}" ;

math : MATHBB :: "__\([A-Z]\)$" → "\mathbb{\1}" ;

bmath : MATHFRAK :: "_’\([A-Za-z]\)$" → "\mathfrak{\1}" ;

Language: Prolog

Kinds assignment: 137 definitions.

flow :: (nl term_str msgsend free errorlevel project nobreak db_btrees

format trap heap findall save msgrecv fail chain_insertz not write readterm

error code printermenu chain_inserta assertz retractall retract term_replace

check_determ asserta writef assert chain_insertafter term_bin config

bgifont bound chain_terms diagnostics db_chains ref_term gstacksize

consult nowarnings bgidriver)

type :: (ulong ushort ref byte word char real integer sbyte dword symbol string
long unsigned short binary)

keyword :: (SINGLE implement STATIC multi OR endclass struct DETERM REFERENCE

database elsedef FACTS protected NOCOPY erroneous object as procedure

failure ifndef language global abstract IMPLEMENT false enddef ALIGN

DOMAINS facts true AS single CLASS CLAUSES static PROTECTED is ERRONEOUS

determ goal this if PROCEDURE ENDCLASS IFDEF PREDICATES include DATABASE

12

ELSEDEF nocopy align class predicates nondeterm FAILURE STRUCT constants

IF LANGUAGE ABSTRACT ifdef OBJECT MULTI reference IFNDEF or GLOBAL GOAL

THIS domains AND ENDDEF and NONDETERM clauses CONSTANTS INCLUDE)

Simple Aliases: 70 bindings.

* → × ; + → + ; - → − ; �> → −→ ; -> → → ; / → / ; :- → ` ; <

→ < ; = → = ; =:= → =β ; =< → 6 ; == → =η ; =\= → ,β ; > → > ;

>= → > ; @< → <α ; @=< → 6α ; @> → >α ; @>= → >α ; \= → , ; \==

→ =η ; aleph → ℵ ; alpha → α ; beta → β ; beth → i ; chi → χ ;

daleth → k ; delta → δ ; ell → ` ; epsilon → ε ; eta → η ; eth →

ð ; gDelta → ∆ ; gGamma → Γ ; gLambda → Λ ; gOmega → Ω ; gPhi →

Φ ; gPi → Π ; gPsi → Ψ ; gSigma → Σ ; gTheta → Θ ; gUpsilon →

Υ ; gXi → Ξ ; gamma → γ ; gimel → ג ; iota → ι ; kappa → κ ; lambda

→ λ ; mho → f ; mu → µ ; nabla → ∇ ; nu → ν ; omega → ω ; partial

→ ∂ ; phi → φ ; pi → π ; psi → ψ ; rho → ρ ; sigma → σ ; tau →

τ ; theta → θ ; upsilon → υ ; varepsilon → ε ; varphi → ϕ ; varpi

→ $; varrho → % ; varsigma → ς ; vartheta → ϑ ; xi → ξ ; zeta →

ζ ;

Generalised Aliases: three bindings.

math : MATHCAL :: "cc_\([A-Z]\)$" → "\mathcal{\1}" ;

math : MATHBB :: "bb_\([A-Z]\)$" → "\mathbb{\1}" ;

bmath : MATHFRAK :: "ff_\([A-Za-z]\)$" → "\mathfrak{\1}" ;

7 Planned Features

� change UI to style "–cmd in out" instead of "–cmd in > out"

� building on that, add "–make" that compiles all ZapoTEX files and all
source files in the directory (option: recursively). Aim: make it easy
to handle large projects.

� Even better: using –shell-escape to do that directly on the fly from
within LaTeX. That is to say, write LATEX package so that markup such
as ## executes ZapoTEX appropriately.

� fake LATEX version of markup: to compile ZapoTEX files with LATEX even
without ZapoTEX on the system. Translators fake↔ real markups.

� Even better, write LATEX package so that markup such as ## starts
verbatim modes. This can be a fallback to the ideal case (on-the-fly

13

ZapoTEX) if –shell-escape cannot be enabled.

� strict optional mode for evaluation of commands.

� literate programming.

14

	Introduction
	Use Cases
	Example Rendered Code
	Help Page of the ZapoTeX Program

	Code as equations
	Literate programming
	Kinds, aliases and other beautifications
	Kinds
	Basic Beautification
	Simple Aliases
	Generalised Aliases

	Supported Languages
	Sample Prolog Code
	Sample B Code

	Default Vocabularies
	Planned Features

