STI 4A
Tools for Program Proof

and Formal Verification
Work in progress. Do not distribute outside of INSA CVL.

Vincent HuGcoTr — vincent.hugot@insa-cvl. fr — SA 2.24

March 29, 2024

I Lab classes

1 Preliminaries (preferably before the first lab class)

1.1 Setting up aworkenvironment Lo oL

1.1.1 OperatingSystem o oo
1.1.2 Choice of Linux distribution,
1.1.21 Provided VM: Arch-based system
1.1.2.2 Instructions: Arch-based system
1.1.2.3 Instructions: Debian-based system
1.1.2.4 Instructions: Fedora / SUSE-based system
1.1.2.5 Instructions: Microsoft’s SpywareOS

1.1.3 Check that it works, and brushup onstuff

2 Basic finite state systems
3 Modelling complex systems using products
4 Extra exercises involving rivers (from JMC’s collection)

5 CTL Verification

II Lecture Notes: Formal Verification

1

22
27

27

29

6

10

Meta-information about the course

Introduction: What is Formal Verification?

7.1 Problem: Disasterstories
7.2 Solution: Verification
7.3 A Brief History of Program Proof
74 Our focus in this course: Model Checking
7.5 Provisionalcourseplan. Lo Lo

State Systems and Modelisation

8.1 Brief Reminders About Nondeterministic Finite State Automata

8.2 On machine: lecture_automata_products.py

8.3 Modelling through automata: generalities

8.4 Examples of Isolated Systems 0L
84.1 DigitalClock
8.4.2 Digicode, pass123
8.4.3 LIFO (Stack) and FIFO (Queue) of size2
8.4.4 Incrementable Integer Variable

Incrementable Unsigned Integer Variable with Overflow

Set Variable
10.0.1 FIFO/LIFO(T,) © « v o oo e e e e
10.0.2 The Wolf, the Goat, and the Cabbage WGC)
10.0.3 WGC, states as functions rather than “left-bank” sets
10.0.4 Indiana Jones and the Temple of Verification
10.1 A Taxonomy of Automata Products.
10.1.1 Fully Synchronised Product®
10.1.1.1 Fully Synchronised Product ® forn
10.1.1.2 Fully Synchronised Product @ foru
10.1.2 Fully Unsynchronised Product ||: the Shuffle
10.1.3 Vector-Synchronised Product
10.1.3.1 A Fully General Product
10.1.3.2 Easy to Understand, CumbersometoUse
10.1.4 Named Synchronised Product
10.1.5 Automaton Restriction 00
10.2 Example Systems, Now With Some Products
10.2.1 WGC, Now With Map-Synchronised Product
10.2.2 Indiana Jones, now With Map-Synchronised Product
10.2.2.1 The Solution, Concisely
10.2.2.2 How Was I Supposed to Guess How to Handle Time?

32
32
32

33
33
33
34
34
35

35
35
36
36
37
37
38
39
40

42

42
43
44
46
46
48
49
49
50
51
52
53
53
54
55
56
57
59
59
60

10.2.3 Exercise with Solution: The Bridge on the River Kwai (FR) 60
10.2.3.1 Problem Statement 61
10.2.3.2 Solution 62

10.2.4 Exercise with Solution: The Toggle Problems 63
10.2.4.1 Problem Statement 63
10.24.2 Solution 64

10.2.5 Exercise with Solution: The Three Islands, the Two Wolves, the Goat,
andtheCabbage, 65
10.2.5.1 Problem Statement 65
10.25.2 Solution 66

10.2.6 Exercise with Solution: Max-Weight River-Crossing Problem 68
10.2.6.1 Problem Statement 68
10.2.6.2 Solution 68

10.2.7 Semaphores: firstcontacto Lo Lo oL 69

10.2.8 Mutable Boolean variable 72

10.2.9 Sequential Programs L. 73
10.29.1 Infinite Loop: while True 74
10292 if ... else 74
10.2.9.3 Sequence of instructionso Lo 74
10.29.4 Null operation: pass 75
10.2.9.5 Applicationtoourexample. 75

10.2.10 Peterson’s Algorithm oo Lo oL 76

11 Classical and Temporal Logics: (W)S1S, CTL*, CTL, LTL 79
11.1 Traditional Logic on Words: (W)S1S. 80

11.1.1 What Does that Word Salad Even Mean? 80

11.1.2 Formal Syntax and Semantics 82
11121 AnExample 83

11.1.3 Extending the Syntax; Writing Properties 84

11.1.4 The Biichi and Thatcher-Wright Theorems 87
11.1.4.1 For every NFA, there is an equivalent wS1S formula 87
11.1.4.2 For every wS1S formula, there is an equivalent NFA 88

11.1.5 Algorithmic Complexity and Suitability for Verification 88
11.1.5.1 Reminders about Complexity Theory 89
11.1.5.2 What Does it Mean for Our Purposes? 91

11.2 CTL*: Computation Tree and Linear Time Logic (CTL+LTL+---). 92

11.2.1 Kripke Structuresand Paths, 93

11.2.2 Syntax and Semanticsof CTL* 93

11.2.3 A Few Examples, to Help the Semantics go Down 94

11.2.4 LTL: Linear Time Logic 97

11.2.5 CTL: Computation Tree Logic, 97

11.2.6 Some Useful Properties and Miscellaneous Examples 98

11.2.6.1 Mutual Exclusion 98

11.2.6.2 Possible Access, Liveness, “infinitely often” 99
11.2.6.3 Requests Get Answers, Eventually 99
11.2.6.4 No Shoes, NoService 100
11.2.6.5 Interdiction 100
11.2.6.6 Necessary Steps 100

11.2.7 Comparing LTL, CTL,and CTL* 101
11.2.7.1 ExpressivePowers 101
11.2.7.2 Algorithmic Complexity 101

11.2.8 CTL Model-Checking Algorithm 101
11.3 Exercises on Logics and Automata 101
11.3.1 Exam 2020-2021 e 101
11.3.1.1 Problem Statement 101
11.3.1.2 Solution e 102

Part I

Lab classes

1 Preliminaries (preferably before the first lab class)

This class is supported by a Python implementation of Nondeterministic Finite State
automata, which I provide. You will need a machine correctly configured for Python
development.

1.1 Setting up a work environment

You may use the INSA’s machines or your own, as you prefer; whatever works best for you.
The same goes for your choice of Python editor. I provide recommendations based on what
I have used and tested.

1.1.1 Operating System
Linux is strongly recommended, though I have tested the code under Windows. Once.

Some students have had success running things on the Windows Subsystem for Linux
(WSL), which is, from my understanding, functionally equivalent to running a Linux VM on
Windows, but probably more efficient, as it seems to rely on compatibility layer rather than
full virtualisation. Some other students have reported issues such as RAM being gobbled up
during downloads (!?), slowing the system to a crawl. Your mileage may vary.

1.1.2 Choice of Linux distribution

Most Linux distributions will do, but some are easier than others to set up. Debian-based
distribs (*Ubuntu, Mint,...) tend to ship with old software, with only security updates
provided, which is a problem as we need a very recent version of Python, in particular. We
usually end up compiling Python from source, or using PPA.

Some versions of them, starting from 2018, also lack the pdftk package, because of a
packaging bug. I have observed that the overall experience of setting up a Debian-based
work environment has been painful for many students.

Arch-based distributions, on the other hand, ship with up-to-date software, and I have
found them much more straightforward to set up. Python may be two or three month
behind the latest, at most.

The choice is yours.

1.1.2.1 Provided VM: Arch-based system

TECHNICAL ISSUES: If VMuware fails with The import failed because .ova did not
pass the OVF specification conformance or virtual hardware compliance checks,
click “Retry with lower specifications”.

For your convenience, I have prepared an Arch Linux + KDE VM, following the instructions
detailed in the next paragraph, which you should read anyway, to understand what’s inside it.

https://files.vhugot.com/Restricted/Verif/VM/
Do not forget to update NFA_Framework with git pull at the beginning of each class.

The sudo password is aaa, same as the main user’s name.

1.1.2.2 Instructions: Arch-based system

If you already have an Arch set up, through whatever means, use that.

If not, to get things running in reasonable time, I strongly recommended using EndeavourOS
(https://endeavouros.com/), which is basically a nice installer for Arch. That is what I use
on all my machines. @

EndeavourOS ships with KDE by default on the ISO, which I recommend.
Once the system is set up, download run the install script, and you should be good to go:

https://github.com/vincent-hugot/NFA_Framework/blob/main/NFA_install_scripts/
arch_endeavouros.sh

Very optional: BTEX output The installation of IXIEX, which the script does not perform by
default, requires several GB and is not really needed for this course. You can un-comment
the corresponding line in the script to install everything.

During . /tests.py, you will see messages of the form

pdflatex is not installed: aborting LaTeX content (normal for students)

This is not a problem. I use the IEIEX output to generate the nice automata sagittal diagrams
in this document; you are not writing lecture notes so you probably don’t need that feature.
Arch-Linux package management in 30s

You can then install your preferred editor using pacman -S <foo>. A package list is on
https://archlinux.org/packages/. For instance, pycharm-community-edition.

There is also https://aur.archlinux.org/packages/ for user-provided packages. Those
can be installed via yay -S <foo>. For instance, visual-studio-code-bin is on the AUR.

@ ArcoLinux is another possibility. Then there is the archinstall script from base Arch. (Manjaro is also
well-known and Arch-based, but there are a few complications, with more distro-specific repositories, packages
being held back etc.)

https://files.vhugot.com/Restricted/Verif/VM/
https://endeavouros.com/
https://github.com/vincent-hugot/NFA_Framework/blob/main/NFA_install_scripts/arch_endeavouros.sh
https://github.com/vincent-hugot/NFA_Framework/blob/main/NFA_install_scripts/arch_endeavouros.sh
https://archlinux.org/packages/
https://aur.archlinux.org/packages/

1.1.2.3 Instructions: Debian-based system

Use the script:

https://github.com/vincent-hugot/NFA_Framework/blob/main/NFA_install_scripts/
debian_ubuntu.sh

Tested on a Kubuntu 23.10.
python3-pylsp may be absent from older distributions; it is not essential and can be removed.

On some versions of Debian/Ubuntu, the package pdftk is absent. sudo snap install
pdftk should work (snap is an alternative, somewhat universal, package installer). Of
course, snap itself may not be installed by default. . .

If the packaged version of lark is too old, pip install lark should do the trick; remove
python3-lark before doing that, of course.

The same remark applies regarding IXTEX as for Arch-based systems.

1.1.2.4 Instructions: Fedora / SUSE-based system

Use the script (kindly provided by a student):

https://github.com/vincent-hugot/NFA_Framework/blob/main/NFA_install_scripts/
fedora_suse.sh

The same remark applies regarding IXTEX as for Arch-based systems.

1.1.2.5 Instructions: Microsoft’s Spyware OS

I do not recommend you use Windows for this. Or anything at all, really. Ever.
Tested on version 10.

(1) Wait for the OS to reboot three times in a row for updates that must be more cosmically
important than you getting any work done.

Tell the OS you don’t want Edge, don’t want to link with a Microsoft account, don’t
want to pay for a “premium” cloud service, don’t want to be nagged about this ever
again. .. wait. You can’t tell it “no”, just “remind me in three days”. My mistake, I
thought you were your computer’s boss for a minute, how silly of me.

Oh, fun fact, when you search for “NFA_Framework” on Bing (Microsoft owned), the
tirst few links are for Microsoft’s .NET Framework. How quaint.

(2) If needed, install Git: https://git-scm.com/download/win. The “Git Bash” is nice.

(3) If needed, install Python, adding it to the system’s PATH.

https://github.com/vincent-hugot/NFA_Framework/blob/main/NFA_install_scripts/debian_ubuntu.sh
https://github.com/vincent-hugot/NFA_Framework/blob/main/NFA_install_scripts/debian_ubuntu.sh
https://github.com/vincent-hugot/NFA_Framework/blob/main/NFA_install_scripts/fedora_suse.sh
https://github.com/vincent-hugot/NFA_Framework/blob/main/NFA_install_scripts/fedora_suse.sh
https://git-scm.com/download/win

(4)

(5)

(6)
(7)

(8)

(9)

Install dot: https://graphviz.org/download/. Jump through three flaming hoops
to convince Edge that just because this is not “commonly downloaded” you know
what you're doing and really, really want to keep it.

Then jump through two more flaming hoops for Windows Defender, arguing that yes,
you’d really like to run it, though it is “unrecognised”. Anything that not everybody
else is doing is bad, don’t you know?

Do not forget to add it to the system’s PATH when the installer asks.

Install pdftk https://framalibre.org/content/pdftk, putting it in the system’s
PATH.

Additionally, pip install more_itertools lark
At last,
git clone https://github.com/vincent-hugot/NFA_Framework.git

and you're golden. Well, you're still using Windows, so “golden” is perhaps a bit
strong. You're okay.

Note that the default fonts on Windows lack support for some — or, it seems, all —
Unicode math symbols, so characters will be missing from the pdf renders, in particular
the titles of some automata.

That’s a major problem for CTL formulee (an important part of this course) which are
basically made entirely of fancy-schmancy symbols.

The only font I found with the right symbols is Cambria Math, but it has other issues
that render it unsuitable.

To have more symbols, install the fonts https://github.com/alerque/libertinus.

For some reason some symbols are still missing from the Sans variations, though they
are fine for the very same font under Linux. But at least the CTL formuee are readable —
the “Until” symbol is missing, though.

Thus, if Libertinus Math is installed, but not Libertinus Sans, the system will choose it.
Some product symbols are still missing, but the CTL formula should be fully legible.

You can also manipulate the font directly through setting NFA.VISUFONT.

If you try and generate the pdf while it’s open in a PDF reader like Foxit or Adobe,
you will get

PermissionError: [WinError 32] The process cannot access the file
because it is being used by another process: ’visu.pdf’

because Windows does not handle file access like Linux. You can’t just have the reader
detect changes and refresh the view automatically.

https://graphviz.org/download/
https://framalibre.org/content/pdftk
https://github.com/alerque/libertinus

Browsers do not keep the file open after loading, so you can use that and refresh the
“page” with F5.

(z0) Some things may be wonky in the cmd/powershell, like spinners/progress bars etc that
I may not have written in a cross-platform way. If that bothers you, submit a patch.

1.1.3 Check that it works, and brush up on stuff

Now that you have things running on whichever OS you chose, there remains to check that
the test output makes sense, and get going.

(1) Check that everything works correctly by running wolf.py, tests.py, and lecture_
automata_products.py. Compare the output of the latter two to the pprs provided on
Celene. (The install scripts automatically run tests.py).

Note: There could be some variation between your output and the Pprs because (1) the exact
appearance of graphs — by which I mean node placement — can vary “randomly” from one
execution to the next, and (2) I have probably altered the sources since I uploaded the pprs — I
won't update those systematically. The idea is to check whether you get a crash or something
legitimate-looking, not to ensure the output is the same pixel-for-pixel.

(2) Brush up on Python a bit. For instance, if you didn’t “get” comprehension expressions
last year, reading the relevant section of the lecture notes would be helpful: my code
makes heavy use of them.

(3) Likewise, brush up on finite automata theory. If you don’t remember what (X, Q, I, F, A)
stand for, you'll be a little bit lost.

2 Basic finite state systems

Let’s brush up on automata and familiarise ourselves with the NFA framework.

The automata framework is in nfa. py, which depends on toolkit.py. All other files depend
on nfa. There are many examples in lecture_automata_products.py and tests.py.

Create a file basic.py and follow along with the examples in this section.

Recall the automaton seen last year (if you were here), recognising the words whose
antepenultimate letter is a:

_)@ a@a,b@a,b@

It has the following transition table:

a b
Initial 0 0,1 O
1 2 2
2 3 3
Final 3

Let’s implement it in the framework. We have the constructor NFA(I,F,A), which is pretty
self-explanatory, with an optional argument name, generally just used for display purposes —
a major exception being named synchronised products, which we shall see later in this class,
where the automata’s names are actually significant. Read the constructor’s documentation
and code for more information.

A = NFA(C {0}, {3},
{ (0,’a’,0), (0,’b’,0), (0,’a’,1),
(1,’a’,2), (1,’b’,2),
(2,’a’,3), (2,’b’,3) },
name="a__")

If you print A, you get something like

NFA a__: ## = 29

2 {’a’, 'b’'}

Q 4 {0, 1, 2, 3}

I 1 {0}

F 1 {3}

A7 {@, a’, ®, (6, ’a’, 1, (O, 'b’, O, (1, 'a’, 2),

(1, ’b’, 2), (2, ’a’, 3), (2, 'b’, 3}

Note that the states Q and symbols X are computed from the provided transitions.

You can use A.visu() to visualise A in auto-formatted PDF form. Note that A.visu() returns
A, so you can write directly

A = NFA(C...).visu(Q)

on one line. Generally, most algorithms in the NFA framework return an automaton, so you
can chain operations on one line.

When writing automata “in extenso” — that is to say, by writing every transition by hand,
as opposed to generating them in a for loop or something of that sort — you might want to
use shorthand notation, with the NFA. spec method:

A = NFA.spec("""
0
3
0 al
2

10

2 a3b3
" name='a__, bis’)

Read the doc / code, and observe the examples to infer how that syntax works.

Now let us make it deterministic: use

A.dfa().visu(Q)

to visualise the determinised automaton. You will recognise the result of an exercise we did
by hand last year:
a__/d
#Q=8 #I=1 #F=4 #A=16 #5=2 ##=63

{'aaa, 'aab', 'aba’, 'abb', 'aaaa’, 'aaab', 'aaba’, 'aabb’, 'baba’, 'babb'}+

With the NFA. table method, you can print in the standard output, as a side effect, IXTEX
code for a nice table of transitions.

If BTEX is installed (which is not necessary for this course) you can display that table directly
in the ppF by calling

A.dfa().visu_table()

This displays:
a b
Initial {0} {0, 1} {0}
0,1} {0,1,2} {0,2}
{0,2} {0,1,3} {0,3}
Final {0,3} {0, 1} {0}

{0,1,2} {0,1,2,3} {0,2,3}
Final {0,1,3} 0,1,2) {0,2}
Final {0,2,3)} 0,1,3} {0,3}
Final {0,1,2,3} {0,1,2,3} {0,2,3}

11

Automata naturally act as iterable containers for their recognised (possibly infinite) language.
For instance, let us take

A = (NFA.of_set(["a","ab"]) + NFA.of_set(["b","bc"])).mini().renum()

Note: NFA.of_set(S) creates an automaton that recognises exactly the words in the (finite)
iterable S, and the + operation on NFA is language concatenation. NFA.mini minimises the
automaton (it takes care of e-removal and determinisation if necessary), and NFA.renum
renames the statesinto ®, 1, ... by order of accessibility (by default).

C Cc
__*<Ei> a <j:> b /i?ﬁ///ﬂ <E£>

"\ b

We obtain:

Ais iterable. In that case the language is finite, so we can simply write things like

>>> list(A)
[’ab’, ’abb’, ’abc’, ’abbc’]

>>> for w in A: print(w,end=’ ’)
ab abb abc abbc

Words are generated from smallest to greatest length. Note that if the automaton contains
e-transitions, words may appear twice; in this case convert into set to avoid duplicates.

What if the language is infinite? NFA are slicable. The code below means “take up to the first
two/ten elements of the language”:

>>> list(A[:2])
[’ab’, ’abb’]

>>> list(A[:10])
[’ab’, ’abb’, ’abc’, ’abbc’]

This will always terminate, even if the language of A is infinite, whereas 1ist (A) [:2] would
not.

len(A) returns either the cardinality of the language, if it is finite, or math. inf if it is infinite.

Other operators and methods of interest on NFA include | for U, & for N, + for concatenation
(compatible with strings and lists or sets of strings for adding finite languages as prefix
or suffix), * (with int) for repeated self-concatenation, - for complement, * for symmetric
difference (XOR for languages), @ for language shuffle (we’ll see what that is later), .map
for states and transitions mapping / renaming, .rm_eps for epsilon removal, and . trim for

12

trimming (removing all useless states, that is to say, states that are not on any path from
initial to final states).

Trimming in particular is very useful; remember its existence. When modelling problems
where you can lock yourself in a losing position without immediately realising it, you'll
generate lots of “dead” states; trimming will remove them. The Indiana Jones problem, on
which we'll spend some time, is an example of that.

You can also convert regular expressions into automata with the renfa module; for instance,
the following code converts (¢ | ab)* into a minimal DFA, showing most of the steps:

from renfa import E
(E("ab") | E("")).star().show_all()
The line

NFA.pdf_renderer.print_status()

is useful to put as the last line of any script in which there are lots of calls to .visu. Each
such call is non-blocking and initialises a PDF rendering job. The PDF rendering jobs are
collected and processed on every core available on the CPU. The line above gives you a
progress indicator telling you how many rendering jobs are pending.

With this, you should be starting to get an idea of how to use the NFA framework. Play with
lecture_automata_products.py and tests.py to go farther. Remember that you have
access to all the code.

(1) Digicode: to warm up, implement the nondeterministic automaton for the “123”
digicode seen in the lectures, and make it deterministic using the NFA.dfa method.

Recall that this automaton is of the form:

1,2,3,x

(2) Incrementable Integer Variable

Do it yourself first, even though the solution is in Sec. 8.4.4[p40: “Incrementable Integer
Variable”.

The following was an exercise given in the 2019-2020 final exam, and will be very
useful for several problems that involve counting.

For all n,m,1i € Z and X C Z, formally define a NFA V(n,m, 1, X) representing an
integer variable on the interval [n, m], initialised to i, that can be incremented by the
quantities in X, and only by those.

13

(We speak of decrementation when the quantity by which we increment happens to be
negative.)

We permit neither overflow nor underflow. We consider all states final.

For instance, we have:

V(_2>3>0>{_1>1>2}) =

_ m
V(0,4,4,{—1,-2,—4}) = k“/\] - kzj/\ (o)

O

(3) L'y faut le LIFO: For all n,m € N*, model the finite-state behaviour of a LIFO
(Laboratoire d'Informatique Fondamentale d’Orléans, errrr, I mean, last in, first out) queue
(or stack) on n distinct symbols a, b,. . ., of capacity m. See below for an example of
LIFO(2,2), and further indications.

By model, in this and further questions, I mean: write the transition system as a function
of the parameters n, m, implement it in Python, and visualise a fair number of instances
to see how the parameters affect the systems.

14

LIFO(2,2) =

Start with defining, mathematically, the automaton as a tuple (X, Q, I, F, A), where each
component may depend on m and n. See for instance Sec. 8.4.4(,40: “Incrementable
Integer Variable”. Try to do that on your own, then you can check the solution given
in the lecture notes: Sec. 10.0.1p43: “FIFO / LIFO(n, m)”.

There are several ways to go about implementing this in Python. You must implement
each of them, as they prepare for later exercises.

a. The first, and most “mathematical”, in the sense that it matches the mathematics
very closely, with no additional algorithmics, is to compute the set of all states —
here all strings of length at most m — and the rest proceeds as direct translation
of the mathematics, preferably using set comprehension syntax.

Here is a proposal for the computation of the states (a variant of a question in
2020’s Python exam: ;-)

def all_str(al, n):
"""Return the set of all strings of length at most n
on alphabet al"""
if n ==0: return {’’}
return (rec :=all_str(al,n-1)) \
| { wtc for w in rec if len(w) ==n-1 for c in al }

Thus the expected answer should be quite terse, and of the form

def lifo(n,m):
symbs = ...
states = all_str(symbs,m)
return NFA(...)

15

b. Another way, which is conceptually interesting when you can’t easily compute
the set of reachable states in advance, — and we shall see such cases later — is to
grow the automaton from its initial state, adding valid transitions, and therefore
new states, then adding transitions for those new states, and so on, until we reach
a fixed point where no new transition or state can be added.

Here is a skeleton for this approach:

A

NFAC{""},{}, { }, name=f"LIFO({n} symbs, {m} cap)")

q=20
while len(A.Q) > q:
q = len(A.Q)
for p in A.Q.copy():
use A.add_rule; will update A.Q automatically

return A

Note: the .copy () in for p in A.Q.copy() is necessary because Python — quite
legitimately — dislikes having an iterable altered while it is being iterated upon.

c. The NFA framework offers a more systematic way to handle such growth: see the
.growtofixpoint and . try_rule methods. With them, you write a growth proce-
dure that returns whether itadded anything new (Boolean), and . growtofixpoint
will automatically iterate this procedure until a fixed point is reached.

.try_rule is like .add_rules, but returns whether the rule is actually new
(Boolean, again), which is useful to write growth procedures.

The growth pattern becomes:

A = NFAC{""},{}, { }, name=f"LIFO({n} symbs, {m} cap)")

def grow(A):
has = False # have I grown ?
for p in A.Q.copy(Q):
use "has = A.try_rule(....) or has" pattern
return has

return A.growtofixpoint (grow)

An interesting functionality of . growtofixpoint is that, if you pass the optional
argument record_steps=True to it, you can then use .visusteps() on the
generated automaton to visualise, step by step, which states and transitions were
added; which is pretty neat, if I do say so myself ;-)

At this point, you can move on to the exercices on complex systems (wolf.py etc);
the other exercices on “basic” automata are optional.

16

(4) Fee-fie-fo-fum, FIFO for fun: Similarly, for all n,m € N*, model the finite-state
behaviour of a FIFO (first in, first out) queue on n distinct symbols, of capacity m.

FIFO(2,2) =

(5) Forgetfulness: Now model the behaviour of LIFO and FIFO, under the same parame-
ters, if the oldest stored elements are discarded when new elements are added while
the stack/queue is already at capacity.

17

LIFO;(2,2) =

(6) Don’t be a Dyck

A Dyck word is a correctly balanced word composed of [and]. By correctly balanced
I mean that opening and closing brackets are paired correctly. A good definition is that
by removing occurrences of consecutive pairs [], a Dyck word word can be reduced to
e. Here are a few Dyck words:

e, [, 00, (01, (001, (014, otol, ton, 0oo, oo, . ..«

Here are a few words that are not Dyck words:

1, GG, (6100, 00, 10, CL €0, CCG 10G, 06 001, 306 100G UG - - -

The Dyck language is the language of Dyck words.

Tip: we probably looked at Dyck words last year in automata theory, although that
might depend on which group you were in.

a. Write a function D(d) — mathematically, on paper, and then in Python as Dyck (d)
— returning an automaton accepting the Dyck words of depth at most d.

By depth, I mean the level of imbrication of the brackets. For instance, [[]], [[]][],
and [[]][[]] are of depth 2, and [][] is of depth 1.

18

If you have trouble understanding how you can define an automaton that depends
on a parameter, recall that an NFA is a (X, Q, I, F, A); here, each component may
depend on d. See for instance Sec. 8.4.4[p4): “Incrementable Integer Variable”.

b. Now, implement a function N(d) that returns an automaton accepting the comple-
ment of D(d). Is that the same thing as accepting all non-Dyck words?

Tip: My NFA framework implements the Boolean operators on automata. Find
the right operator to use.

¢. How many states would an NFA have to have to recognise the Dyck language?

d. Now, let us generalise this to Dyck words with several types of parentheses. They
all must be correctly paired, for each type and between each type. For instance,
here are a few Dyck words on pairs (), [, <> {}:

<> (03, IO, 010), < {3 > 0,40 <>}, I{H, <> (8), (30, 01, (D 0), 001, (0{

However, note that ([)] is not a Dyck word, despite the fact that each type,
considered in isolation, is balanced. They must be balanced with respect to each
other.

Write a function Dyck2 (d, pairs) returning an automaton accepting Dyck words
recognisable with a stack of size d, with the different pairs specified as an even-
length string. (I mean one stack total, not one stack per type of parentheses.) For
instance, the words above are recognised by Dyck2 (3," O [1{}<>") ®),

Technical tip: You can pass rankdir="TB" (top-to-bottom) to .visu to change the
orientation from the default left-to-right; useful for very wide trees, which this
might become. . .

e. Shuffled Dycks: (Best after Sec. 10.1.2,51): “Fully Unsynchronised Product ||: the
Shuffle”)

Now, let us remove the requirement that different types of parentheses must be
balanced with respect to each other. Write a function sDycks(d, pairs), with the
same type of arguments as Dyck2, but recognising the words where the projection
on each pair of parentheses — that is to say, if we ignore all other symbols — is
a Dyck language for that pair. Thus we recognise all words of Dyckz2, but also
words such as w = ([)], which is not accepted by Dyck2, but whose projections
my(w) = () and 7 (w) = [] are Dyck words.

For instance, D = sDycks(2," () [1{}") accepts:
&, 0, 0,4 (D1, 1D, {0} (O} OO L, {30, [0, {10, LO1, (DK, {0, ...

Tip: You can use a shuffle product (||, @ in the NFA class) on the relevant Dyck
automata. You could also use several independent stacks or counters.

®Little bug of syntactic colouring on braces here. .. Ignore it.

19

You should find 27 states in D; furthermore, it is hard to read, with 108 transitions. . .
Let’s verify that it does what we expect.

Project D upon a given type of parentheses, for instance [|. This can be done with
NFA.proj. Since projection can balloon the number of transitions (here it goes to
|A| = 324!), minimise the result before visualising it:

D.proj("[]1") .mini().visu(Q)

You should obtain an automaton equivalent to Dyck(d).
Now, project on mismatched parentheses:

D.proj("(1").mini().visu(Q)

You should obtain a universal automaton.
(7) Modulos

Define and implement automata modulo(n, m, b) that have as language the string
representations of base b natural integers that are congruent to m modulo n.

For instance, we have

modulo(3,0,10) =

modulo(5,4,2) = —

I need not remind you that a simpler version of this exercise was done last year in the
automata theory class, because of course you were paying rapt attention. . .

20

Using the modulo(n, m, b) function and automata minimisation, find a simple criterion
for divisibility by 5 in base 10. Same question for for divisibility by 3 in base 6.

(8) The debatable elegance of tennis scoring

Here is an informal description of the scoring system of a tennis game, taken and
adapted from Wikipedia:

A game consists of a sequence of points played with the same player serving.
A game is won by the first player to have won at least four points in total
and at least two points more than the opponent.

[..]

If at least three points have been scored by each player, making the player’s
scores equal at 3 apiece, the score is not called out as "3-3", but rather as
"deuce".

If at least three points have been scored by each side and a player has one
more point than his opponent, the score of the game is "advantage" for the
player in the lead.

Implement an automaton representing the evolution of a tennis game. The symbols
a and b will be used to denote a point won by players A and B, respectively. The
automaton will accept all sequences of points leading to a victory by either player. The
states of the automaton shall have meaningful names.

Of course, you shall do most if not all of this by programming the logic of the game,
not by writing the automaton in-extenso.

Tip: you may want to generate more states than there are, and then collapse and
rename them through uses of the NFA.map method.

21

You should obtain something like that:

This is another exercise done last year — by hand, and probably only schematically, as
there are 20 states.

3 Modelling complex systems using products

Trigger warning: lots of rivers, bridges, and boats in this section.
(9) wolf.py: Solution of problem seen in lectures.

Have fun with it, get a sense of how it works; you will need to apply what you see in
there, along with the content of the lectures, to solve other problems.

(z0) Indiana Jones and the Temple of Verification:

Indiana Jones, his annoying girlfriend, a wounded guy, and a whiny kid find themselves
in a dire predicament: savage cannibalistic cultists are on their heels; in 15 minutes,
they will be toast. . . or on toast.

Their only hope? swiftly crossing the crocodile-filled ravine, using the threadbare,

22

(x1)

(12)

(13)

rickety bridge. It is quite clear that the bridge can only support the weight of two
persons at most — even if one of them is a kid.

To make things worse, night has fallen, and the bridge is far too treacherous to walk
blind; a torch is necessary to examine the worm-eaten planks before setting foot on
them.

Dr. Jones, being a seasoned adventurer, does have a torch in his inventory; the group
will have to find a way to share. Though nobody else has a torch of their own, all can
use Dr. Jones’ torch to cross the bridge on their own or in pairs. In the latter case, they
go at the speed of the slowest person.

Given that, with the torch, Dr. Jones can cross the bridge — in either direction — in
one minute, the girl in two, the wounded guy in four, and the kid in eight, what are all
the ways, if any, in which they can all survive?

You will solve this using both a direct approach and a synchronised product. You can
and probably should use wolf.py as a template, since the problem is quite similar.

Note: there is a method NFA. trim, which removes all “useless” states (neither accessible
nor co-accessible). It may be useful.

Variant:

In another universe, Dr. Jones can cross the bridge in one minute, the girl in two, the
wounded guy in five, and the kid in ten. Thus they need an extra three minutes of
crossing time across all members. However, they only have two extra minutes to cross,
for a total of 17 minutes.

Can they still make it? How? Why?
The Wolf, the Goat, the Cabbage, the Stick, the Fire, and Lulu:

I hope you liked the Wolf, the Goat, and the Cabbage, for they are now joined by an all-star
cast of new and quirky characters in this high-octane sequel/reboot.

Lulu, the farmer, needs to get everyone on the other side of the river. Unfortunately,
her boat only has room for three, and, if left unsupervised on either bank, the goat eats
the cabbage, the wolf eats the goat, the wooden stick beats the wolf to death, and the
fire burns the stick to ashes.

Solve that using a synchronised product.
How many solutions, if any, are there in total?

The Thief, the Cop, Mom & Dad, two Boys, two Girls, and Why Don’t You Just
Throw In the Kitchen Sink, While You're At It?

You can safely skip this exercise. It's the same as before, with more everything.

23

(14)

I really hope you liked the sequel to the reboot of the Wolf, the Goat, and the Cabbage,
because here comes the spin-off to the prequel to the reboot, and we are going to blow
all our budget on special effects and Scarlett Johansson (as the Mom).

We now follow a cast of eight likable main characters with richly developed backstories:
the thief, the cop, Mom & Dad, and their underage boys and girls, two of each. In a
completely unforeseen plot twist, they find themselves in the Caribbeans and need
to go from one small deserted island to the other to save America from. .. bad guys?
Somehow.

In nostalgic homage to the premise of critically acclaimed previous installments of the
series, they only have a small rowboat, seating two people at most.

Of course, only adults can row the boat at all, but the thief cannot be trusted in the
least: he must not be alone in the boat, or he will escape and leave everyone stranded.
He will also take every opportunity to stab somebody — anybody — in the back, whether
on land or sea, unless the cop is here to prevent it. He can be left entirely alone on
either island, though, as there is nowhere to run and nobody to stab.

While the cop supervises the thief, Mom and Dad must supervise the interactions
of their spouse with their children of the opposite sex. The thief and the cop wisely
abstain from interfering in family matters.

The boys tend to be too. .. energetic... for Mom to handle; leaving her with either or
both boys without Dad’s soothing presence means headaches — again, whether on
land or sea.

Conversely, both girls have perfected the art of weaponizing puppy-dog-eyes and guilt
trips to extort dance lessons, ponies, and girly sundries from Dad. Mom is of course
wise to those tricks, and will not leave either girl any opportunity, either waiting on
an island or alone on a boat, to sweet-talk her mushy-brained husband into frivolous
spending sprees. That’s her job.

Can they all get to the other island without anybody escaping, getting stabbed,
suffering from a splitting headache, or being coaxed into buying the gold-plated,
diamond-studded, Pink Collector’s Edition of all Disney Princesses movies ?

How many solutions, if any, are there in total? Would you watch that movie? Have
you had enough of that type of problem yet? I know I have. Only a few more of those
to go. ..

The Worm, the Centipede, and the Grasshopper:

The three Amigos want to cross the river (a decidedly common wish these days!). A
fallen leaf will have to suffice as their “boat”. It is large enough to accommodate all
three, but only strong enough to support 60g, and no more.

Given that the worm weighs in at a hefty 50g, the centipede at 30g, and the grasshopper

24

(15)

(16)

at 20g, and that any of them can manoeuvre the leaf, what are all the possible ways, if
any, in which this can be achieved?

You will use a synchronised product.
The two cans:

A wise hermit demands that you bring him exactly four litres of water. You are given
two cans, devoid of any markings. All you know is that one contains 3 litres when
full, and the other 5 litres. Their dented, irregular forms make it impossible to reliably
tell how much they contain when they are partially filled, and you don’t even have a
ruler or anything to measure, say, four fifths of a can. Thus they are either empty, full,
or filled by a previously known or inferred quantity of water (say, if you filled the 3
litres can and emptied it into the empty 5 litres can, then you know the latter contains
3 litres; if you filled the 5-litres can, then used it to fill the 3-litres can, then you know
you have 2 litres left in the 5-litres can).

You have access to a water tap, which you can use to fill either can at will. You can also
empty either can into the sewer. There is no limit to how much water you can draw or
throw away — which is not very ecologically conscious on the hermit’s part. . . is he
even all that wise?

Use a synchronised product to solve the problem. Don’t rush to start coding, but think
carefully about the systems involved and their behaviours.

What is the shortest solution?
Semaphors and naive processes:

Note: we are going to see this problem and the synchronised product model for it during the
lectures, Sec. 10.2.7,59): “Semaphores: first contact”. Then all that will be left is the Python
implementation. That said, it could be very interesting for you to try your hand at this exercise
before the corresponding lecture, if you already did all the previous ones.

def semaphor sem:
sem = 1 # initialise: one instance of resource
def P(sem): wait until atomic{ if sem > 0: sem--; break }
def V(sem): atomic{ sem++ }

def process PO:
while True:
noncritical section
P(sem)
critical section
V(sem)

def process P1:
while True:
noncritical section
P(sem)

25

(x7)

critical section
V(sem)

exec PO, P1

Write and implement a model in terms of a synchronised product of systems, and
check that the race condition is avoided.

Peterson’s algorithm:

Note: we are going to see this algorithm and the synchronised product model for it during the
lectures. Then all that will be left is the Python implementation. That said, it could be very
interesting for you to try your hand at this exercise before the corresponding lecture, if you
already did all the previous ones.

Recall Peterson’s algorithm for mutual exclusion:

def binary_vars:

wo := 0 # process 0 wants critical access
Wl := 0 # process 1 wants critical access
Turn := 0 # Whose turn is this ?

def process PO:
while True:

noncritical section
wo =1
Turn :=1
wait until W1 = ® or Turn = 0
critical section
wo =0

def process P1:
while True:

noncritical section
W1 =1
Turn := 0
wait until W0 = 0 or Turn = 1
critical section
Wil =0

exec PO, P1

The aim is to verify that mutual exclusion and bounded waiting are achieved. To do
so, write and implement a model in terms of a synchronised product of systems.

26

4

Extra exercises involving rivers (from JMC'’s collection)

Just in case you run out of exercises. ..

(18)

(19)

(20)

Trois missionnaires: Trois missionnaires et trois cannibales doivent traverser une
riviere. Les trois missionnaires et un cannibale savent ramer. Ils ont une barque de
2 personnes. S’il y a d’un coté ou d’un autre de la riviére un nombre supérieur de
cannibales que de missionnaires, les missionnaires se font manger. N'oublier pas de
ramener la barque, personne ne doit se faire manger...

Les quatre couples: Quatre couples sont tout juste fiancés : Annie avec Armand,
Béatrice avec Bernard, Caroline avec Charles, et Delphine avec Denis. Ils veulent
pique-niquer de 'autre c6té de la riviere. Ils peuvent louer une barque, mais qui ne
peut pas prendre plus de 2 personnes a la fois. Les hommes sont d"une jalousie terrible,
et aucun ne veut laisser sa fiancée en compagnie d'un autre homme méme en public, a
moins que lui-méme 1 ne soit présent. Armand ne souffrira pas de voir Annie avec
Bernard en son absence. Il y a au milieu de la riviére une ile qui peut servir d’étape
y

pendant la traversée. Le probléme est de savoir comment traverser la riviere par le
nombre minimum d’allées et venues. Aller de la rive a I'ile ou de I'ile a la rive compte
pour un voyage, de méme que d’aller d'une rive a 'autre. Tout le monde sait ramer.
La seule contrainte provient de la jalousie des hommes : aucun d’eux ne peut prendre
le bateau lorsqu’une femme autre que sa fiancée est seule soit sur I'ile, soit sur ’autre
rive, méme s’il a une autre destination. 17 voyages suffisent.

Le missionnaire et les Indiens: Il y a 100 ans, un groupe de 3 missionnaires se frayait un
chemin dans la forét amazonienne en compagnie de 3 guides indiens. Arrivés devant
une riviere, ils trouveérent une pirogue qui ne pouvait transporter que 2 personnes
a la fois. Elle était difficile a man ?uvrer, et ne pouvait 1'étre que par un seul des 3
Indiens, et par un seul des trois missionnaires. Les missionnaires ne se fiaient guére
aux Indiens, et réciproquement les Indiens se méfiaient de la civilisation moderne. Les
missionnaires firent donc tout ce qu’il faut pour n’étre jamais moins nombreux que
les Indiens sur 1'une et I’autre des rives. Comment y parvinrent-ils pour un nombre
minimal de traversées ?

(21)

CTL Verification

Semaphors: CTL verification

Using the ct1l Python module, check whether the following properties are satisfied by
our earlier semaphor program — question 16,5

27

¢ The processes shall never both be in their critical sections at the same time.

¢ No process shall starve. That is to say, both processes shall enter their critical
section infinitely often.

(22) Peterson’s algorithm: CTL verification

Using the ctl Python module, check whether the following properties are satisfied by
Peterson’s solution — question 17)

o The processes shall never both be in their critical sections at the same time.
o Any process that wants to enter its critical section shall eventually do so.

¢ Processes alternate their accesses to their critical section. That is to say, if Py has
just accessed its critical section, then the next one to access its critical section must
be P;, and vice-versa.

28

Part 11

Lecture Notes: Formal Verification

10

Meta-information about the course

Introduction: What is Formal Verification?

7.1
7.2
7.3
7.4
7.5

Problem: Disaster stories
Solution: Verification
A Brief History of Program Proof
Our focus in this course: Model Checking
Provisional courseplan.

State Systems and Modelisation

8.1
8.2
8.3
8.4

Brief Reminders About Nondeterministic Finite State Automata
On machine: lecture_automata_products.py
Modelling through automata: generalities
Examples of Isolated Systems
8.4.1 DigitalClock
8.4.2 Digicode, pass123
8.4.3 LIFO (Stack) and FIFO (Queue) of size2
8.44 Incrementable Integer Variable

Incrementable Unsigned Integer Variable with Overflow

Set Variable

10.0.1 FIFO/LIFO(m,m) i ...
10.0.2 The Wolf, the Goat, and the Cabbage (WGC)
10.0.3 WGC, states as functions rather than “left-bank” sets . .
10.0.4 Indiana Jones and the Temple of Verification

10.1 A Taxonomy of Automata Products.

10.1.1 Fully Synchronised Product®
10.1.1.1 Fully Synchronised Product ® forn
10.1.1.2 Fully Synchronised Product @ foru

10.1.2 Fully Unsynchronised Product ||: the Shuffle

10.1.3 Vector-Synchronised Product
10.1.3.1 A Fully General Product
10.1.3.2 Easy to Understand, Cumbersome to Use . . .

10.1.4 Named Synchronised Product

10.1.5 Automaton Restriction

32
32
32

33
33
33
34
34
35

35
35
36
36
37
37
38
39
40

42

10.2 Example Systems, Now With Some Products 56

10.2.1 WGC, Now With Map-Synchronised Product 57
10.2.2 Indiana Jones, now With Map-Synchronised Product 59
10.2.2.1 The Solution, Concisely, 59
10.2.2.2 How Was I Supposed to Guess How to Handle Time? 60
10.2.3 Exercise with Solution: The Bridge on the River Kwai (FR) 60
10.2.3.1 Problem Statement 61
10.2.3.2 Solution 62
10.2.4 Exercise with Solution: The Toggle Problems 63
10.2.4.1 Problem Statement 63
10242 Solution 64

10.2.5 Exercise with Solution: The Three Islands, the Two Wolves, the Goat,
andtheCabbage, 65
10.2.5.1 Problem Statement 65
10252 Solution Lo 66
10.2.6 Exercise with Solution: Max-Weight River-Crossing Problem 68
10.2.6.1 Problem Statement 68
10.2.6.2 Solution 68
10.2.7 Semaphores: firstcontact Lo Lo oL 69
10.2.8 Mutable Boolean variable 72
10.2.9 Sequential Programs L. 73
10.29.1 Infinite Loop: while True 74
10292 if ... else oo 74
10.2.9.3 Sequence of instructions Lo 74
10294 Null operation: pass 75
10.2.9.5 Applicationtoourexample. 75
10.2.10 Peterson’s Algorithm Lo Lo oL 76
11 Classical and Temporal Logics: (W)S1S, CTL*, CTL, LTL 79
11.1 Traditional Logic on Words: (W)S1S. 80
11.1.1 What Does that Word Salad Even Mean? 80
11.1.2 Formal Syntax and Semantics 82
11121 AnExample L. 83
11.1.3 Extending the Syntax; Writing Properties 84
11.1.4 The Biichi and Thatcher-Wright Theorems 87
11.1.4.1 For every NFA, there is an equivalent wS1S formula 87
11.1.4.2 For every wS1S formula, there is an equivalent NFA 88
11.1.5 Algorithmic Complexity and Suitability for Verification 88
11.1.5.1 Reminders about Complexity Theory 89
11.1.5.2 What Does it Mean for Our Purposes? 91
11.2 CTL*: Computation Tree and Linear Time Logic (CTL+LTL+---). 92
11.2.1 Kripke Structuresand Paths, 93

30

11.2.2 Syntax and Semantics of CTL* 93

11.2.3 A Few Examples, to Help the Semantics go Down 94
11.2.4 LTL: Linear Time Logic 97
11.2.5 CTL: Computation Tree Logic 97
11.2.6 Some Useful Properties and Miscellaneous Examples 98
11.2.6.1 Mutual Exclusion 98
11.2.6.2 Possible Access, Liveness, “infinitely often” 99
11.2.6.3 Requests Get Answers, Eventually 99
11.2.6.4 No Shoes, NoService 100
11.2.6.5 Interdiction 100
11.2.6.6 Necessary Steps 100

11.2.7 Comparing LTL, CTL,and CTL* 101
11.2.7.1 ExpressivePowers 101
11.2.7.2 Algorithmic Complexity 101

11.2.8 CTL Model-Checking Algorithm 101
11.3 Exercises on Logics and Automata 101
11.3.1 Exam 2020-2021 e 101
11.3.1.1 Problem Statement 101
11.3.1.2 Solution e e 102

31

6 Meta-information about the course

6.1 Note on the notes:

These lecture notes are a work in progress, and have no ambition, even in the fullness of
time, to be as complete and self-contained as my Python lecture notes. At this point, those
are more of a Python book that entirely replaces the lectures, at the benefit of more lab classes.

In this Verification class, however, lectures are and will remain necessary due to the more
abstract nature of the content. Those burgeoning notes shall serve mostly as slides during
the lectures, and as memento afterwards. You are encouraged to take your own notes in
addition.

Like my Python lecture notes, and for the same reason, the document may alternate between
French and English, with a will to converge towards the latter.

Acknowledgements: This course is partly based upon the lectures given at INSA CVL for
many years by Jean-Michel CouvRrEUR, until I took it over in 2019-2020. Books, lecture notes,
and slides by J.-P. JouannauD, Joost-Pieter Katoen, Yohan Boicuur, Patricia BouYer, and
many others, provided sundry examples and elements of inspiration. Any mistakes in this
document are, likely, mine.

6.2 Course prerequisites and student assessment
Prerequisites:

o Basic set theory: set comprehension notation, powersets, functions and relations as
sets, etc.

¢ Formal Language Theory: basic notions of NFA, DFA, their languages, determinisation,
how to compute A N B (synchronised product), etc.

¢ You will have to get familiar with my NFA framework (Python). See the section on
lab classes. Therefore a decent practice of Python is a prerequisite, not at all for the
theoretical aspects of the course, but by dint of being necessary to solve the practical
problems. Students who did not follow the Python course with me last year would be
well advised to check my Python lecture notes© and get up to speed if necessary.

¢ Basic mastery of Linux-based OS. My framework also works under Windows, but I
develop and test under Linux only. Use Windows at your own risk.

Assessment: final examination, on paper.

© Available on https://celene.insa-cvl.fr/course/view.php?id=208.

32

https://celene.insa-cvl.fr/course/view.php?id=208

7 Introduction: What is Formal Verification?

7.1 Problem: Disaster stories

(1) 1985-86: Therac 25: « x Up Edit e Enter » in less than 8s -> race condition (compétition
/ concurrence critique) 125x the radiation. Fatal overdoses 86

(2) 1990: AT&T: bug in switch / break (C), race condition : no phone for 9h on whole USA
east coast; N*100 M

(3) 1994: Pentium Floating Point Division bug: 470 M ; 1 in 9 billion results were flawed;
all procs replaced

(4) 1996: Ariane 5 flight 501, 500M, explodes after 37s. A data conversion from a 64-bit
floating point to 16-bit signed integer

(5) 1999: Mars climate orbiter, SI units N.s vs non SI pound.s 328 M
(6) Year 2000: $457 billion

(7) 2008: Heathrow Terminal 5 Opening new baggage handling system: tested with 12,000
test pieces of luggage before opening. Turned out that it couldn’t handle a passenger
manually removing a bag. 42 000 bags misplaced, 500 flights cancelled.

(8) 2012: Knight Capital Group: $440 M lost in 30 mins due to buggy trading software.
There were all sorts of bad coding practices at play here. Interesting link about this.

) ...

7.2 Solution: Verification

(1) What is verif? Duality program / specification: do they match? If not prog or spec
might be erroneous: verif adequation, correct, try again. Iterative.

(2) Spec is what we use in our head all the time; can be more or less formal. We are
interested in mathematical proofs, thus the spec needs to be formal.

(3) Do we verity the program itself, or a model or abstraction thereof? Can’t check the
compiler, the OS, the ambient temperature,...always abstract that which seems
irrelevant, and hope it is irrelevant in practice.

See Ken Thompson’s Turing award lecture: Reflections on trusting trust [Thompson, 1984].
(4) A vast domain, with many techniques:

a. Testing (how are test cases generated? Can be from spec? coverage? Does 100%
coverage mean 100% correctness?), Test Driven Development (TDD)

33

https://www.henricodolfing.com/2019/06/project-failure-case-study-knight-capital.html

b. Proof (Hoare logic,...), not adapted to reactive systems or concurrency.

{BAPIS{Q} , {-BAPIT{Q}

{PIc{Q}, {P} if B then S else T endif {Q}

automated to a large degree.
¢. Curry-Howard certified prog (B, Coq,...),
d. Abstract interpretation (simulate exec with approximation / bounds),

e. Model-Checking, good for concurrency, can be

7.3 A Brief History of Program Proof
(1) 1949 Turing proposes mathematical proof of programs
(2) 1969 Hoare logic for sequential programs; first order
(3) 1975 Constat : vérif. inadaptée a systemes réactifs
(4) 1977 Pnueli propose d’utiliser les logiques temporelles for concurrent programs
(5) 1981 Model checking de CTL par Clarke Emerson, Sifakis et al.
(6) 1980-1990 Nombreux résultats théoriques
(7) 1990-2000 Enorme amélioration des performances, Extensions : proba, temps,...
(8) 2000-... MC adopté par les principaux fondeurs (Intel, etc.)
(9) 2008 Prix Turing décerné a Clarke, Sifakis et Emerson

7.4 Our focus in this course: Model Checking

Formal Specification
(eg Temporal Logic,...)

Automata models

N -.> ‘, ____ Yes. Oh! Happy Day!

' "™ (Unless the model or spec is actually wrong)

o _> ---> No. Get counterexamples, adapt, retry.
s
Complex system, Synchronised Product ® Ax:

subsystems interacting Given synchronisations S, yields

(large) automaton for global behaviour
Examples of applications of model-checking in “the real world”:

34

o Famously, [Lowe, 1996] broke and fixed the Needham-Schroeder public-key protocol,
revealing mistakes that had remained undiscovered for over 17 years.

o [Clarke et al., 1993], analysing a model of over 103° states, found mistakes in the IEEE
Futurebus+ industry standard, leading to a substantial revision of the protocol.

o [Staunstrup et al., 2000] successfully verified a train model of over 1421 components,
for a total state space of 10%7°.

o Widely used for hardware and software verification at IBM, Intel, Microsoft, NASA
(Mars Pathfinder, Deep Space-1),. .. wherever there are critical systems and lots of
money on the line.

7.5 Provisional course plan
(1) modélisation par systémes états transitions / structures de Kripke / automata
(2) produits synchronisés de systemes
(3) problemes d’accessibilité; algorithme de Peterson

(4) logiques de mots finis et infinis: logiques monadiques faible et forte du second ordre
d’un successeur (w)S1S, logiques de temps arborescent et linéaire: CTL*, CTL, LTL.

Last year we stopped there.
(5) algorithme de vérification CTL
(6) automates de Biichi et algorithme de vérification LTL (en fonction du temps)

(7) Logique de Hoare (dernier cours)

8 State Systems and Modelisation

8.1 Brief Reminders About Nondeterministic Finite State Automata
Un automate fini non déterministe (NFA) est un 5-uplet A = (X, Q, I, F, A) ot:

¢ Q: ensemble fini d’états

o X: alphabet fini

o [€ Q: états initiaux

o F C Q: états terminaux

o ACQ x (ZU{e}) x Q: relation de transition

notation

(pa,q)eA = pSq Alp,a)={qlp=>q}

35

We shall not hesitate to use object-like notation; for instance, if A € NFA, we can write A.Q
for its set of states. This is not a classical notation, but it avoids having to define unique
names for each component when we have several automata to deal with, and matches the
notations in my Python NFA framework.

Cloture transitive des transitions & sémantique
Soient u,v € I*. Sip = qetq — ralorsp —> .

Sémantique: langage reconnu par un état:
[q] = {u € Z* | 3qini € I: qini — q}

Sémantique: langage reconnu par un automate:

(A= U laml = {uer

qﬁnEF

Aqini € I, dfin € F: qing 5 Jfin }

Déterminisme, non-déterminisme et ¢
Exercice: abc € [A] PRIN Agini € Lp,q, 7 € AF: Qing — P b, qSr
Non, car abc = aebc = eabec = - - -
Non-déterminisme: e-transitions, multiples états initiaux, et “choix” p = qetp - q’.
Un automate est déterministe si:
o I <1
¢ La relation de transition 6 est une fonction partielle Q x £ — Q
Etats accessibles, coaccessibles, trim (émondage)

Complete automata (not to be confused with complementation)

8.2 On machine: lecture_automata_products.py
Practice up to (and including) the section on determinisation.
More on that later (products)

Note: You will use this framework in lab classes. Note that there is some documentation for
it in Sec. 2(p9): “Basic finite state systems”.

8.3 Modelling through automata: generalities
A shift on philosophy regarding automata:

Last year: descriptors for languages; internal details such as number of state ultimately
unimportant

36

This year: outil de modélisation des états du systéme.
Langage généralement moins important, états et transitions modélisent des aspects réels.
Exemples types de problemes:

(1) Systemes a états finis: montre hh:mm, digicode...

(2) Loup chévre et chou | Wolf, goat and cabbage

(3) Acteurs en concurrence, qui coopérent / se synchronisent sur certaines choses, devant
respecter certaines contraintes

(4) Exclusion mutuelle, sémaphores, algo Peterson,...
(5) Sureté (toujours / jamais)

(6) Vivacité (un jour, fatalement)

8.4 Examples of Isolated Systems

Let us see a few examples of simple systems, and not-so-simple systems that we still tackle
by viewing them in their globality, at least for now — we will move towards a “product of
sub-systems” soon enough.

8.4.1 Digital Clock

Consider a digital clock hh : mm (24h). How many states?

24 x 60 = 1440

37

8.4.2 Digicode, pass 123
You first lab class exercise will be to implement this.

x stands for any digit other than 1, 2, 3.

1,2,3,x

Déterminiser, et écrire une version déterministe directement. Rappels de ’année derniére !

END FIRST LECTURE (2020-2021)

1 2 3 x
Initial 0 0,1 0 O O
1 2
2 3
Final 3

Determinisation algorithm: preferably use table:

1 2 3 X
Initial {0} {0, 1} {0} {0} {0}
{0,132 {0,177 {0,2} {0} {0}
{0,2 {o,1} {0} {0,3} {0}
Final {0,3} {0,1} {0} {0} {0}

38

To write a direct DFA, reason in terms of “how much of the correct passcode have I seen
yet?”.

END FIRST LECTURE (2019-2020)

8.4.3 LIFO (Stack) and FIFO (Queue) of size 2
Y ={a, b}, input denoted by +, output by —.

Maximum storage capacity of 2 symbols.

LIFO= —

Suppose now that, instead of being unable to add new symbols past capacity, we simply

39

forget the oldest stored symbol. We get the following behaviour:

8.4.4 Incrementable Integer Variable

So far we have only seen automata with a given, constant, number of states and transitions.
Let us get used to defining potentially infinite collections of automata as a function of some
parameters. The following was an exercise given in the 2019-2020 final exam, and will be
very useful for several problems that involve counting.

For all n,m,1 € Z and X C Z, formally define a NFA V(n, m, i, X) representing an integer
variable on the interval [n, m], initialised to i, that can be incremented by the quantities in
X, and only by those.

(We speak of decrementation when the quantity by which we increment happens to be
negative.)

We permit neither overflow nor underflow. We consider all states final.

40

For instance, we have:

V(_2>3>0){_])])2}) =

The formal definition of V is:

2 =X
Q = [n,m]
I = {i}
V(n,m,i,X) = F =Q
A = {p<1>q ’P»q €(2>XEEX>(]:]3+'X}

It can easily be implemented in Python; for instance:

def increment(n,m,i,X):
return NFA({i}, Q := range(n, m + 1), {
(p, X, P+ x)
for p in Q for x in X
if n <= p + x <=m # p+x in Q would be clearer but less efficient
P .named (f"Increment ({n}, {m}, {i}, {X}>")

41

9 Incrementable Unsigned Integer Variable with Overflow

For alln,i € Nand X C Z, formally define a NFA V, (n, i, X) representing an integer variable
on the interval [0, n], initialised to i, that can be incremented by the quantities in X, and
only by those. That variable is subject to integer overflow with wrap around semantic, like
unsigned char/int in C, meaning that whenever the variable exceeds its maximum, it
wraps back around to 0.

We consider all states final. For instance, we have

Vo(4,0,{1,4}) =

The formal definition of V4 is:

r =X
Q = [0,n]
I = {i
Vom,,X) = | ¢ _ Eg}
A = {p@q’p,qu,xeX,q:p—FX modn—H}

10 Set Variable

For any set X, f