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About this document:

This is your main work document for the course. It contains lecture notes (somewhat of a
misnomer, as there will be only two lectures, properly speaking), exercises for lab classes and
autonomous work (time slots are reserved specifically for that), and exercises for homework
and exams.

Dead tree version:

This document is quite large, and undergoing constant modification, so it will not be
systematically printed and distributed to students.

Language:

This document is perpetually under construction and, currently, written in an unholy mixture
of English and French. Why? There is a general impetus, which I take to heart, to move some
courses to English, both to better prepare our own students for work in an international
setting and to make it easier to host international students in the future. In that spirit, new
course material should of course be written in English. However, some of the material here

*Exceptions: IUT de Belfort-Montbéliard, UFR ST de 1'Université de Franche-Comté (Pierre-Cyrille Héam),
DIU EIL Orléans.



was already written in French before I began working on these lecture notes this summer,
and translation is hardly my priority at this time.

The spoken language in class will remain French, for now.
Typographical, orthographic, & grammatical errors:

Do not hesitate to point out typos and errors to me. I may even consider offering a negigiie
bounty in terms of points, marks, and credits to any student pointing out a significant number
of errors — preferably in one go.

If you wish to contribute a paragraph or two, let me know.
Trigger warnings:

Contains long digressions, sweeping personal opinions, attempts at humour, and traces of
nuttiness.
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General organisation

1  Types of classes

1.1 Lab classes

TD = TP = “travaux dirigés” = “travaux pratiques” = “lab class”. There are 11.

You work on various exercises on a machine. I hover behind your back, look at your code,
and offer biting commentary when you write nonsense. Sometimes I debug your code, but
only if you have been nice.

I may ask you to hand out your answers to some exercise at some point, which I then may or
may not mark. When that happens you will be informed that the work may be marked at
the beginning of the class. In that case, the work can be done in groups of 2. No more, no
less. 3 is right out.

I may also give you a small surprise exam at any time; probably in the form of a few multiple
choice questions. Those are always individual. Again, they may or may not be marked.

Attendance is mandatory.

Copy and pasting code from Al chatbots or web searches completely misses the point, which
is to understand code and apply methodologies.

1.2  Autonomous lab classes
There should be three of them in toto, all before the second and last lecture.

No teacher is present®), but the lab room is reserved so you can finish up your work, read,
test, and discuss the lecture notes, or anything else relevant to the course.

They are usually placed right after a TD or two.

Attendance is not mandatory, but strongly recommended.

1.3  Lectures / question sessions
CM ="cours magistral” = lecture, in an amphitheatre. There are 2.

I won't actually give lectures in the classical sense, explaining Python in a linear way. I
wrote the lecture notes to avoid having to do that, as neither the students nor I were overly
fond of that system.

®1n theory. I may or may not linger in practice.
Y- y y g P
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Instead, the “lectures”, of which there are only two, are there to give everyone a chance to
ask questions on the material. This can mean re-explaining a concept that was unclear to
you in the lecture notes, or offering and discussing a solution to an exercise. Note that I
shall not distribute proposed solutions to TD exercises in written form; only explain or show
them when asked during lectures.

Whenever you have questions, take note of them; whichever ones remain unanswered by
the time the next lecture comes, ask them then. This is an experimental way of organising
the class. The aim was to have more time with the machines, and less sitting on benches,
listening to me speak. Hopefully, the questions-based system means that, whenever I do
speak, at least one person in the amphitheatre (presumably the one who asked the question)
is interested in what I am saying.

In the event that there are no questions, mayhap I shall cut the lecture short... Or, more
likely, I shall avail myself of the remaining time to give you a “surprise” exam.

Exceptionally, if I see some specific type of mistake too often during lab classes, I may
spontaneously elect to berate you about it during a lecture, even in the absence of related
questions.

Attendance is mandatory.

1.4  Project presentation & project lab classes
You can read this year’s Python project in Part VIpz79).

We shall begin in an amphitheatre, in which I shall answer general questions you may have
about the project.

When that is done, the remainder of the project time (not counting personal homework, of
course, and you will need some of that to get to the end of the project) will take place in labs.
The lab rooms are reserved on those occasions, in contiguous slots of at least 2x 1h20.

I shall usually be present, going from group to group to get an idea of the general state of
progress of each, and to answer questions. I leave when the questions run dry, or time runs
out, whichever comes first.

Attendance is morally mandatory, but neither really controlled nor enforced, as some students
are prompt to notice every year. Thus, if you want to stay in bed while your classmates
work on the project, I suppose that is, de facto, your prerogative, insofar as I shall not fight to
prevent it. However, it may interest you to read Section 72,391}, concerning the project’s
final report and individual marking scheme, to see why that might prove to be a rather poor
tactical choice on your part.
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2  Final examination

The final is an on-table, on-paper exam, lasting 1h20.

The only document allowed is your personal “memento”, a two-sided, handwritten A4
sheet of paper which you should prepare ahead of time.

Of course, no computer, smartphone, smartwatch, R2D2 unit, etc, is allowed.

The paragraphs that follow were written with a coding exam in mind, of the same style as the
lab class exercises. I have since moved away from that style, and towards Multiple-Choice
Questions. Beyond direct questions of the form “Is this type mutable?”, I ask you to show
that you understand how Python works, by asking you the result of the execution of various
snippets of code, some trivial, some not.

This favours people who actively worked with the lecture notes and practised Python
regularly, intelligently confronting bugs and figuring out their nature.

You will find on Celene an example of what the MCQ exam looks like, and instructions to
follow.

2.1 On the virtues of coding on paper

The “on-paper” aspect of the examination is regularly contested by students. My usual
answers follow:

I want to enforce the habit of thinking about your code before executing it. Actually, you
should think about your code before writing it.

On paper, you don’t have the luxury of writing nonsense code, running it, changing
something semi-randomly in the hope that it works, and iterating until it does — or appears
to.

On paper, you need to actually understand what you are doing, and do it right the first time —
or at least the second time: you can use a draft.

“But. .. when I program, I always have a computer; so what'’s the point?”, says the disgruntled
student.

The point is that if you need the computer as a crutch for relatively simple things, such as the
kind of things I ask in an exam, you are wasting time, you don’t actually know what you're
doing, and you will fail entirely on more complex problems, which involve juggling several
subproblems.

Code written by test-mutation-iteration also tends to be far too long and complex — for lack
of a global vision of what is actually going on — and thus much more time-consuming to
write and fertile ground for bugs, even after the endless fiddling.
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Write simple code fast, short, and right the first time, and you have more energy left over for
the complex parts that really demand your attention.

To train, pretend you are on paper, even if you are not. Think, then write the code. When
you're quite sure it is correct, and only then, run it. Every time you were sure it was correct,
and it turns out to be wrong, take it personally, find out what you thought wrong, and get
better.

The rise of Al chatbots, since the above was written, make this even more necessary.

2.2 Degree of lenience with respect to syntax

Note: this is not really applicable to the current multiple-choice main exam, but may apply in other
circumstances.

Coding on paper makes it easier to commit syntax errors, and you don’t have access to
help(..) to check builtin functions” syntax, argument order, etc. ..

How lenient will I be when marking you exam?

Clearly, I shall be more lenient than the Python interpreter, but not by much. By the time
you get to the exam, you should be practiced enough in Python to have a good grasp of its
syntax.

The rule is: whenever your syntax errors introduce an ambiguity, and I can interpret your code in
several ways, I shall mark the code according to the worst way in which it can be interpreted. Any
other tactic would give weak students some degree of incentive to be as vague as possible.

Mistakes which I will not penalize are, for instance, writing

for e,k in enumerate(l)

in a context where it is clear that you mean k to be the index and e the element. (It should be
k,e) Having well-chosen variable names helps identifying what you mean. Unless you do
strange things with e and k later, this kind of mistake is not a problem for me.

Likewise, writing for k in mydict.keys instead of for k in mydict.keys() is unlikely
to bother me, because it does not usually matter for the logic of your code whether the keys
are an automatically updated attribute or returned by a function, and what you are doing is
clear.

Contrariwise, if you write

return 1.sort()

in a context where I expect you to return a sorted list, I will not assume that you meant to use
sorted(. .), because understanding the difference between a procedure and a function, a
side-effect and a return value, an in-place modification and a fresh value, and the role of
None, is something that you are tested upon, along with everything else.
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Perhaps you understand all this, and your use of 1.sort() in that context was pure absent-
mindedness. Or you don’t understand any of this, and you confuse 1.sort () and sorted(. .)
precisely because you never really understood how they differ or why that should matter. In
the presence of this ambiguity, I shall assume the worst.

Very rarely, I may use knowledge from how you answered other questions to influence my
interpretation. For instance, if other questions make it very clear that 1.sort(), in your
head, has sorted(..)’s behaviour, then I may apply a moderate, flat penalty instead of
marking every question using it as wrong. I shall not use any knowledge external to the
exam: nothing that you did in class, or talked with me about, will influence the mark; only
what is written on the paper. For all practical purposes, I don’t even pay any mind to the
names on the paper.

If you do understand the difference between 1.sort() and sorted(..), but are not sure
which is which, or even have completely forgotten their names, no problem. Just write me a
short note along the lines:

I call "sort(l)" the builtin that returns a fresh sorted
version of 1 (not in-place!) -- I forgot its real name!

So long as you are clearly referencing a builtin that actually exists and is licit in the context
of the question, you will not be penalised for it. All I need is sufficient evidence that you
understand what you are doing. (What you are doing still needs to be correct, of course. . . )

However, whatever you do still needs to be in Python! If you write using C syntax (or that
of any other language), attempt to “declare” variables, etc, you will be harshly penalised
even if the intent is clear. This is a Python exam; if you blatantly advertise to me the fact that
you have hardly ever touched Python, then of course I shall take a dim view of it, regardless
of how well you solve the questions in another language.

Those are just a few examples out of thousands of possibilities — but they should sufficiently
illustrate the general boundaries of what I consider admissible.

2.3  Memorising methods

The exam will not require you to know or use methods (in the Object sense) that are not
discussed in this document, or explained in the exam. For instance, you are expected to
know about list.sort, sorted, sum, any, all, str, dict.values, dict.keys() etcetera,
because they are discussed in the document at some length. At least know they exist and
what they do, even if you forget the exact name. (And if you do forget the small ones, like
sum, any, and all, you can reimplement them in one to a few lines anyway.)

You are not expected to know about 1list.insert, list.index (although we use this once,
for permutations), list.count, dictionary. fromkeys, or others like that, because they are
not fundamental and are not discussed in the document. If a somewhat obscure method is
useful for a question, I'll either give it in the exam, or reimplementing it from scratch will be
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the object of a question.

Students sometimes go out of their way to use obscure methods which they remember or
understand only partially; this rarely plays out in their favour.

2.4  When in doubt, ask!

Unless I am indisposed or otherwise unavailable, I am always present during my examina-
tions. Therefore, if anything about the exam seems ambiguous to you, or you are unsure
whether something you have in mind is permitted, do not hesitate to ask.

The worst that can happen is that I might refuse to answer. To avoid that, formulate your
query in a way that is as independent from the exam’s question as possible.

For instance, if the question asks to return a sorted version of some list, you may ask “Is
it licit to use list.sort() in this question?”, and I shall probably answer “yes” or “no”
(for instance if I require you to implement your own sorting function). If I answer “yes”,
that does not necessarily mean that it is the right tool for the job. If your query betrays a
misunderstanding of the question, I shall take the opportunity to clarify, either privately or as
an announcement for everyone.
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Though this course is ostensibly about Python, we shall spend one session on an introduction
to Linux Shells, and on Bash in particular.

“What'’s the connection between Bash and Python?”, you may well ask. Don’t hurt your
brain trying to find one, there is none — none worth drawing, at least.

Some might say that they are both scripting languages, which may well be true, but only if
you take so loose a definition of scripting as to render the word nearly useless. Some might
say that they are both interpreted, as opposed to compiled, but — even politely disregarding
that this is a property of implementations and not of languages — that’s only sort-of-true,
as Python’s default implementation actually compiles to byte-code, and then interprets
that. Even were it absolutely true, it would still be a terrible reason to lump two languages
together.

The real reason there is some Linux and Bash in this course is that several other courses
depend on students having at least minimal competence on a Linux machine, but there is
not enough relevant material to justify making Bash a course onto itself. Thus, you may
consider this Bash class as an independent mini-course, and a prerequisite for most future
lab work in other courses.

Note that only the bare minimum is covered here; you will have to experiment, ask questions,
and find other sources to go further.

(0) #  During the first lab class, look for boxes similar to this one: they contain the
instructions for the class. The aim is to get familiar with shell and the Linux machines.

When you have done everything — or if everything is trivial to you because you have
experience in shell already — move on to the part on Python and start reading the lecture
notes or jump straight to the Python exercises.

The shell lab class is not marked.

3  Whatis a shell?

A shell is an otherwise perfectly ordinary interactive command-line program whose purpose
is to serve as an interface to the machine’s other programs. Thus it receives and interprets
the user’s commands, usually directly typed into the console, and executes them.

Oftentimes, this boils down to calling another program with the provided arguments, and
letting it take over. For instance, nano text.txt just calls the external program nano — a
barebones text editor found on most machines — with argument test. txt.

Shells can also receive commands from files, and support programming structures such as
variables, arithmetic and Boolean operators, functions, tests and loops, et cetera, though of
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course the features available and their syntax vary from shell to shell.

Thus, one typically uses them to write some small scripts serving as “glue” between others,
more sophisticated programs. Shell languages are well-suited for this purpose, as calling
other programs is extremely easy, and there are convenient syntactic shortcuts for nearly
every situation. Once you have memorised them, at least.

4 Whatis a script?

I have used the word several times already, and will many times again; it is worth defining.
The first caveat is that not everybody agrees what that means. If you search for a definition,
you will likely find something along the lines of (the first result of my search engine):

A program or sequence of instructions that is interpreted or carried out by another
program rather than by the computer processor (as a compiled program is).

— TechTarget.com

This cannot immediately be said to be wrong, in the sense that there is no consensus or
central authority against whose definition this can be compared, but I put it to you that this
definition is useless.

It is useless because it carries no information about the program/script itself, only about
the language used to write it, and that information is “it is an interpreted © language”. We
already have perfectly good words to express this — I just used them — so with this definition
the word “script” carries no new information. Every script is an interpreted program; every
interpreted program is a script; we now have two different ways of saying the same thing.
Great.

The notion of “interpreted language” itself is not terribly useful, because many interpreted
languages, Python among them, compile to bytecode behind the scenes. That still matches
the definition above, but then. .. so do Java and C#. And what to make of languages like
OCaml, which support interpretation, byte-code compilation, and native code compilation
for multiple processor architectures?

Being “interpreted” is mostly a property of a language’s implementations, not of the language
itself — only mostly because of course some language design choices dictate what kind of
implementations make sense in practice.

Here is the definition I propose:

A script is a source code file written either directly by the end-user or with the
reasonable expectation that the end-user may alter it according to his needs.

(©And it is a rather crummy definition of “interpreted”, as well, but let’s not get into this.
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— Me

That is the important distinction between a script and other types of programs. If it’s meant
to be casually tinkered with, it’s a script. If it provides some sort of interface (CLI, TUI, GUI,
configuration files,. . .) within the bounds of which you are expected to express what you
want, and if you can’t, you're out of luck, it’s a regular old program.

Other characteristics of scripts, which some sources will use as definitions, stem from this:

o Scripts are almost always executed via an interpreter because altering compiled
programs is tedious. But some scripts may be compiled. For instance, in the game
editors for Skyrim and Neverwinter Nights, the scripts (in domain-specific languages
Papyrus and NWScript) are compiled (to specialised byte-codes), either implicitly or
explicitly. They’re still scripts, because the end-user of the game editors is supposed to
deal with them directly.

¢ Scripts are often short and sweet; the longer and more complex a program becomes,
the less you want to casually tinker with it, unless you like pain.

o Scripts often, but not always, deal with automating tasks, or customising a system,
because that’s the sweet spot where you can’t just toggle an option somewhere to get
what you want, but you don’t need to invent something completely new, just gluing
together exiting functionalities will do.

Shell languages, such as Bash, are very-well suited for system automation and customisation.

5 Syntax (in)sanity warning:

The basic syntax for most common shell operations was decided a half-century ago, or
thereabouts. In those days @ “spirits were brave, the stakes were high, men were real men,
women were real women, and small furry creatures from Alpha Centauri were real small
furry creatures from Alpha Centauri.”

In other words, accessibility, consistency, and legibility were not popular buzzwords yet;
conciseness was much more highly valued. The shell syntaxes are chock-full of one-character
modifiers with non-obvious effects, and the parsing rules are not always straightforward —
the clear “formal (context-free) grammar + lexer + parser” approach to language design
which we shall study in the “Formal Languages Theory” course this semester was not used
to design those languages. Perhaps it is because that method was not yet as widespread and
well-tooled when the initial design choices were made as it has been these last few decades.

The Posix shell committee wrote a grammar attempting to formalise the Bourne shell; many
rules in the grammar are context-dependant. You will understand what “context dependant”

@and in the immortal words of Douglas Adams
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means in more detail after studying formal languages. For now, let’s just say that this means
that shell syntax is intrinsically “more complex”, in a very important sense, than that of
languages like C, Java, or Python. Even then, the grammar does not exactly capture the
behaviour of parser implementations.

One of the additional difficulties is that pretty much everything is handled as strings. ..
which quickly becomes nightmarish when you have several layers of parsing and want to
be robust against whitespace and special characters.

None of this means that simple tasks are necessarily complicated in shell. But complex tasks
that go against the grain can become quite tricky fairly quickly.

For these reasons, among others (such as runtime efficiency and portability), it is not advisable
to use those languages for anything other than “glue” scripts, though the languages are
complete enough that you technically could, were you masochistic enough to try. If you have
non-trivial algorithms to write, it is probably best to write them in some other language and
call them from shell if you must, unless there are overriding constraints at play.

Things are even more chaotic with the naming conventions of standard Unix programs that
you might call from a shell or within a shell script. Those are not technically part of the shell
languages but in practice you will always need to use some of them to get anything done.

Nobody ever sat down and decided upon a coherent set of basic programs and naming
conventions. New programs were added higgledy-piggledy by different people as time
went on, under the only constraint of never reusing an existing program name. Those that
proved very useful became more or less standard. .. and never changed names.

For instance, if you want to display the contents of a text file, do not expect to find a command
named display_text or anything equally descriptive. That would be unimaginative and
pedestrian. The relevant commands are actually named cat, more, and less. Of those, of
course, less is the most flexible. More than more. Because of course.

There is little logic behind those names, only a history. cat is actually short for concatenate,
and quite unrelated to the allegedly cute feline freeloaders that, for unfathomable reasons,
old ladies like keeping as pets.

Forinstance, cat f1 £2 sends the contents of the two files, one after the other, to the standard
output, which can be redirected to a new file, thus concatenating the two initial files into a
third. So far, so good. Since the standard output is displayed by default, the command is
also (almost accidentally) suitable for displaying text, and was used for that purpose.

When the text is too large to fit in a single screen, with cat, you only see the end of it, as
everything else scrolls out of view at breakneck speed, so somebody wrote a command to
stop at the first screen of text, and display --More-- on the last line until the user chooses to
read the rest of the document. That command was called more, after that prompt. (Okay,
that almost makes sense).

Then somebody wrote a version of more with even more features. And they called it less,

24



because they thought they were being funny. HA. Ha. ha. (more could not scroll backwards,
which was the main new feature, so “backwards more = less”. Get it? Instant hilarity.)

My advice: take a deep, relaxing breath and just memorise the commands that you need.
After a while you won’t even notice how infuriating it all is anymore.

Additional good news? There is no universal convention regarding the syntax of the arguments
that each program or command takes. That would be too easy. (Though there are Posix and
GNU conventions, which are fairly well respected).

When faced with a new command, especially a non-standard one, always read the manual
or the help page. thecommand --help usually displays the help page. But of course nothing
prevents a given program from ignoring that argument outright and doing whatever it
wants.

man thecommand will display the manual page, if installed. Since the man program itself is
safe, you don’t run the risk of running an unknown program by using it.

6  Choose your shell:

Here are a few among the most common shells, by family:
o Microsoft: cmd.exe, Windows PowerShell
¢ Bourne : sh, ash, bash, ksh, zsh
¢ C:csh, tcsh
o Perl : perlsh, zoidberg

o Plan9: rc, es

&

Secure / Restricted: ibsh, rssh, scponly

sh is the historic (Bourne) shell for Unix systems, and has been present on nearly every
variant of Unix since the eighties. bash (Bourne-Again Shell) is a strict superset of sh, in
extremely common use. That is what you will be using here; when you launch a console on
the machines, a bash session is opened by default. Bash is indeed the default on more Linux
distributions and on MacOS (which is a Unix).

7  Bash: builtin commands and reserved words

Recall that commands fall into either of two categories: builtin shell commands, and external
programs.

25



For reference, the following are builtin commands for Bash 4.2:

command eval jobs read times
. compgen exec kill readarray trap
[ complete exit let readonly type
alias compopt export local return typeset
bg continue fc logout set ulimit
bind declare fg mapfile shift umask
break dirs getopts pushd shopt unalias
builtin disown hash popd source unset
caller echo help pwd suspend wait
cd enable history printf test

Everything else is an external program.
Examples include cat, less, more, cp, mv, rm, Is, mkdir, find, grep, sed, cut, ps, chmod,...

The following words are reserved by Bash, and thus cannot be used as variable names,
among other things:

! time

[L 1] { }

if then elif else fi
case esac

select in

while until for do done

function

8 The command prompt

When starting a bash session, you find yourself faced with a command prompt (FR: invite de
commande) which, by default (it is highly personalisable), looks like this:

vhugot@Khepri :~/Documents/3A-Python$

(1) # Starta computer under Linux (via dual-boot or a virtual machine), and locate
a terminal or console application, so that you are ready to work with a prompt.

It can be broken down into the following parts:
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vhugot username of current user

@ separator
Khepri name of the current machine
: separator
~/Documents/3A-Python current working directory
$ status indicator; # for root, $ for peasant.

~ stands for “user’s home directory”, in my case, /home/vhugot.
In the remainder of this document, I'll usually just use $ and omit the rest of the prompt.

The appearance of the prompt is dictated by the variable PS1 (for Prompt String 1), which
can be modified. On my system, it has the value

$ echo $PS1
\[\e]l®;\u@\h: \w\a\]l${debian_chroot:+($debian_chroot)}\u@\h:\w\$

There is some magic going on there; let’s just mention that \u stands for username, etc, and
show the effect of a simple modification of this value:

vhugot@Khepri :~/Documents/3A-Python$ PSl=coucou
coucouecho $PS1

coucou

coucou

(2) 4 Do the same thing on your machine. Quit and start the terminal again. What
happens?

9  Profile files

Prompt modifications, along with aliases and other tweaks to the behaviour of bash, are best
put in the adequate configuration files that bash runs at the beginning of each session.

Those are generally ~/.bashrc or ~/.bash_profile.

(3) 4 Find those files and see what’s in them. Don’t modify them for now.

If possible, use an editor with syntax highlighting. Note that the symbol # comments
out everything that follows; syntax highlighting is particularly useful to see at a glance
which lines are commented out.

It is common for Linux distributions to provide bashrcs with a lot of lines commented
out, which the user can simply uncomment to activate a nonstandard but useful feature.
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In particular, we shall come back to aliases later on. J

Note: we are focusing on the Shell, but that does not entail that you can’t use anything
else; in particular, you don’t have to edit config files with nano or vim. You can use the file
browser and whatever graphical text/code editor you have available or prefer.

Knowing how to do everything in the terminal is extremely convenient when connected in
ssh to a remote server. When working on a local machine with a graphical environment,
there are usually better tools available.

Use the right tool for the task at hand.

10 Common commands and assorted tricks

You must know all these commands.

(4) 4  Take some time to test each of these commands and skim through their manual
and help pages, even is there is no specific question next to them.

Here are a few of the most useful commands. For more information about their capabilities
and usage, see the help and man pages.

man <cmd>:

display the manual page of external program <cmd>, if one is installed. Most, but not all,
programs come with a somewhat detailed manual page.

cd <path>

Change the current working directory. <path> can be an absolute or relative path.
/home/vhugot is an absolute path. Documents/stuff or ./Documents/stuff ( . means
“current directory”) are relative paths, as well as . . /otherstuff (.. means “parent direc-
tory”).

If the prompt displays the current working directory, which it should, you should see it
updated with each e¢d command.

pwd
Print current working directory, as an absolute path. In case you forget where you are.

cd without argument will put you into your home directory. cd - will restore your previous
location.

ls <locations>
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List files and directories at current location, if no argument, or at provided locations.
ls -a <locations>

Same thing, but list all files, including hidden files (files whose name begins with . are
hidden).

(5 #  Move around a bit. Go to your home directory, your Desktop, and Documents
folders, and display the list of files there.

Special characters: * is a wildcard character standing for any string (including an empty
string). For instance 1s *.c will list all C files at current location. ? stands for a single
character. Character intervals can also be defined, and various patterns can be chained:
[0-9]*7?[A-Z]*[0-9a-zA-Z] would test for names beginning with a digit, followed by
anything (at least one character), with at least a capital letter in the “middle”, and ending
with an alphanumerical character.

echo <string>

Displays the provided string. Note that the string need not be within quotes. If it is not,
wildcard will be expanded. Thus, echo can be used as a cheap 1s. Both are useful for testing
your patterns before using them with dangerous commands, such as rm.

Note that the terminal can display colours, thanks to special escape sequences. This applies
not only to echo but to any program or script that prints to the terminal. See this page.

printf <string>

Same as echo, but more flexible and has a well-defined behaviour across all shells, which
can be important for the portability of scripts. It is an external command, whereas echo is
internal, and thus printf is more expensive.

mkdir <newdirname>

Make a new, empty directory at current location.

(6) 4 Create a nice “test” directory for the purposes of this class, somewhere
convenient,like your desktop. Do so entirely with shell commands, of course. Make
sure it becomes your working directory.

nano <textfilename>

Create or edit a text file. Nano is a minimalist command-line text editor. Notations like AX in
nano mean “CTRL+X".

(7) #  Create a text file mytext. txt. Quit and save. Edit it again.
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Note: Linux does not rely on file extensions to the same extent that Windows does, but it’s
still a good idea to use them regardless.

Cp <src> <dest>, mv <src> <dest>, rm <src>

Copy or move file from source to destination, or remove it. As with all file-manipulation
commands, be very careful not to overwrite something by mistake. I would advise to almost
always use the interactive mode, to receive a prompt in case the destination file already
exists. The flag for interactive mode is -i. Thus you would type cp -i toto tata. Thisis
the kind of things you should create an alias for.

To act on all files within a directory, at arbitrary depth, for instance to copy or remove a
whole directory and all its files, use the -R, or -r, or --recursive flag (the three forms are
synonyms). Avoid typing rm -rf /, as that means “force removal of all files on the system”.
Here -rf is equivalent to -r -f, where -f means “force”. Flags can often be combined this
way, though not all programs support this.

Adpvice: if you're planning on using non-trivial wildcard patterns with those commands, it
may be prudent to test them with 1s or echo, first.

Aliases are pretty convenient ways of enforcing certain flags; I have the following in my
configuration:

alias rm="rm -i’
alias mv="mv -i’
alias cp="cp -i’

Thus, whenever I type cp as a command, it is as though I typed cp -i. I no longer have
access to the original commands, but in that case -i can be overridden by -f or -n. I could
of course have defined the aliases under different names, but here redefining the commands
is deliberate, so as to avoid accidents with them.

(8) 4  Check whether those aliases are already defined for you. If that’s not the case,
add them to your .bashrc, unless Danger is your middle name.

Note thatitis also possible those aliases are already present in the bashrc, but commented
out. In that case, simply uncomment the relevant lines.

(9) 4 Remove the text file you created earlier.

rmdir <dir>

removes an empty directory. Refuses to do anything if the directory is not empty. More or
less redundant with rm -R, but safer.
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(10) 4 Remove your test directory, which should be empty now.

chmod <mode> <file>

Changes file access permissions. For instance chmod u+x s.shmakes the file s. shexecutable
for its owner.

top, or ps

Displays running processes. Most desktop environment offer a GUI equivalent as well. On
KDE, for instance, it is accessible via Ctrl+ESC.

There are many options depending on what you want to see. Generally, a call to ps aux will
show most of what you would ever need.

kill <processnumber>

Kill the selected process; the process number is provided by the previous commands.
killall <processname>

Kill all processes bearing <processname> as part of their name.

W

Displays who is currently logged in, for how long, and current processor load.

last

Shows a recent history of logged users.

history

Shows the last run commands.

11  More complex commands that can be very useful

It is good to know these commands exist, but you will certainly need to spend some time
wrestling with their man pages before getting them to do exactly what you want.

grep

A powerful tool to search for patterns / regular expressions in files, of filter the output of
other commands.

rsync

Probably the best tool to reliably transfer files between computers and create mirrors and
backups while detecting redundancies and minimising network traffic.
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wget

Download files and websites from an URL.

12 Pipes and redirections

In Unix parlance, file is a general term designating both what we usually think of as a file
and more abstract constructs such as peripherals and data streams.

Each open file is assigned a number, to keep track of it, call a file descriptor (or sometimes file
handle).

In particular, there are three files that are always open: the standard input, corresponding
to the stream of keyboard inputs (stdin, 0), the standard output, corresponding to what’s
printed in the console (stdout, 1), and finally the standard error (stderr, 2), also printed in
the console, but meant specifically to be used for error messages, as opposed to the usual
output of a command.

These streams can be manipulated and redirected in various ways. For instance, the output
of a command can be fed as input to another, or to a file. This is fundamental to the
philosophy of Unix, which consists of having many small, specialised commands which can
be glued together in myriad ways as need demands, resulting in a sophisticated specialised
processing pipeline.

Here are some of the various operations that can be done:

(11) 4 Create and edit files and folders as necessary to test each of the constructs
presented in this section. (And answer any specific questions along the way).

Pay attention to what you are doing and replace obvious placeholders or examples like
filename, contents, or PythonNotes. tex with something more pertinent.

1s > filename

The character > redirects the standard output of a command (here 1s) to a file.

12) &4 Using a command seen in the previous sections, create, in a single line of
shell, a new file containing the line “Hello world!”. Now create an empty file. (An
alternative in that last case is touch).

If a file named filename does not exist, it will be created and filed with the relevant contents
— it will be kept open until the command finishes its output. If the file already exists, its
contents will be erased and replaced by the output. There will be no warning.
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1s >> filename

Has the same effect as above, but if the file already exists the output is appended (added at
the end) to it, instead of overwriting the file.

grep contents < PythonNotes.tex

Here, the contents of PythonNotes. tex — the source file for the document you are reading —
is redirected by < into the standard input of the command grep someword — the combined
effect is to display all the lines of the file that contain the word “contents”.

grep contents < PythonNotes.tex > results.txt

Here, input and output redirections are combined: instead of the selected lines being
diplayed on the standard output, they are written in the file results. txt.

cat PythonNotes.tex | grep contents

The pipe operator connects the standard output of the command on the left, here cat, which
outputs the contents of the file, to the standard input of the command on the right. Thus,
the above has the same effect as grep contents < PythonNotes.tex.

(13) 4 Runthe command “sleep 9999 &” to puta sleep process in the background.
(see section on background processes)

With ps aux, you can find its process number and kill it, but it’s a chore. Use grep and a
pipe to find the right line easily, then kill the sleep process.

How many lines of ps aux where displayed? Why?

Is there another way you could have used to do that without needing the process
number? (That’s a rhetorical question. Of course there is. What is it? Does it have any
drawback from a general standpoint?)

Of course, the selling point of the pipe operator is that you can chain not just two but
arbitrarily many commands together to achieve complex results:

cat *.txt | sort | uniq > sortedlines.txt

produces a file containing all lines appearing in all text files, sorted in alphabetical order and
with duplicates removed.

Each process in such chains plays the role of a filter. When writing programs, especially in a
Unix environment, it is advisable to pay attention to what their behaviour should be wrt.
stdin and stdout, so that they can be used as filters.
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13 Execution modes: sequential, background; jobs

(14) 4  Test what follows on your computer.

By default, commands are executed sequentially, in the foreground. Several commands can
be executed in the same line, and in sequence, by using the ; operator.

Commands can be grouped in two ways: via (...) or {... ; } —note the mandatory ; in
the second case.

In the first case, the commands are executed in a sub-shell, and so any variable assignment
will be discarded at the end of the group’s execution, and the group cannot modify the
current context.

In the second case, the group will be executed in the current shell context.

$ { date ; 1s ; } > resultat.txt

§ cat resultat.txt

vendredi 17 janvier 2014, 09:48:34 (UTC+0100)
Fichier. txt

GG. txt

resultat.txt

A command can be run in the background by putting & at the end of the line:

$§ sleep 5 &
[1] 7691
$

This created a process (number 7691, job number 1) running sleep 5, thatis to say, a process
that runs for 5 seconds, doing nothing, and immediately gave us back the command prompt,
whereas we otherwise would have needed to wait for sleep to terminate before doing
anything else.

jobs -1

Lists currently running jobs, their job numbers, their statuses, and process numbers (thanks
to the -1 flag).

Suppose you just launched a long process, say, sleep 500, in the foreground, and want to
kill it. You can do that with Ctrl+C.

Suppose now that, while you want the prompt back, you don’t want to kill the process. You
can use Ctrl+Z to pause it and put it in the background.

$§ sleep 500
AZ
[1]+ Stopped sleep 500
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$ jobs
[1]+ Stopped sleep 500

From there, you can bring it back to the foreground or run it in the background with the
commands fg and bg, respectively. They expect the job number as argument, not the process
number.

$ fg 1

sleep 500

AZ # I put it back to sleep

[1]+ Stopped sleep 500

$ bg 1

[1]+ sleep 500 &

§ jobs

[1]+ Running sleep 500 &
14  Quotes

Like Python, bash supports both simple and double quotes for strings. Back quotes also
exist, but serve an entirely different purpose:

Single quotes are called “strong” quotes. Every character between the two quotes lose any
specificity they might have had, and they are treated as a string.

$ echo ’'This contains "double" and ‘back‘ quotes’
"This contains "double" and ‘back‘ quotes’

$ echo "This contains ’'single’ and ‘back‘ quotes”
back: command not found
This contains ’single’ and quotes

Double quotes, on the other hand, are “weak”. Some characters retain their specificity, and
that includes $(. .) structures and back quotes.

$echo ’'This contains "double" and ‘back‘ quotes’
"This contains "double" and ‘back‘ quotes’

$ echo "This contains ’single’ and ‘back‘ quotes™
back: command not found
This contains ’single’ and quotes

Back quotes execute the string inside them as a command, and produce, as a string, the
contents of that command’s standard output. Of course, this works better with a valid
command:
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$ echo "It is ‘date‘ and all is well."

It is samedi 17 aout 2019, 10:28:35 (UTC+0200) and all is well.

interlaces the written text with the output of the date command.

The same result is obtained with the $(..) structure

$ echo "It is $(date) and all is well."

It is samedi 17 aout 2019, 10:28:35 (UTC+0200) and all is well.

If fact, backquotes are considered deprecated in favour of $(..). Just don’t use them.

$ echo $(echo this $(echo is $(echo easier to nest)))
this is easier to nest

(15) 4  Create a few . txt files through whatever method you find most convenient.

In one line of shell, display a sentence of the form “BEGIN <list of all text files here>
END”. Without manually writing the names, of course.

Note that both kinds of quotes can simply be concatenated:

mywyny

$ echo

Also note that, in some contexts, there is no need to use any quotes at all to be working with
strings — unless you need to deal with special characters or something like that. By default,
pretty much everything is a string. There are a few caveats, however. Consider for instance

echo This is a sentence
This is a sentence

Can you spot the problem ? There were two spaces between “is” and “a”, but only one
was printed. Why ? Because the shell parsed each word as a separate argument to the
command echo, as spaces are argument separators. Echo then printed each of its arguments,
separating them with spaces, but it has no way to know how many spaces were originally
used to separate them. The string needs to be quoted if whitespace is to be preserved.

Thus if something is “morally” a string, it can be helpful, to systematically quote it as
such. At the very least it does not hurt, and is probably better for reasons of legibility and
consistency,
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15 Programming in shell / Bash

This is the part where we put our Hazmat suit on and touch very briefly on shell programming,.
We concentrate on features present in the basic shell, and avoid Bash-specific features, for
reasons of portability.

One can program directly in the interactive shell, yes, but generally one wants to write a
script in a file and execute it when needed.

Let’s say that you have written s. sh; then you can execute it with sh s.sh or bash s.sh
depending on what you want to execute it with (the smaller Bourne shell, or the larger Bash).

Scripts are usually made executable via, e.g. , chmod u+x s.sh, so that you canrun ./s.sh
directly.

In that case, the first line should be of the form

#!/bin/sh

or, if you want Bash

#!/bin/bash

so that the shell know which program (here another shell) to use to run the script.

(16) #»  Create and run a script that displays “Hello World”. That not very original,
but originality is overrated anyway.

15.1  Variables

Variables are all of type string, and do not need to be declared, just initialised. They are local
to the current shell process.

varname=value is the syntax for initialisation.
The value of a variable can be extracted using ${varname} or $varname.

$ x=Hello
$ echo "x="§¢x’ y ="§y’"
x="Hello’ y ="’

Here we note that “Hello” has been treated as a string automatically, and that all uninitialised
variables contain the empty string.
This is where the joy of Bash programming beings. There must be no space around the =

sign.
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$ x=Hello world
world: command not found

$ x = Hello
x: command not found
$ x= Hello

Hello: command not found

15.2 Interaction

(17) 4  Follow the instructions and test the scripts below. Modify them a bit as
inspiration strikes you.

You can prompt the user for answers by using the command read <varname>. Let’s see it in
action in our very first script:

#!/bin/sh

echo "My very first script. Huzzah."

echo "Current date: $(date)"

echo Dear user, what is your name?

read name

echo Please to meet you, $name.

echo In what year are you? What department?
read year dept

echo So, $name, you are in the $dept department, year $year.
echo Am I correct?

read answer

Note that you can read several variables at the same time. As usual, whitespace is used to
separate the answers. Let’s run the script.

./scriptl.sh

My very first script. Huzzah.

Current date: samedi 17 aout 2019, 11:38:45 (UTC+0200)
Dear user, what is your name?

Toto # my answer

Please to meet you, Toto.

In what year are you? What department?

3A STI # my answer

So, Toto, you are in the STI department, year 3A.
Am I correct?

Yes # my answer

Let’s play with pipes to automate the answers. Recall that everything I type goes in stdin.
Let’s prepare the answer ahead of time and pipe them into the script:

echo -e "Vincent\n3A STI" | ./scriptl.sh
My very first script. Huzzah.
Current date: samedi 17 aout 2019, 11:36:24 (UTC+0200)
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Dear user, what is your name?

Please to meet you, Vincent.

In what year are you? What department?

So, Vincent, you are in the STI department, year 3A.
Am I correct?

Since we needed a line return to validate the first question, I needed to use the -e flag so
that echo interprets backslash escapes. ©

Note: the above is a fairly useful construct in lab classes. You will sometimes have to write
interactive programs and test them on a given input. Often, you test the program on the
same input repeatedly, until you manage to get it to work as intended. Do not waste time
typing the same test input over and over again: automate it with a pipe!

15.3 Return values

(18) 41  Test the following on your machine.

All commands and functions return a numerical value at the end of their execution.

This value is usually 0, indicating a “normal” execution. Non-zero values usually indicate an
abnormal execution, but can also be used to convey some information about the execution.
Each command has its own policy in that regard.

Here are two predefined commands which do noting except returning 0 or 1 ($? show the
last return value, see next section on special variables)

true
echo §$?

false
echo §7

[ B~ S — T L S -

Note that this convention is the reverse of the usual True/False = 0/1!

The operator && chains commands, like ;, but breaks the chain as soon as a command returns
a nonzero value, and returns that value.

true && echo Always # prints and returns 0
false && echo Never # does not print, returns 1
return 123 && echo Never # does not print, returns 123

The operator | | chains command, stopping at the first command that does not fail. It always
returns 0.

©Depending on the shell, some echoes interpret backslashes by default. This is the case in zsh, which I use
at home.
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true || echo Never # does not print, returns 0
false || echo Always # prints, returns 0

154  Functions and special variables
Functions can be defined simply

functionname () {
commands

or

function functionname {
commands

}

Like scripts, they receive arguments and return a numerical value. Use the command return
to return a non-zero value. Call them as any other commands, once they are defined.

All functions are variadic. It is up to them to deal with however many arguments they
receive as they see fit.

A number of special variables are used to deal with return values, function arguments, etc.

$_ the last word / argument of the last executed command
$? return result of the last executed command

$$ current process number

$! process number of the last process put in background
$0 name of the current command

$# in a script or function: number of received arguments
$* in a script or function: list/string of arguments

n in a script or function: nth argument, n € 1..$#

(19) 4  Test the following on your machine.

Let us test all that in a new script script2. sh:

#!/bin/sh

f O {
echo nb args $#
echo current command name $0
echo current process number $$
echo args list §$*
echo arguments: $1, $2, $3, $4, $5.
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return 123

fa"bcd" e f
echo return value $7?
echo process $$: same as in function!

sleep 5 &
echo Last process in background: §$!
jobs -1

and execute it:

$ ./script2.sh

nb args 4

current command name ./script2.sh
current process number 15031

args list a b c d e f

arguments: a, b c d, e, £,

return value 123

process 15031: same as in function!
Last process in background: 15032
[1] + 15032 Running

15.5 Conditional branching

(200 45 Shell programming aspects, including conditional branching and loops, are
not essential.

Continue reading and testing those constructs if you have the time and inclination to do so.
At least skim through the last few sections, so you know that the constructs exist and
can come back to them when you need to brush up on the syntax.

You can also continue familiarising yourself with the more basic aspects of the shell for
the remainder of the class, or move on to Python right away.

Boolean tests in shell are done through the test command. For instance, and without
forgetting that, in shell, the usual True/False = (/1 convention is annoyingly reversed:

$ test toto = Toto; echo §?
1 # false !

$ test toto = toto; echo §?
0 # true !

$§ test toto != toto; echo §$7?
1 # false !

The = and != operators are string comparison, and case sensitive as the example shows.

There are other operators, given by flags (when in doubt read the manual page for test.) For
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instance, -f tests whether a regular (non-directory) file exists, and -ge stands for “greater or
equal”, and serves for numerical comparisons:

$ test -f scriptl.sh ; echo §?
0 # true

$ test -f noscript.sh ; echo §$7?
1 # false

§ test 21 -ge 20 ; echo $7?

0

$§ test 21 -ge 22 ; echo §?

1

$ test 21 -ge tata ; echo §$7?

test: integer expression expected: tata
2

Tests can be combined with Boolean operators -o OR and -a AND. Imbrication can be
specified by parentheses, but be careful to escape the parentheses and to separate them from
the rest with spaces. Likewise for the operands of =; each operand or operator is simply an
argument of the test command, and must stand as its own string argument.

$ test \C\C ®# =0 -a 8 =11\) -o00 =0 \); echo $7
0

This is rather prodigiously ugly. Fortunately there are other syntaxes for tests, which are
slightly less execrably repugnant. Nobody with even a shred of sanity recommends using -o
and -a anymore.

The syntax for conditional branching is:

if <test>
then

<commands >
elif <test>
then

<commands >
else

<commands >
fi

and there is a special syntax so that you can replace

test <your test>

by

[ <your test> ]
Note that there again, [ and ] must be separated from anything else by spaces.
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Each “test in brackets” is a command, exactly as though written with the original syntax. This
enables us to use the “boolean operators for commands” & || to combine test commands
rather than using the Boolean operators internal to the test command.

Crucially, this also enables us to use command groupings, which goes a long way to making
things just a tad more civilised.

For instance:

# if [ 0 -ge 1 ]
# 1f true
# if { true && false || false ; } || true
if { [ -d . ] & [ -f nothere ] || [ ® -ge 1] ; 3} || [ 1 -ge 0 ]
then
echo This
else
echo That
fi

And that is about as sexy as it gets for the standard shell (/bin/sh). If you're willing to use
Bash (/bin/bash) instead, you get extra features, such as the double bracket syntax [[...]]
for conditional expressions, which can make writing complex logic in scripts almost tolerable.

Note, however, that this luxury is only available on desktop systems, and not quite all of
them at that. You cannot count on an embedded system having Bash; pretty much everything
that runs Linux at all, or any version of Unix, really, probably has a Bourne shell, though.

So for portability reasons it’s probably best to bite the bullet and deal with the barebones
syntax. A fatalistic way of seeing it is: “if you need complex logic, you probably shouldn’t
be doing it in a shell script anyway”.

Let’s mention in passing that & || change precedences between the single and double
brackets syntaxes. They are of equal precedence in the first, and && is higher precedence in
the second. Moral of that story? Don’t rely on precedences; use explicit groupings, always.

15.6  Arithmetic

The expr command is basically a command-line calculator, and enables the use of arithmetic
computations in shell scripts.

A small example, sufficient for our purposes:

$ i=$(expr $i + 10)
$ echo $i
10

Arithmetic and Boolean tests involving only arithmetic can have their own syntax in Bash:
$((C..)) and ((..)). Let’s not get into that.
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15.7  Switch case

Long sequences of elif are best replaced by a case structure. The case structure has the
following form:

case <variable> in
<pattern 1>)
<commands >
v
<pattern 2>)
<commands >
)
<pattern n>)
<commands >
esac

It executes the first branch such that the pattern matches the value of the variable.

Patterns can be simple strings or use wild card: for instance in a daemon’s code, you might
tind:

case $1 in # $1 is the script or function’s first argument
start)

echo starting
restart)

echo restarting
stop)

echo stoping
[a-zA-Z]*42%)

echo secret number!
* )

echo bad argument

esac

Any string beginning with a letter and containing 42 will trigger the “secret number” clause.

Note that the last clause functions as else because * will match everything. Any clause
appearing after that would never trigger.

15.8  While loops

While loops are similar in syntax to conditional branching, and the same remarks apply to
tests in this context:

while <test>
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do
<commands >
done

Example:

k=0
while [ $k -1t $1 ] # 1t -> less than (strict)
do
echo $k
k=$(expr $k + 1)
done

predictably, prints 0..9 when given 9 as argument.

Until loops have the same syntax — and the semantics you would obviously expect: the body
is executed repeatedly until the test becomes true. until C is equivalent to while —C.

until <test>
do

<commands >
done

I have seen it written — unironically and in all seriousness — that the presence of the quasi-
redundant until construct in the shell language was a matter of elegance, because sometimes
statements are more legible with “until”. It is certainly true that, verily, shell scripts are the
place where programming elegance — nay, grace, dare I say! — reaches its most stratospheric
levels of refinement. That last part was sarcasm..

15.9  For loops
Finally, for loops:

for <variable> in <list>
do

<commands>
done

Here, a list simply means a string, with whitespace being the list separator:

adjectives="convenient ugly widespread old"

for adjective in $adjectives
do

echo Shell is $adjective.
done
Shell is convenient.
Shell is ugly.

45



Shell is widespread.
Shell is old.

Conveniently, none of the strings contained whitespace.

adjectives="Convenient ’but(t?) ugly’ widespread old"

would get you:

Shell is Convenient.
Shell is ’but(t?).
Shell is ugly’.
Shell is widespread.
Shell is old.

To deal with this, you could use a Bash array. I'm not getting into this.

Wildcards are a frequent usecase, and provide usable lists:

for f in *.sh
do

echo -n "[$£f] "
done

[pre.sh] [scriptl.sh] [script2.sh] [script3.sh] [x.sh]

Note that in that case, spaces are correctly handled:

$ touch "space name.sh"
$ for £ in *.sh
do
echo -n "[$£f] "
done

[pre.sh] [scriptl.sh] [script2.sh] [script3.sh] [space name.sh] [x.sh]

There is a convenient command to generate numbers in a range: seq

for value in $(seq ® 2 10)
do

echo -n "$value
done

0 246 8 10

The middle argument is the step, and is optional.

15.10 Break and continue

The commands break and continue have their usual roles: break will exit the innermost
loop outright, while continue will jump to the next iteration of the loop.
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15.11 Select statement

Finally, Bash offers a convenient form of loop for the frequent user interaction where the user
is required to select one of a number of options, and is prompted repeatedly until he does so.

select <variable> in <list>
do

<commands >
done

However, this construct does not exist in the barebones shell.

16  About the exam

You will not be tested on shell or Bash during the final exam of this Python class.

However, note that if you are not at least minimally proficient in shell, you will waste time
in lab classes and tests, which will indirectly and severely penalise you in C programming,
system programming, and any class using a Linux environment.
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17 What is Python, again?

Python is a programming language. Let’s go through a few buzzwords to describe it briefly:

o General-purpose: Python is not designed with a specific, specialised purpose in mind.
Whatever it is you want to do, unless it is something very niche, like kernel/driver
writing or something similar, you can do it in Python, in principle. It has some serious
weaknesses, like performance (which can be mitigated to a large extent, as we discuss
below), and there are plenty of specific kinds of tasks for which other languages are
better-suited (for instance I find that algorithms on trees and other inductive structures
are ever so much cleaner in languages with algebraic data types and pattern-matching,
such as 0OCaml and Haskell), but there is no “non-niche” task for which Python is

ill-suited to the point of tin-foil-hat absurdity, like writing a website in assembly would
be.

Python can be and has been used for projects of all sizes, from small scripts to
Instagram’s entire infrastructure (serving 400 million active users per day).

As for the ecosystem around the language, while of course not all areas enjoy the same
level of support, whatever you are trying to do, there is usually a fairly decent library
for it.

¢ Popular: Python has been around since the end of the eighties. It is studied in most
places where programming is studied — most universities, most “classes préparatoires”,
and all French high schools offering computer science options as of the coming years.

It is extremely popular in the fields of data science and machine learning, in particular,
both in academia and industry.

It is used intensively by many companies including Instagram (quasi exclusively
Python + Django), Spotify (at about 80%), Amazon (for Big Data), SurveyMonkey
(migrated from C#), Dropbox (client is 10° lines of Python), Facebook (all image
processing back-ends), Google, YouTube, PayPal,. ..

While evaluating the popularity of languages in a meaningful fashion is tricky, it is
clear that Python has been in the top ten of most popular languages for over a decade,
and is currently ranked third, behind Java and C, by the TIOBE index.

Love it or hate it, you are probably going to run into Python code during your career.
Repeatedly.

¢ Multi-paradigm: Like pretty much all of modern languages, Python combines elements
from multiple programming paradigms. Python is object-oriented at its core (you
will have a course on that this semester), naturally supports the usual procedural
programming style, without forcing an overt object-oriented architecture, and supports
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several tools of functional programming as well (it is a subject of great consternation
for me that your syllabus does not include a course on that topic. I strongly invite you
to study OCaml or Haskell in your spare time), although there are a few obstacles to
writing primarily in a functional style, such as the lack of tail recursion optimisation.

o High expressive power: The words “power” and “expressiveness”, when it comes to
programming languages, can have several different meanings. I take this opportunity
to clarify these from a general standpoint, and say a few words about Python’s position
along these metrics.

> In the theory of computation: (you can skip this if you're not curious)

The expressive power of a language is the set of problems that you can solve by
writing a program, regardless of computation time, so long as it remains finite.
Not all problems can be solved by a program / an algorithm.

Those problems which admit an algorithmic solution are called decidable. Exam-
ples include “In: a list of integers. Out: is the list sorted, yes or no?”.

The others are called undecidable. Example: “In: A program’s code. Out: Are
there are no infinite loops in the program? That is, will it terminate for all inputs?”.

No matter how smart and talented a programmer you are, you cannot write a
(correct) algorithm solving an undecidable problem in finite time.

The fundamental reason is that, though there are both infinitely many programs
and infinitely many problems, there are still considerably more problems () than
programs (XNy), so it is unavoidable that some of them (in fact almost all of them)
cannot be paired with a program that solves them. (Keywords: “(Un)Decidable
problem”; “Cantor’s diagonal proof”; “Aleph numbers”).

In this sense of “power”, it turns out that all general-purpose programming
languages are strictly equal. (Keyword: “Turing-complete”).

The idea is that, as soon as you have conditional branching and either loops or
gotos, you can cobble together a “simulation” of any other structure that you
want by cleverly using what you have — even if it’s horrible to write and slow to
execute. There is no known or even imaginable language or mode of computation
— not even quantum computers — that is fundamentally beyond the reach of what
you can do with those simple tools. (Keyword: “Church-Turing thesis”).

Thus if you can solve a problem in Python, you can solve it in Java, C, Brainfuck,
TEX, etcetera. Conversely, if you can’t solve it in one of them, you can’t solve it in
any of them.

You will study some elements of this in your fourth year (and, this semester, the
course on formal languages and automata theory is closely related). For now let’s
just say that you can’t compare general-purpose languages that way, since they
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are all equal in that respect, and move on from this riveting topic.
Elegance, clarity, conciseness, modularity, robustness, developer speed.

I have this idea for an algorithm. How many lines of code will it take to implement
it in this language, as opposed to that one? How much time will it take me to
come up with these lines? Once written, how clear is it what they do, and that
they do what they are supposed to do? Is the code highly modular and robust, so
that I can reuse solutions to subproblems elsewhere, or is it a big interconnected
mess of spaghetti code held together by duct tape, creaking and swaying in the
breeze, ready to come crashing down on your head if you breathe a little too hard
in its general direction?

In other words, how easy is it to write good code (for several metrics of good)?

Here, Python mostly shines. You can do quite a bit in a single line of Python code,
compared to C or Java, and its syntax and structure are regular and polished
enough that it’s usually quite obvious what that “quite a bit” is, and it does not
take hours to come up with the line.

Thus you can often write complex algorithms in a fairly fast, compact, direct, and
readable way. You don’t have to jump through too many hoops. This contributes,
ceteris paribus, to the chances of what you have written being correct.

Beyond that, Python is a dynamic language, with very little typing discipline, and
does not intrinsically force you into writing (somewhat) correct code the way a
language like 0OCaml or Haskell does, so if you want robust code, you have to put
in some extra work.

When learning the language you have to take some care to know what you're
doing, because the interpreter will accept a lot of nonsense without protest.

Since version 3.6, this can be mitigated with the use of optional type annotations
and external static type checkers, such as mypy. This can be invaluable in large
projects.

Overall, the characteristic of Python which I have seen praised most often in
reports where large companies discuss why they used or switched to Python is
speed of development, which is basically an aggregate of all these measures.

Execution speed and efficiency:

How fast will your program run? Now this is not so much a property of a
language as of the implementation of its interpreter or compiler, and of the specific
way you have written your program.

But still, generally speaking, task for task and mutatis mutandis, Python is quite a bit
slower than C, and even than C# and Java.
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And none of that matters in the slightest unless you are limited by very weak
embedded systems, are doing some serious data crunching, writing a kernel, a
driver, or otherwise doing intense systems or network programming, or other
fairly niche activites.

Outside of that, raw execution speed is rarely the bottleneck in any project. This
usually falls on disk access, network access, display update, user interaction, or,
considering the wider context of a project, programmer time (and cost!). And
when execution speed is really a problem, writing smarter algorithms is usually a
better answer than changing language or updating hardware.

If you can come up with a working Python prototype in a tenth the time needed
to do the same in C or Java, (and in many case, you very well might), that leaves
you a whole lot of time to do some performance testing and profiling, to find out
what the real bottlenecks are, and come up with smarter algorithms. If absolutely
needed, you can always write some critical parts, and only them, in C or assembly.
Python’s numerical computation libraries, such as numpy, are mostly written in
C or Fortran behind the scene.

Let’s also note that some implementations of Python are much (about 5 times on
average) faster than the default one, as we’ll see in the next point.

o Interpreted: Leaving aside that, stricto sensu, this is a property of an implementation,
not of the language itself, the answer is “sort of”. Python is compiled to byte code
(.pyc), which is then executed (CPython backend). This is similar to Java and .Net.
And there are Python compilers targeting both Java (Jython) and .Net (IronPython)
virtual machines. There is also a Just In Time compiler in PyPy. That is to say, the code
is compiled to machine code on-the-fly. PyPy is almost always faster than the default
CPython, with an average speed-up of about 4.5 times — on certain computationally
intensive benchmarks, like AES (cryptography) or raytracing, the speedup is much
higher, about 50 times faster.

At any rate, Python has all the benefits of an interpreted language, such as an interactive
mode (absent from C, Java, and the like), and what happens behind the scene (bytecode
compilation etc) is entirely transparent for the user.

It also has the main drawback of an interpreted language, in that you need an external
interpreter (here at least a bytecode interpreter) to run your program, as opposed to
natively running it on the machine. But then the same applies to Java and .Net.

If you ever need a single executable file, you can always ship the interpreter (which
is lightweight) with the code as a resource in the executable — the same principle as
self-extracting archives.

The bottom line is that the distinction between interpreted and compiled can get
quite blurry, especially for languages with a rich ecosystem of backends. Modern
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languages are rarely purely interpreted — even Lua, a lightweight language designed
to be embedded in applications to provide scripting capabilities, has a bytecode virtual
machine.

Not just a scripting language, please: Python is often called a scripting language.
This is mostly due to its original purpose, 30 years ago (a scripting language for the
Amoeba operating system). Of course, a lot has changed since then.

There is also an often observed oversimplification along the lines of “interpreted
language = scripting language”, which holds perfectly in the limited ecosystem
{ shell, C }, but falls apart entirely today, even leaving aside that “interpreted language”
can be misleading, as discussed above.

Python happens to be fairly good as a scripting language, because it does not require
writing lots of boilerplate to do simple tasks, and has an interpreter and an interactive
mode.

Having those characteristics in no way takes away from its capacity in other contexts;
they just add to what makes it a fairly good general-purpose language. Scripting is just
one among its many uses. Obviously the existence — and clear trend towards — large
scale Python projects in industry shows that it is a very realistic choice in realms far
removed from the usual scope of “scripting”.

There are other languages that are more clearly geared and specialised towards
scripting, and that you might prefer to Python depending on your scripting needs.

For glue between your programs, most of the times a shell script is all you need.

If you want to add scripting capabilities to a game or something like that, Lua is very
lightweight (about 1 Mb with all standard libraries), and is specifically designed to be
embedded in other applications.

18

18.1

Version 3 versus the world

Python 3.9 is required, 3.10 preferred

We deal with Python version 3. A very useful feature, fstrings, was introduced in 3.6, so
that is the absolute minimal version. I wrote most of this document under that version.

3.7 introduces an important change to the behaviour of generator functions. This change is
explained in this document.

There is some cool new stuff in 3.8 and 3.9 but that is relatively anecdotal but nice to have.

3.9 is therefore the minimum required by the course.
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3.10 introduces the match statement, which is awesome, and is strongly recommended from
the onset. Unfortunately,. . . it’s not out yet; not until October 2021.

This does not prevent your from downloading and compiling the source code for the release
candidate from https://www.python.org/download/pre-releases/. See how to compile
in Sec. 19ps: “How to install the damn thing without being admin?”.

3.10 will become mandatory as soon as it is officially released.

18.2  Python 2 is right out!

Quite importantly, there are a few key differences between Python 2 and 3, making them
two similar but incompatible languages. This is often a source of bugs and confusion.

To quickly ascertain whether you are running 2 or 3, try the command print 0. If it works,
you are using Python 2, where print is an instruction, in the same way that return is, and
does not require parentheses around its argument. If it throws a SyntaxError, you are using
Python 3, where print is an ordinary function.

More subtle differences include the behaviour of /, which always yields a float in Python 3,
but whose return type varies with the type of its operands in Python 2.

If your program worked perfectly before, and behaves weirdly on another machine, odds
are you're not using the right version of Python.

Note that on most setups the python command if for Python 2, and you need to use the
python3 command instead.

19 How to install the damn thing without being admin?

19.1 I'm cool, I've got Linux

Unless your Linux distribution provides an acceptably current version via its package
management system, use a local installation to ensure you have the latest version without
needing any administrative right on your machine.

To do so, download the source distribution from https://www.python.org/.

Ensure that you have GCC installed, as well as TK and SSL development packages: the first
is necessary for TkInter GUISs, including Idle, whose source is bundled with Python, and the
second for integration into PyCharm, among other things for which SSL might be useful.

On a Debian-based system

apt-get install tk-dev libssl-dev
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will take care of TK and SSL modules.
Then you can go to the root of Python’s sources and do, as usual:

./configure --prefix=$HOME/Python310® # for instance
make
make install

Add the resulting binaries to your PATH if you like.

19.2  TI've got Windows

From https://www.python.org/, download the installer; run it from the files manager (it
seems that downloading and running from the web browser sometimes triggers an admin
rights confirmation dialogue on INSA machines.)

During the installation, there is a checkbox about something like “export environment
variables” or something to that effect®, which is not checked by default. You must check
it, otherwise, while Python will be installed on your machine, you won'’t be able to simply
call python3 at the prompt, but will need to use an absolute path, along the lines of
C:\Program Files\...\python3.

Uncheck the box “for all users” (as it requires admin access)

20  How to use the damn thing?

From the shell command prompt, python3 launches an interactive mode. python3 yourcode.py
executes your program and exists. If you want to run your program and open an interactive
Python prompt with it, python3 -i yourcode.py should do the job.

Python source files can be made executable in the same way as shell scripts, by including as
the first line

#! Jusr/bin/env python3

and making the file executable

20.1  Python Editors

Like for most if not all programming languages, Python code is just text, with all the special
keywords being ASCII. Thus, you can use any raw text editor to write in Python.

That being said, it is far more convenient to use specialised editors for this purpose.

OStudents: If someone goes through this, please tell me the exact wording, so I can update this.
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By default, you can use Idle, which ships with Python in the Windows distribution, I believe.
On a Debian-based Linux system, apt-get install idle3 should do the trick.

The Spyder editor should be easy to install and use, while being an immense improve-
ment over Idle. apt-get install spyder should do the trick on Debian/buntu, and
pacman -S spyder for Arch. It is my personal recommendation if you can install it easily
and don’t have a favourite editor you wish to use.

For the largest projects, I personally use PyCharm.
pacman -S pycharm-community-edition for Arch.

If nothing else is available, there is also an online editor: https://repl.it/languages/
python3

Be that as it may, the best editor to start with is probably whatever you are used to and feel
most comfortable with, although anything that provides an interactive mode, like Idle does,
is at an advantage.

20.2  Things to do in Idle

Since Idle is the default choice, a few tips:

Idle opens to an interactive Python prompt by default — unless you opened a file with it —
which is fun and useful if you want to play with a calculator, but not great to do any real
programming.

Use the File menu to create or open a file — .py extension please — in which to write your
code. Put the window with the file on the left, and the window with the prompt on the right
(or whatever floats your boat).

Then, you can simply press F5 from the left to clear the session on the right, and execute all
your code again. Note that you can configure F5 to save the code without prompting you —
Options/Settings/General/Editor Preferences.

Note that there is a slight difference between the interactive mode and the normal, coding
mode: values like 42 will be printed automatically from the prompt, but not when executing
the code in the left window. If you want to see the value on the right, do print (42) on the
left.

20.3  Things not to do in Idle

(Also applies to any other editor with a dual prompt / file view)

Do not write complex code in the prompt! It’s just for one-time, throwaway testing, not
directly related to the function you're writing — for instance, testing how a standard function
works on edge cases, before writing code using it, getting help() etc.

I have lost count of the number of times I have seen students, having defined
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long_ass_function_name (with, many, parameters)

testing it (well at least they’re testing it) by writing a truckload of tests with different input
values in the prompt:

>>> long_ass_function_name (0, 0, 0)
>>> long_ass_function_name(1l, 0, 0)
>>> long_ass_function_name(1l, 1, 0)

Leaving aside the incoming carpal tunnel syndrome (sure you can repeat previous commands
to some extent, but it’s still cumbersome), every single test written that way becomes void
the instant the function is modified, and you need to retype everything.

Furthermore, the execution context of your prompt may not be synchronised with your
code, which can fudge up your tests. I am often called for “mysterious” bugs that only exist
because the code Kevin is actually testing is a half-hour older than what he thinks he’s testing.
Or because a definition has been shadowed.

The decision process on whether to test your function on the left (code window) or the right
(pocket calculator) is simple: either you care to keep the tests for posterity, or you don't.

If you don't care to keep the tests: write the test on the left, press F5 to test, change the values,
press F5, etc. Then remove or comment test.

If you do care to keep the tests: write them on left, copy-and-paste to your heart’s content
until you have all the cases you need. Press F5. Profit. Then either comment them so you
can easily repeat them later, or better yet, man up and turn them into asserts. (More on
that later.) Or unit tests, later on.

Either way: write them on the left. The end.

20.4 A few unkind words on vim

I see a lot of students using vim, which I find mysterious, as most of them don’t use any of
the special features that might justify it. Perhaps it’s like “Creative people use Mac; peons
use PC.” but with text editors? Perhaps just using vim makes you popular with girls at
parties? I really wouldn’t know.

Be that as it may, I don’t use vim, and if you call me on your machine to debug your code,
expect some annoyance if I can’t CTRL+C,V and other stuff. If you are not using anything
vim-specific, please, pretty please, use something else, will you. Not Emacs ®), though.

(®)Sure, Emacs is a great operating system, but what it lacks is a good text editor.
— Everyone who does not use Emacs. Everyone who uses Emacs. Everyone.
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This to a large extent is a matter of taste, I'll admit. Much worse than that, however, is that a
lot of vim users I have seen among our students just have a console with vim, displaying the
code, and. .. that’s all.

When they want to test their code — and crucially, when they call me to debug their code -
they save, exit vim, run python3 theirscript.py, read the errors, and then run vim again,
which hides everything else.

That way, they never have to see the code and the error messages at the same time. Maybe
it’s some psychological defence mechanism to preserve the illusion that their code is flawless.
Maybe. But it drives me ab.so.lutely bananas. If you are debugging something, it is really
helpful to have both the code and the error messages (or the output, generally speaking)
available to your eyes at the same time.

You do what you want on your own time, but if you call me on your machine to sort your
mess out, make it so that code and output sit comfortably in their respective windows,
preferably side-by-side. And make sure the error messages I see actually pertain to the
code next to it.

I have also seen people do the same “hide the output” setup with nano, of all things, instead
of vim. I... presently lack the fortitude to comment further on the matter. Just don't.

21 A few basic points of syntax

21.1  Keywords, help()

Python offers an interactive help mode capable of listing and providing help for all keywords
in the language:

>>> help ()

help> keywords

Here is a list of the Python keywords. Enter any keyword to get more help.

False def if raise
None del import return
True elif in try
and else is while
as except lambda with
assert finally nonlocal yield
break for not

class from or

continue global pass
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async await # added in Python 3.7
match case # added in Python 3.10

As usual, any keyword is reserved by the language and cannot be used as a variable name.

The help function can be called on any function or type, and will display its documentation
string:

>>> help(len)
Help on built-in function len in module builtins:

len(Cobj, /)
Return the number of items in a container.

The / at the end means the end of positional parameters of the function. This is not very
important in most cases; pretend it is not there.

In the case of types, or “classes”, help displays the documentation of the class and that of all
its methods.

>>> help(int)
Help on class int in module builtins:

class int(object)
| int(x=0) -> integer
| int(x, base=10) -> integer

| __add__(self, value, /)
| Return self+value.

| conjugate(...)
| Returns self, the complex conjugate of any int.

21.2 A few words about Object Oriented Programming (OOP)

Here we need to say a few words about object-oriented programming (OOP), since Python
is object-oriented at its core. Of course you will study OOP properly, in its own course, this
year, and I shall come back to this later in this document; the aim in this section is merely to
put down some terminology and a basic intuition of what’s going on.

The idea is that an object, in the abstract, has a certain set of properties, and can perform a
certain set of actions. For instance, a car has a weight and an age, and can start; though how
it starts may well depend on, say, its age — if it’s over 30 years, it does not start.

In OOP, one would define a class Car — the abstract set of all possible cars — stating that a
car has attributes weight and age, and a method start (). An instance of the class Car, that is,
a specific car, yours for instance, is an object of type Car. Let’s call your car c.
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Then your car has its own weight and age, distinct from those of any other car, which you
can access as c.weight and c.age. The method start() is just a function that implicitly
belongs to a given car; you can call it as c.start ().

This method call can be thought of as a function call start(c); however, many other classes
may define a start() method, such as an engine or an MP3 player, with quite different
behaviours.

So if you wanted to define a function capable of doing start(c), while also allowing the
other starting behaviours of other types — e.g. start(my_engine) — you would need to
test the type of the argument in the body of the function start, and handle all possible
behaviours accordingly: if it’s a car do this, if it’s an engine do that, et cetera.

At the end of the day, this would result in the code pertinent to a given type being fragmented
in every function that deals with it. Instead, with classes, most if not all of the code that deals
with a given type is neatly grouped, and the type dispatch in shared methods is implicit.
This is a form of polymorphism.

Consider the built-in function len, for instance. There are plenty of types for which it makes
sense to compute the length of instances, which len does. That includes strings, lists, tuples,
but also unordered collections such as sets and dictionaries, which contain a clear number of
elements. In the latter case, 1en is understood to compute the cardinality.

If you define a new type and want len to work on it, you do not need to find the definition
of 1len and extend it. Actually, all 1en(x) does is call a special method x.__len__(Q). If the
object x does not implement this method, 1len raises an error accordingly. So all you need
to do to support 1len with your new data type — if it makes sense to do so — is to define
len__ for your class.

The same principle applies for many other things, such as operator overloading.

We shall continue discussion OOP in Sec. 27,135 “Object Oriented Programming in Python”.

21.3  Whitespace

Contrary to most languages, Python uses whitespace as significant syntactic element. Returns
mark the end of a statement, or “logical line”, as would a semicolon “;” in Algol-style
languages such as C, and the levels of indentation — that is to say, how far you are from the
left margin — serve to delimit blocks, as do curly braces “{ ... }”in C. A physical line can

contain several statements, if separated by a semicolon ;.

Of course, there are exceptions, as line returns can be escaped through the use of a backslash
"\’ to enable a logical line to stretch over several physical lines. There are also contexts, such

as within a list, where line breaks are automatically escaped without a need for an explicit
backslash.

The following are all logical lines in Python:
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n=1+\
2
n = (1 +
2)
1 =101, 2,
3, 4]

Indentation at the beginning of a logical line determines how deeply nested it is.

if C: # outer block
if D: # inner block
pass # inner-inner block
else: # inner block
pass # inner-inner block
else: # outer block
pass # inner black

New blocks, and thus deeper levels of indentation, are always introduced by a colon :, as in
if <test> :,else:,def ... :, try... :, etcetera.

When the block contains only one line, the line return can be omitted:

>>> if True: print("it works")

it works

Be very careful not to mix tabulation and regular spaces in your program. Depending on
how your text editor represents tabulation, some things may look perfectly aligned which
actually are not.

This can make it very difficult to control visually that the code is correctly nested, and is a
common source of maddeningly annoying bugs.

It is recommended to set your text editor to translate tabs into a fixed number of regular
spaces, generally between 2 and 4, the latter being more-or-less standard.

Internally, Python does not convert tabulations into spaces for the purpose of evaluating
indentation, but keeps count separately. Thus the rule it follows is: “two lines are at the
same level if they are indented by the same number of spaces, and the same number of
tabulations”.
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21.4  Importing modules

Sometimes you have to import stuff from other modules to get work done. For instance,
I'd like a square root function. There is one in the standard library’s math module, named,
appropriately enough, sqrt.

I cannot use it directly:

>>> sqrt(10)
NameError: name ’sqrt’ is not defined

But what if I import the math module?

>>> import math
>>> sqrt(10)
NameError: name ’'sqrt’ is not defined

Still does not work, because I just imported an object call math, which contains a number of
functions, including sqrt. Importing a module executes its code, so as to process all the
definition, and binds the module object to its name. It does not automatically pour all of its
contents into the current namespace. What I can do is get some help on the module

>>> help(math)

and access the functions in its namespace, for instance:

>>> math.sqrt(10)
3.1622776601683795

>>> math.ceil(math.sqrt(10))
4

We say that math is imported and bound locally.

If the module name is too long, or conflicts with my local definitions, I can bind it under a
nicer name:

>>> import math as m
>>> m.sqrt(10)
3.1622776601683795

If all I am interested in is sqrt, I can just import that, and only that, directly bound under
that name:

>>> from math import sqrt

>>> math.sqrt(10)

NameError: name ’'math’ is not defined
>>> sqrt(10)

3.1622776601683795
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The whole module is still executed during the import, even if you only want and bind part of
it. This matters if modules have side effects, like prints, or unit tests, which shouldn’t be
the case in production.

You can also import just a function and rebind it:

>>> from math import sqrt as s
>>> s(10)
3.1622776601683795

Finally, you can import everything into the current namespace:

*

>>> from math import
>>> ceil(6.7)
7

There can be modules inside modules, like foo.bar.baz; this does not present any specific
difficulty.

21.5 Defining variables and functions

21.5.1  Variable assignment

Variables in Python do not need to be declared. They do not have any default value, not
even None.

>>> IdontExist

NameError: name ’IdontExist’ is not defined
>>> IdontExist = "And now I do!"

>>> IdontExist

’And now I do!’

Note: assignment uses =; comparison uses ==.
Python is case sensitive. X and x are not the same variable.

Identifiers (i.e. variable names) can contain alphanumeric characters ™ (though that cannot
begin with a number) and _ (underscore AltGr+8 on an AZERTY keyboard). No whitespace,
no other special symbols. No reusing language keywords. This is all pretty standard.

Avoid redefining identifiers like len, or help.

Variables can be removed using the del statement:

>>> x= 2
>>> X

2

>>> del x
>>> X

®Including Unicode alphanumerics, since version 3.0.
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NameError: name ’x’ 1is not defined

This does not immediately remove the structure the variable x points to from memory; this
merely removes the binding, the pointer, from x to that structure. Python’s garbage collector
will free the memory at some point, assuming there is no other pointer to that same structure.

You will almost certainly never need to use del in that fashion. The keyword finds its real
use in removing elements from lists and dictionaries.

21.5.2  Parallel variable assignment

Assignment can be parallel. Actually this is a special case of some slight pattern-matching
capabilities on tuples, which we shall see later:

>>> x=1; y=2

>>> X,y = y,X

>>> print(x,y)
21

21.5.3 Incrementation and similar operators

There is no ++ or -- operator in Python, but you can write

i+=1

as a shortcut for

and variants %= /= //= -= += *= **=exist for many other operators. Those shortcuts are
always defined on types for which the corresponding operator is defined. In the presence of
mutable structures, the equivalence between x = x+y and x += y may no longer hold, as
we shall see when we discuss lists.

21.5.4  Defining functions; predicates and procedures

Functions are defined with the following syntax (there is more to it; once we have seen tuples
and dictionaries we shall see in more detail, in Sec. 25.1(574: “Variadic function definition”,
how to define variadic functions and keyword arguments)

def <functionname> (<argl>, ..., <argN>):
"""optional doc string for help(<functionname>),
IDEs, generated HTML doc,..."""
# you do your stuff here
return <something nice> # optional; no return => return None
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Note that the colon : opens a block, which is the function body: you must indent, and keep
the indentation consistent.

If the first line is a string literal (Sec. 22.4.1,53: “Writing string literals”), it is used as
documentation for the function. This is very different from a comment, which is ignored.

Procedures are functions that do stuff but return nothing (or, in Python, None).
Predicates are functions that return Booleans (True or False).

def f(a,b,c):
""" My function £
does some cool stuff, dude. """
print("Call f£:", a,b,c)
return a + b - ¢

print( £(1,2,3) )

>>> help (f)
Help on function f in module __main__:

f(a, b, ©)
My function f£f
does some cool stuff, dude.

21.5.5 Functions are first-class citizens

When we say that functions are first-class citizens, we mean that they should not be thought
of as fundamentally different from any other type of objects in the language. Integers,
Booleans, lists, etc are all types of objects with their own properties, that can be passed as
arguments to functions, and returned from a function.

In Python — and any language supporting some degree of functional programming, which is
to say nearly all modern languages — functions are no different from anything else, and can
be passed as arguments and returned, thus forming what is called “higher-order functions”.

For instance, let us pass functions as arguments:

def f(x): print("F",x)
def g(x): print("G",x)

def do(x,f):
f(x)

do (0, f)
do(1,9)
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No special syntax is needed. A function £ is an ordinary object, just one you can “call” with
f(..) syntax. A “callable”, in Python terminology. If needed, you can test whether an object
o is callable by writing callable (o).

Let us try returning a function, then:

def hFactory(letter):
def my_h(x):
print(letter,x)
return my_h

do(2, hFactory(’H’))

Note that the version of my_h that is returned still has access to letter. More generally, a
returned function still has access to all local variables. This is called a lexical closure.

Note: Python is still a dynamic language, though, so the resulting behaviour can in some
case differ from that of statically typed functional languages that make heavy use of
lexical closures, such as OCaml and Haskell. Sec. 65.3,360: “Foncteurs et décorateurs de
mémoisation” provides an (advanced) exercise that illustrates that.

21.5.6  Anonymous functions: lambda

When using higher-order functions, it is often convenient to be able to define functions
on-the-fly, as an expression, without having to use a def statement and finding a name for it.
That is the use-case for anonymous functions, using the 1ambda keyword.

As an aside, that keyword comes from A-calculus, a formal, universal model of computation,
and the direct inspiration of functional programming languages (LISP, Scheme, Standard
ML, OCaml, Haskell,.. .).

The syntax is the following:

lambda <argl>, ..., <argN> : <returned expression>

For instance, continuing the previous examples:

do(3, lambda x: print("L",x))

There is no meaningful semantic difference between lambda-defined functions and def-
defined ones, apart from one intrinsically having a name, and the other not:
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def add(x,y):
return x + y

and

add2 = lambda x,y : x+y

are equivalent, for all intents and purposes. Note that the return keyword is implicit in the
second form. They are of the same function type:

>>> add

<function add at 0x7f873ffaff28>

>>> add?2

<function <lambda> at 0x7£f873ffbf048>

There is actually a syntactic restriction to lambda-expressions. Since they are expressions, as
opposed to statements — see Sec. 22.5,99): “Nihilism: NoneType: expression versus statement”
— they cannot contain any instruction, such as if. .elif. However, they can use the ternary
operator .. if .. else .. and comprehension expressions, so this is not a very stringent
restriction. (It just serves as a hint that Python is not really a functional programming
language, even though you can do some stuff in that style.)

lambda-expressions are best use for very short, very simple throwaway functions anyway:.
For anything more meaty, use def, and name them, even if the name will not actually be
used again.

lambda-expressions can be chained:

>>> f = lambda x: lambda y: lambda z: f"{x}{y}{z}"
>>> £(1)(2)(3)

71237

>>> ( (£(1))(2) (3D

’123°

f is a function that takes an argument x, and returns another function. What that function is
and does depends on the value of x; let us call it f. This function fy itself takes an argument
y, and returns yet another function f,,,, which takes an argument z, and returns a value
depending on all three values x,y, z.

This is an instance of a general technique to reduce all n-ary functions to unary functions,
called currying. It is prevalent in functional languages of the ML family (OCaml, Standard
ML, Haskell,. ..), where all functions are implicitly curried, which is key to a number of
interesting techniques. In Python, however, chaining lambdas like that should generally be
avoided; we have unfortunately neither the syntactic sugar nor the tooling necessary to
make such constructs worthwhile.

71



21.5.7  Optional arguments

Again, we will come back to that in more detail later, but it is worth mentioning optional
arguments right now, as some common functions, such as print, have them.

A more general pattern for defining functions is this:

def <functionname> (<argl>, ..., <argN>,
<optargl> = <defvall>,..., <optargM> = <defvall>):

Mandatory arguments come first, followed by any number of optional arguments, to which
a default value is passed.

Thereafter, whenever the function is called with some optional argument being passed a
value, the provided value is used by default.

In a call, the arguments can be provided positionally (first, second, etc) or by keyword, in
which case they can be passed in any order.

def g(a,b=2,c=3):
print("Call g:", a,b,c)
return a + b - ¢

>>> g(0,20)
Call g: © 20 3
17

>>> ¢g(0,20,30)
Call g: 0 20 30
-10

>>> g(0,c=30)
Call g: 0 2 30
-28

>>> g(0,c=30,b=20)
Call g: 0 20 30
-10

>>> ¢g(c=30,a=100)
Call g: 160 2 30
72

In all cases, positional arguments must come first, and keyword arguments follow:

>>> g(a=1,2,3)
SyntaxError: positional argument follows keyword argument

21.5.8  Order of evaluation of arguments and expressions

In Python, arguments are evaluated in the order in which they are passed, left-to-right:
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def x(n): print("arg",n)
print(x(1), x(2), x(3))

arg 1
arg 2
arg 3
None None None # see the section on None

This is the case for all kinds of expressions, not only functions; the only real exception is
assignment: z,a = x,y, where x,y is evaluated before z, a, of course.

This behaviour is part of of Python’s specification. Nevertheless, it is somewhat inadvisable
to write code that relies on this.

21.5.9  Scopes: local, global, and nonlocal

The scope of a variable is the context in which such a variable is visible. In Python, variables
are local unless otherwise specified, which means they exist only in the scope of the function
in which they are defined. The scope outside of any function is called the global scope.

In practice, you will only very rarely need to worry about scope. Simply remember that the
variables inside a function are local to it, and cease to exist after the function has returned.

Using global variables can be handy in a few circumstances, but it is generally a very bad
idea and strongly discouraged in any language. Likewise, nonlocal can be useful, but
the situations in which that is the case are quite complex (decorators with own state,. . .).
Furthermore, scoping rules in Python have some rather prodigiously ugly edge cases.

Thus, you can skip this section until you need it, especially given that, in order to make the
most out of this section, you need to understand some data structures (lists, dictionaries,
strings) and adjacent notions (mutability,. . . ).

21.5.9.1  The global scope

Let us take an example to experiment with different scenarios, to see how Python handles
global and local scopes.

a,b,c,d = 10, 20, 30, 40
1 =1[1,2]
print (globals())

def func(a):
a = 12
b = 21
global c
c = 31
global e
e = 51
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ee = 61

1.append(3)
print(a,b,c,d,e,ee, 1)
print(locals())

fun(11l)
print(a,b,c,d,e, 1)
print (globals())
print (ee)

{’__name__’: ’'__main__",..., ’a’: 10, ’b’: 20, ’'c’: 30, ’'d’: 40, ’'1’: [1, 2]}
12 21 31 40 51 61 [1, 2, 3]
{’a’: 12, ’b’: 21, ’ee’: 61}
10 20 31 40 51 [1, 2, 3]
{’__name__’: ’__main__’,..., ’a’: 10, ’b’: 20, ’c’: 31, ’'d’: 40,

1’: [1, 2, 3], ’fun’: <function fun at 0x7fa8def98dc®>, ’e’: 51}
NameError: name ’ee’ is not defined. Did you mean: ’e’?

There is a lot to unpack, here. First, we declare and initialise a,b, c,d, 1 in the global scope.
For the next line, we take a peek at Python’s global scope thanks to the built-in globals
function:

>>> help(globals)
Help on built-in function globals in module builtins:

globals ()
Return the dictionary containing the current scope’s global variables.

NOTE: Updates to this dictionary *will® affect name lookups in the current
global scope and vice-versa.

It is not necessary right now, but you can look up what a dictionary is in Sec. 24.4p145):
“Dictionaries: class dict” — Python uses this data structure extensively behind the scenes.
We see in that global scope a lot of technical information that we don’t really need to worry
about, along with our variables and their values.

Now, inside our fun function, we manipulate a, which is an argument, and therefore a
local variable: anything we do to it in the function is forgotten afterwards. The global a is
completely shadowed within fun, we never have access to it.

With b=21, we create a new local variable b, and affect a value to it. This new definition is
local, and shadows the global b: it is a different variable. Nothing we do to our local b has
any effect on the global one.

With global c, we declare c as global, meaning that the c in the function is the same variable
as the global c. Any modification done to it in fun is done as well in the global scope.
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With global e, we create a new global variable e, which, unlike ¢, did not previously exist.
With ee=61, we create a new local variable, that does not shadow any existing global variable.

With the local print, we observe that the global variable d is read, though we have neither
declared it as global nor shadowed it locally. Our local scope can read variables from the
global scope just fine, it just cannot rebind that variable in the global scope, unless the variable
is declared as global.

Note that not being able to rebind a global variable does not mean that a function cannot
modify the contents of global scope variables. Take the list 1 (cf. Sec. 24.2[,134): “Lists: class
list”). With 1.append(3), the value of 1 is read. That value, however, is fundamentally a
pointer towards an object, and that object can modify its own state, if asked to do so.

Thus, we can modify the contents of the list. The variable 1 itself is unchanged: it still
contains the same pointer towards the same zone in memory, but the contents of that zone
have changed during the execution of fun. Thus, at the higher level where we do not think
in terms of pointers, the value of 1 has changed, by in-place modification.

As you can guess, locals () is the local equivalent of globals (), and tells you the contents
of the local scope. We observe that global variables do not appear in the local scope at all.

Another (advanced) difference is that locals () is read-only, whereas you can alter the global
namespace by acting directly on the dictionary returned by globals(). It's probably not
something you should do, but there may possibly be valid use cases for programmatically
defining new variables.

This can’t be done with locals() in Python3®, because local variables are not internally
represented as a dictionary, but as an array computed at compile-time, for performance
reasons. The dictionary returned by locals () is merely a view of that static array. Technically,
you can modify locals (), but the changes won’t be passed on to the array structure, so it is
utterly useless to do so.

Again, this (the read-write / read-only behaviour of globals() / locals()) is a rather
advanced point. I don’t expect you to manipulate those structures very often, if at all.
Certainly, no exercise or exam question will require that kind of fine knowledge. The lesson
here is that this sort of introspective structure (that is to say, structure dealing with the
internals of the language itself) can help you better understand how scopes work and debug
your program (if you don’t have a nice IDE to visualise that kind of things), but please don't
start using them willy-nilly in your programs.

21.5.9.2  The ugly: the scoping heuristic

Let us execute that unassuming little snippet of code:

a = "Am I global or local?"

@it could be done in Python 2 under some circumstances
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def £(O:
print(a)
# a = 2

Am I global or local?

So far, so good. What could possibly go wrong with code that is so terribly simple? Now
uncomment the a=2 which, morally, should just define a local variable a, shadowing the
global a in the remainder of £, changing nothing to the output. You get

UnboundLocalError: local variable ’'a’ referenced before assignment
What is going on, here? Python does not have a notion of “a is global at the beginning of the
scope of f, and is shadowed by a local declaration from <line number> onward”.

To Python, a given variable in a given scope must be local or not, period. It makes that
determination based on a simple heuristic: in that scope, is the variable ever bound? A
variable can be bound by an assignment, simple or in-place or multiple or nested, a for loop,
an import, an as following with or except. ..

Without a=2, a is never bound locally, so Python considers it to be global. With a=2, a is now
bound in the local scope, at some point, therefore it is local, and since there is no a in the local
scope at the time print(a) is executed, you get an error.

21.5.9.3  The nonlocal keyword

The global keyword should be used extremely rarely, in most circumstances. The nonlocal
keyword is rarer still, as it only occurs in nested functions. Whereas global always gives
access to the global scope, no matter where it appears, nonlocal gives a nested function
access to the local scopes of the functions within which it is nested.

Let us take an example:

def £ O:
a,b,c,d = "abcd"
print(locals())
def gQO:
print(a)
nonlocal b
b=D>b+ "g"
d = "D"
def h():
nonlocal b
b =Db+ "h"
nonlocal c
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c =c+ "h"

nonlocal d

print (d)
h(O

gO
print(locals())

’a!: 1a,’ ’d!: 1d,’ Yb’: 1bgh!’ ’C!: !Ch!’
"g’: <function f.<locals>.g at 0x7f5502a54ee0>}

The variable a is not global; nor is is bound locally, so it is not local; nor is it declared as
nonlocal. However, g does have read access to it, same as for global variables.

Unlike that, however, what happens internally is a bit confusing, with locals() containing
copies of nonlocal variables based on the same kind of heuristic discussed in the previous
section. Therefore, the contents of locals() may depend on lines that have not been
executed yet. You can verify this by modifying the beginning of g:

def g(O):
print(locals())
# print(a) # comment and uncomment

a appears in locals () iff print(a) is uncommented. Thus locals() is actually a poor tool
to understand nested scoping. Here you feel that nested scoping was added to Python
long after the initial design phase; it is best not to think too much about how it is handled
internally.

nonlocal b gives g access to the b of its youngest ancestor, here h; it is rebound. Note that I
avoided += to exclude any suspicion that what happens is an in-place modification — strings
do not allow in-place modification anyway, so such suspicion would be misplaced anyway.

d = "D" creates a g-local variable that shadows the f-local d. This will be useful to determine
which one is visible from the scope of h.

In h, a new nonlocal b gives us access to the original b again, which we know because of
the eventual "bgh’ output, but we can wonder whether we access b directly from the scope
of £, or from the scope of g, where it happens to also point to the scope of £.

nonlocal c, keeping in mind that c is defined in f but not at all in g, enables us to test
whether we can access the scope of f directly: and indeed we can, as attested by the "ch’
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output.

print(d) is the final test of nested scoping: will we get access to the d in the scope of f or g?
The nonlocal d statement changes nothing to that question — we do not modify d anyway.
The D output shows that we get access to g’s scope.

This is logical: g’s version of d shadows that of f: we get access to the scope of the closest
ancestor that binds the variable we are interested in.

22 Basic data types

To program is to manipulate data. Python provides various data types. We present here the
most fundamental of those.

The type of an object — that is to say, the class of which it is an instance — can be obtained
thanks to the type function:

>>> type(42)

<class ’int’>

>>> type(42.)
<class ’float’>

>>> type(True)
<class ’bool’>

>>> type("Python")
<class ’str’>

>>> type([1,2])
<class ’list’>

>>> type( (1,2,3) )
<class ’tuple’>

>>> type (None)
<class ’NoneType’>
>>> type(print("Hello")) # see section on NoneType
Hello

<class ’NoneType’>

You shouldn’t do this very often, if at all, but types can, technically, be tested like this

>>> x=5

>>> type(x) == int # avoid that

True

>>> type(x) is int # is exactly of that class
True

>>> isinstance(x,int) # is that or subclass of that
True

Python subscribes to some extend to a “duck typing” philosophy. “If it walk like a duck and
quacks like a duck, it’s probably a duck; treat it as such”. Thus rather than testing the type
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of something explicitly, you should just try to make it behave the way you actually want
(quacking, for instance), and see if that works.

Thetry .. exceptconstructioncancomeinhandy for this. See Sec.23.5(,12): “try .. except”.

Even better, rely on polymorphism, which, as we have discussed above, is precisely a neat
way to perform type dispatch.
221 Integers: int

22.1.1  Integer literals

Integers behave pretty much as you would expect, and can be entered as usual in bases 10,
16, and 8 using the standard notations:

>>> 42 # decimal

42

>>> OxDEADBEEF # hexadecimal

3735928559

>>> 0018 # octal -- here the digit '8’ is out of place...
SyntaxError: invalid syntax

>>> 0015

13

22.1.2  Operators on integers

Integers support the following standard operators, listed by classes of increasing precedence:

- addition, subtraction
* /  multiplication, floating-point division
/| % integral division (quotient) and modulo (remainder)
- negation
* exponentiation

There are also bitwise operators on integers, whose precedences are all lower, and comparison
operators — see the section on Booleans — with the lowest precedence.

An important note regarding the two division operators:

/ is the floating point division. It will always return a floating point value instead of an
integer, even if the result happens to be exact. Contrariwise, // returns an integer if both its
operands are integers.

>>> 18 / 6

3.0

>>> 18 / 7
2.5714285714285716
>>> 18 // 7

2
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>>> 18. // 7
2.0

>>> 18 % 7

4

>>> 18. % 7
4.0

// and % provide the standard quotient and remainder of euclidean division, regardless of
whether the output type is int or float.

That is to say, for any a, b € Z, we have the identity
a==(@//b)*b+ (a%Db)

22.1.3 Integer arithmetic is exact

In most languages, the range of integers which can be manipulated is restricted by the
fixed amount of memory allocated to it. Operations going beyond that result in an integer
overflow, whereby the value exceeding the maximum wraps back to the minimum.

In Python, the native int type is a more sophisticated variable-size data structure, capable
of dynamically allocating however much memory is needed to represent the integer values
being calculated.

>>> 2**10000
1995063116880758384883742162683585083823496831886192454
8520089498529438830221946631919961684036194597899331129...
...6826949787141316063210686391511681774304792596709376

Note that this does not apply to floating point values.

22.2  Floating-point numbers: float

22.2.1  Writing floating point numbers

Floating point numbers behave as usual and can be entered with the usual e “exponent”
notation; arithmetic operators other than / — which always produces floats — will produce
a floating point number if any of their operands is floating point:

>>> 3.141592

3.141592

>>> 42**69 # integer

10097201832880355573875790863214833226
896186369872326994250398570376877433
686009543845316266007917815719968899072

>>> 42.%*%69 # float; note the

1.0097201832880356e+112

>>> 42, **-69

9.903733891340244e-113
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>>> leld

100000000000000.0

>>> float(’inf’) # infinity

inf

>>> float(’inf’) - float(’inf’) # Not a Number, undefined

nan

>>> float(’inf’) > 10%*9999 # infinity is bigger than any number
True

22.2.2  Floating point computation is inexact

Under the hood, those are the same floating point numbers as in C or any other programming
language: they follow the IEEE 754 norm, double precision (64 bits).

This means, that, unlike integers, the same caveats apply as in any other languages.

You should almost never test the equality two floating point numbers directly, for there might
be a loss of precision due to rounding:

Consider:

>>> 1/3 * 6
2.0

So far, so good. But let’s unpack that into six additions, now:

>> 1/3 + 1/3 + 1/3 + 1/3 + 1/3 + 1/3
1.9999999999999998

Another example:

>> 1.1 + 2.2 - 3.3 == 0
False

>>> 1.1 + 2.2 - 3.3
4.440892098500626e-16
>>> 1el9 + 1000 == 1el9
True

Instead of using == you should test whether the distance between them is smaller than some
small value that still accounts for the possibility of error: [x —y| < €. I often take e-13, but
that really depends on what what kind of computation you are doing, and it is very difficult
to properly evaluate what the margin of error should be, as that requires detailed knowledge
of the IEEE 754 representation and quite a bit of maths. Some computations (e.g. chaotic
systems) are immensely sensitive to errors, as even a small initial error will “snowball” out
into utter nonsense.

The very smallest representable value by float is
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>>> import sys
>>> sys.float_info.min # smallest normalised
2.2250738585072014e-308

>>> from math import ulp
>>> ulp(0.0) # smallest denormalised
5e-324

Note that the error in even the simple addition 1.1+2.2 ends up a whooping 292 orders of
magnitude greater than sys.float_info.min.

It is sometimes acceptable to test equality directly. For instance if a value tends towards zero,
it will get there eventually:

>>> x = 1000

>>> 1 = 0

>>> while x != 0:
X /= 2
i+=1

>>> print(i)
1085 # steps to get to zero

Note how backwards this is compared to mathematics: in R, this loop is infinite: there is

no n such that 199 = 0. But with float, eventually you will get a value smaller that the

smallest representable value, and it will approximate to O:

>>> 5e-324/2
0.0

So, in Python as in every language, beware of floating point numbers. If a problem does not
require their use, do not use them. If it does, think carefully of all that could go wrong.

Concrete example: do not ever consider representing money, that is, an exact quantity of
euros and cents, using floating point numbers. Suppose you have 1€; you spend 42 cents.
You have. . . not quite 58 cents:

>>> 1 - .42
0.5800000000000001

>>> 1 - .42 == .58
False

Floating-point numbers are better suited for things like temperature, pressure, age, and

other types of measurements, which are intrinsically inexact anyway. Even then it is easy to
produce nonsense if your computations are not continuous.
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Fun fact: real numbers are so complicated that, for almost all of them, it is impossible to
write a program of any finite length displaying all their digits. (To say nothing of trying to
tit them in 64 measly bits). (Keyword: “computable number”).

Real numbers are convenient in maths, but in computer science, they are to be feared. Integers
are all right, though; especially in Python, where we do not risk overflow.

floats are concentrated around 0, which means larger numbers have less precision; in
practice they are precise enough for integer arithmetic in the [[—1 015,101 ]] range, but can
no longer distinguish consecutive integers after that:

k=1

while k != k+1: k *= 10.

print (k)

Python provides the decimal and fractions.Fraction types for exact, but slower and less
convenient computation, if you need that (e.g. currency,. . .).

22.3 Complex numbers: class complex

The addition of a j to a numerical literal produces an imaginary number, which can then be
added or otherwise manipulated along with other numerical types:

>>> 27.1j

27.1j

>>> type(27.13)
<class ’complex’>
>>> 2 + 3.14j
(2+3.143)

>>> type (2+43.14j)
<class ’complex’>

Note that j is just another notation for \/—1; in France we tend to use i for that.

Operators involving different numerical will tend to produce results of the “widest” type;
numerical types, from narrowest to widest, are int, float, and complex.

We shall probably not use complex numbers in this class, but it is good to know that they
exist and are very straight-forwardly supported by Python.
22.4  Strings: class str

2241  Writing string literals

There isn’t really a “character” type in Python. There are just strings of length 1. Thus the
string type is both primitive and a sequence type: a string is a sequence of strings (each of
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length 1). Roughly, a sequence type is a type that supports element indexes — starting from
0, as usual in programming — and has a length.

Strings in Python support Unicode, and can be written either with simple or double quotes, as
in shell. Unlike in shell, there is absolutely no difference in semantics between the two ways;
the only thing that changes is that you need not escape single quotes in a double-quoted
string and vice versa.

>>> "This is a ’single quote’ in a double"
"This is a ’single quote’ in a double"

>>> ’'This is a "double quote" in a single one’
’This is a "double quote" in a single one’

There is another type of string syntax: triple quoted! This can use either triple double quotes
or triple single quotes. Either way, in those you need not escape either single or double
quotes, nor do you need to escape carriage returns (\n):

>>> """This is a triple quoted string,

where I can write carriage returns

without problem, and use ’single’

and "double" quotes as well."""

"This is a triple quoted string,\nwhere I can write carriage
returns\nwithout problem, and use \’single\’\nand "double"
quotes as well.’

The triple-quoted syntax is often use in “docstrings” — strings that decorate functions
and can be used by several tools, including Python’s own help function, for purposes of
documentation. They naturally tend to span several lines.

Like in shell, string literals can be concatenated arbitrarily, and this is even more flexible as
they can be separated by whitespace:

[LRIRT] man

>>> "This i" ’s a string’ in multiple bits
"This is a string in multiple bits’

Sometimes, you want a long string to be broken into several lines of Python, independently
of any newline characters that it may contain. As in other contexts, you can do that with
backslashes:

>>> "This is a \
long string."
"This is a long string.’

The drawback here is that it messes up the indentation, visually at least, since you cannot
put whitespace at the beginning of the second line without making it part of the string:

>>> "This is a \
long string."
’This is a long string.’
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In that case, you can take advantage of the literal concatenation feature, combined with the
extension of logical lines within expressions:

>>> ("This is a
"long string.")
"This is a long string.’

Or, you can escape the returns:

>>> "This is a "\
"long string."
"This is a long string.’

22.4.2  Raw, format, and binary string literals

Prefixing a string literal, regardless of quotation style, with r (or R) makes it a raw string. In
raw strings, all escape sequences, like \n, are ignored:

>>> X = 21%2

>>> print("a\nb{x}c")
a

b{x}c

>>> print(r"a\nb{x}c")
a\nb{x}c

This is quite useful if you want to manipulate strings containing a lot of backslashes, like
ETEX code.

Prefixing with f (or F) makes it a formatted string, of fstring for short, which makes it
possible to include the value of expressions directly in the string, in braces {}:

>>> print(f"a\nb{x}c")

a

b42c

>>> f"Hello, x={x}, x**2={x*x}"
"Hello, x=42, x**2=1764"

There is a lot more to say about fstrings, and we’ll come back to them in Sec. 22.4.10.4 9¢):

“The good stuff: formatted string literals”.

Raw and formatted strings can be combined through an rf (or fr, or Rf, or...) prefix, in
which case all escape codes are ignored except for braces:

>>> print(rf"a\nb{x}c")
a\nb42c

Prefixing with b (or B) makes it a binary string, of type bytes rather than str:

85



>>> print(b"a\nb{x}c")
b’a\nb{x}c’

>>> print(b"a\nb{x}c".hex())
610a627b787d63

Binary strings are a sequence of bytes, interpreted as ASCII characters for visualisation
purposes, and are used for binary manipulation. They can also be made raw via an rb prefix:

>>> print(rb"a\nb{x}c")
b’a\\nb{x}c’

We shall not do any binary manipulation in this course, so you won’t have to worry about
those.

You will also find an u prefix, standing for “Unicode” in old Python 2 code, and it is supported
but redundant in Python 3, as all strings are Unicode.

22.4.3  User interaction: the input procedure

You may at some point want to read a string typed by the user during an interaction with
your program: the command for this is input.

>>> x=input("? ")

? Hello ! # Here I type ’Hello !’

>>> X
"Hello !’

If you want something other than a string, you need to perform a conversion. Generally
speaking, the name of a class, such as int, float, or bool, acts as a constructor, a function
that builds an element of that type, given some arguments. In particular, they are used for
purposes of conversion.

>>> n=int (input ("Number please ? "))
Number please ? 42

>>> n + 8

50

For some reason, a lot of students seem to love the input command. When I ask for, say,
a function converting Celsius into Fahrenheit, many will write a procedure prompting the
user for a value, and display the result of the conversion. Which is a completely different
thing. (More on that in the section on NoneType). And this is despite my going out of my
way to not mention input’s existence too early in my lectures, precisely to avoid this — it still
manages to creep up.

Let’s be clear: when I speak of the input of a function, I am not referring to this command,
but to the function’s parameters or arguments. If I don’t ask you explicitly to prompt the
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user, don’t use this.

22.44  The in/c operator

The in operator, which corresponds roughly to the mathematical € in container types, is
extended in strings: not only can it test whether a character is present in a string, it can test
whether a (contiguous) substring can be extracted from the string:

>>> "b" in "abcd"

True
>>> "bc" in "abcd"
True
>>> "ac" in "abcd"
False

Note that since the empty string is a substring of any string, we have

>>> "" in "abcd"
True

>>> "" in ""
True

Which is a bit of a trap in some circumstances: for instance, testing whether the user inputs
“yes” at a prompt, one can easily write

input() in "yY"

meaning “lowercase and uppercase Y mean yes”. But actually, this returns True if the user
enters nothing, which is not the intended behaviour. Instead, you need to write something
like

input() in list("yY")

22.4.5 Length and indexing in sequential types

The length of a string — or of any type for which the notion of length makes sense and has
been implemented, such as lists, tuples, sets (where it means “cardinality”) etc — can be
obtained thanks to the len function:

>>> len("Python")
6

Strings are indexed starting from 0, as usual, and with the usual notation:

>>> "Python"[0]
’P!
>>> "Python"[1]

y
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22.4.6  Slicing and dicing, concatenation, repetition
Slightly less usual is the extension of this notation to “slices”, allowing to extract substrings:

The slice s[start:end] means the substring of s beginning at position start and ending
just before position end. If start is omitted it is assumed to be 0, and if end is omitted, it is
assumed to be the length of the string: 1len(s). Thus s[:] is always the same string as s.
>>> "Python"[1:4]

'yth’

>>> "Python"[:]

’Python’

>>> "Python"[:42] # an overly large end index is truncated
’Python’

The customary zero-based indexing makes reasoning from the beginning of the string easy,
but it takes some light arithmetic to reason backwards, from the end of the string. For those
cases, Pythons allow the use of negative numbers in index accesses or slices. Thus each
element is indexed by two different numbers, one positive, one negative.

However, the last element is of negative index —1, and not —0 — because distinguishing
+0 and —0 would be somewhat tricky. To remember that, consider that, under the usual
positive index, the last element of a string s is at position len(s) - 1, the second-to-last at
len(s) - 2, etc. Therefore, this convention simply spares us the hassle of writing len(s)
all the time.

P y t h o n

0 1 2 3 4 5
6 -5 4 -3 2 -1

>>> "Python"[-1]
'n
>>> "Python"[-4]
T

>>> "Python"[1:-4]
ry

>>> "Python"[:-4]
'py’

The slice syntax admits a third, optional argument step — bringing the full syntax to
s[start:end:step] — that dictates the increment between the selected indices:

>>> "Python"[0:6:2]
"Pto’

>>> "Python"[::2]
"Pto’

>>> "Python"[::3]
'Ph’

>>> "Python"[1::2]
’yhn
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The step can be negative; in that case end is best understood as the index which, when met,
immediately ends the construction of the slice. It is still exclusive in its semantics.

>>> "Python"[5::-2]
’ nhy ki
>>> "Python"[5:1:-2]

’

'nh’ # excludes 'y’ at index 1
>>> "Python"[4::-2]
"otP’

>>> "Python"[4:0:-2]
ot’ # note that end is not implicitly zero!

>>> "Python"[4:6:-2]

3

It should also be noted that, in slices, any start or end argument with out-of-bounds indexes
is silently ignored and the start or end of the string is used instead, exactly as though the
argument had been omitted.

This can result in surprising behaviours if your step is greater than 1, as this is not quite the
same as saying that “out-of-bounds indexes are ignored”.

>>> "Python"[4::-2]

’otP’

>>> "Python"[5::-2]

'nhy’

>>> "Python"[6::-2]

'nhy’ # you could legitimately expect ’'otP’...
>>> "Python_"[6::-2]

’_otP’ # ... just ignoring out-of-bounds index 6

>>> "Python"[7::-2]

"nhy’
>>> "Python"[-6::2]
"Pto’
>>> "Python"[-7::2]
"Pto’

Slices are actually objects in Python, which are generally constructed implicitly from the
slice syntax, but can be named and manipulated explicitly. The constructor for that type is
slice(start, stop, step):

>>> myslice = slice(3, 10, 2)
>>> myslice
slice(3, 10, 2) # does not do much except store those values

>>> 1 = list(range(l5)) # list of numbers 0 <= .. < 15

>>> 1
[, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14]
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>>> 1[myslice] # but can be passed as index!
[3, 5, 7, 9]
>>> 1[3:10:2]
[3, 5, 7, 9]

A theorem of some interest is that, for any string s and any integer n, even negative or out of
bounds, it holds that s[:n] + s[n:] == s.

This is useful when “modifying” strings, for instance. .. which you cannot do, strictly
speaking. Unlike in most languages you may be used to, strings in Python are immutable.
That is to say, once a string is created, you can never modify it in-place. What you do
instead is create a new version of the string, incorporating the modification you want. The
slice notation makes this process relatively painless. There are advantages to strings being
immutable, as we shall see later when dealing with sets and dictionaries.

As an aside, in purely functional programming languages such as Haskell, everything is
immutable. While that may seem strange at first, this has great benefits for program proof
or rewriting, as you never have to worry about any value being sneakily modified as a side
effect of some other piece of code.

Back to Python strings, you can concatenate them with +, which is not unusual, but you can
also multiply them with integers, concatenating them with themselves repeatedly:

>>> "Python" + " rules!"

’Python rules!’

>>> "Python" * 6
’PythonPythonPythonPythonPythonPython’

Thus, to “replace” a character in a string, here capitalising the 't" in “Python” for no reason
whatsoever, we can write:

>>> s="Python"
>>> s[:2] + T’ + s[3:]
"PyThon’

Slices also have an optional third argument indicating the increment by which to select
characters; it is of course 1 by default.

>>> "Python"[::2]

"Pto’

>>> "Python"[::-1]

"nohtyP’

>>> "Python"[::-2]

'nhy’

The behaviour of slices mirrors that of the range function. See the section on for .. range.
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Note that len, slices, +, *, and more, work not only with strings, but with any “sequence”
type in Python, such as lists and tuples. Actually, 1en works on any “collection” type, that
is, anything containing a number of other things; that includes strings, lists, tuples, but also
sets and dictionaries.

22.4.7  Python strings use Unicode

Python strings are coded in Unicode (utf8), and as such can contain all kinds of special
characters, while being compatible with the ASCII encoding (see table) and the larger
ISO-8859-1/Latinl encodings. You can write the Unicode symbols directly, by whatever
means are available (honestly I often just copy and paste from a web page or something), or
you can enter the Unicode code point (or ordinal) for the symbol you want, if you know it,
after the \u escape:

>>> 'Y is the sum symbol’

'Y is the sum symbol’

>>> "\u221l is the sum symbol"
'Y is the sum symbol’

The functions chr and ord effect the conversion from Unicode code point to character (“string
of length 1”) and vice versa:

>>> chr(65)

1pr

>>> ord(’A’)

65

>>> ord(’a’)

97

>>> ord(’Python’)

TypeError: ord() expected a character, but string of length 6 found

Python also supports Unicode in identifiers, with some restrictions. You can only use
symbols that are classified as letters (and numbers, of course). Thus X (U+03A3), the greek
letter, will be acceptable, but ) (U+2211), the mathematical operator, will not.

>>> Y = sum
>>> Y (n for n in range(10))

45

>>> >

SyntaxError: invalid character 'E:’ (U+2211)
>> [ =2

SyntaxError: invalid character ’[’ (U+222B)

Having Greek letters is great for implementing maths, although it’s a shame mathematical
operators are not allowed.
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Lest you think that this restriction was a necessary sacrifice for the sake of clarity, note that,
even with letters only, Unicode can be a source of great joy:

>>> ord("A")
65

>>> ord("A")
913

>>> "A" == "A"
False

“What on Earth is going on here?”, you ask, bewildered... well, you see, one A is the
bog-standard ordinary latin letter A, and the other A is the capital Greek «. They just happen
to be visually identical in most fonts, but they are entirely different symbols from different
alphabets. Make sure to put Unicode capital «s and s (B) and so on everywhere in your
code for endless laughs.

22.4.8 Unicode defines the order on characters

Characters are ordered according to their code points. That is to say, given two characters c
and d, we have

c<d <= ord(c) <ord(d).

22.4.9 The order on characters defines the lexicographical order on strings

This total order on characters is extended to a total order on strings, by deriving the
lexicographical order: let u,v € £* be strings?, then

u = xay
u<v <= uisprefixofv v Ix,y,z€L*, a,bel:{v=xbz

a<b.

The following are all True:

>>> ’aa’ < ’aaa

>>> "aaa’ < ’ab’

>>> ’'Etudiant’ < ’Prof’

>>> ’'Prof’ < ’etudiant’ # case matters!

As we shall see later on, other sequential collection types follow the same method to lift an
order on their elements into an order on homogeneous collections.

’Here I am using notations that we shall see this semester in formal languages theory. It should still be
pretty intuitive: X is the set of characters, and Z* the set of strings. xay means the concatenation of x, a, and y.
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22.4.10 Formatting strings

A common task with strings is to format data. There are several ways of going about that in
Python, depending on the complexity of the task.

Only print and the basics of fstrings will be tested in the exam.

22.4.10.1  The print procedure

At its most simple, and if you just want to display the result, you can simply use the variadic
print procedure.
>>> x =1 ; y = None

>>> print("And then", "there was", x, ",and then there were", y,".")
And then there was 1 ,and then there were None .

print adds spaces between its arguments, and a carriage return at the end. This is controlled
by optional arguments sep and end, respectively:

>>> print(x,y,y,Xx,sep="..",end="1!1")
1..None..None..1!!

What if you want non only to display this, but to get a new string? In that case, again for
basic tasks, you can concatenate what you need, but note that you must convert non-string
elements manually:

>>> "And then " + " there was " + x + ", and then there were " + y + "."
TypeError: must be str, not int
>>> "And then" + " there was " + str(x) + ", and then there were" + str(y) + "."

"And then there was 1, and then there were None.’

Is there something more convenient and powerful, along the lines of printf and sprint£?
Yes, there are ways, three of them to be specific, thought none are called printf.

22.4.10.2  The % operator

In chronological order of introduction to Python, they are the % operator, the format string
method, and fstrings, which share syntax with the format method and can be see as an
improved way to access it. Not that it matters much, but fstrings are also the most efficient
of the bunch.

We are going to touch briefly on each of those, with more emphasis on fstrings, which are
the recommended way to proceed.

% is a binary operator taking a string with special formatting syntax inside, very similar to
printf syntax, and a tuple of values, and returning the corresponding formatted string;:

>>> "Like %.2f a %¥d printf %s." % (3.14159265359, 42, "dream")
"Like 3.14 a 42 printf dream.’
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Since it is a perfectly normal operator producing a perfectly normal string, nothing prevents
you from passing all that as argument to, say, print, essentially making print into a printf
equivalent:

>>> print("Like %.2f a %d printf %s." % (3.14159265359, 42, "dream"))
Like 3.14 a 42 printf dream.

22.4.10.3 The format method

Back in the good-ol’-days of Python 2, that was the way things were done. Then format
was introduced in Python 2.6. It uses a more streamlined method call, extensible on new
types via the __format__ method, and has a new, original specification syntax, based on
curly braces, that breaks with some of the conventions of printf, but retains some of them:

>>> "Like {:.2f} a {:d} printf {:s}.".format(3.14159265359, 42, "dream")
"Like 3.14 a 42 printf dream.’

For now, we don’t see any improvement over printf that would justify the change of syntax.
But what if you want to repeat a given argument? Sure, you could duplicate it in the call to
format, but there is more elegant. Before the semicolon :, you can actually put the index
of the argument you are referring to. Absent this indication, they will be taken in order;
but if you wish, nothing prevents you from reusing an argument, perhaps with different
formatting:

>>> "Like {0:.2f} a {1:d} printf {2:s}.".format(3.14159265359, 42, "dream")
"Like 3.14 a 42 printf dream.’
>>> "Like {0:.2f} a {1:d} printf {2:s} {0:.3f}.".format(
3.14159265359, 42, "dream")
"Like 3.14 a 42 printf dream 3.142.°

Digression: you can actually do something like that with printf in C, with a $-based syntax

printf("%1$s%1$s\n", "hello");

but that is a Posix extension, that works only on Unix systems, and is not included in the C99
standard. You can also used named arguments instead of positional indices (and for course
the formatting part, such as :.2f, is optional), which can result in much more readable
patterns:

>>> "{x:d}{y}{y}{x}".format (x=0,y=1)
’0110°

This is about as good as it gets for format, and while it is a vast improvement over printf
style, there is still a level of redundancy and clunkiness.
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22.4.10.4  The good stuff: formatted string literals

Then, with Python 3.6, formatted string literals, or fstrings, entered the fray. An fstring
is special string literal of the form £"...", containing formatting instructions in a similar
syntax to format, which is evaluated at runtime and converted into a normal string. It can
reference any variable in its current scope.

>>> x = ’Python’

>>> v = 3.6

>>> f"Introduced in {x} version {v}."
"Introduced in Python version 3.6.°

It would be difficult to imagine something simpler and cleaner than that. But that is not the
end of it: Since fstrings are evaluated at runtime, you can put (almost) any valid python
expression inside them:

>>> f"Before {v} was {v-0.1}, and after was {v+0.1}."
"Before 3.6 was 3.5, and after was 3.7.’°

fstrings concatenate with other string literals, including other fstrings, without problems,

>>> f"fstring {v} " "regular string"
fstring 3.6 regular string’

Thus you can use the same techniques as usual to span an fstring over multiple logical lines.
Also note that all the different syntaxes for string literals apply as well for fstrings; single
quotes:

>>> f’Introduced in {x} version {v}.’
"Introduced in Python version 3.6.’

and triple quotes (whether single or double):

>>> f£"""Introduced in {x}
version {v}."""
’Introduced in Python\nversion 3.6.°

This is even more useful in fstrings that in regular strings — where it’s just a nice but inessential
convenience — since you may want to execute code involving string literals inside fstrings,
and you cannot escape special symbols there, as \ cannot appear inside the formatting curly
braces. By using a style of quote for fstrings and another one for the string literals inside it,
things go smoothly:

>> d = { ’key’ : 42 }
# this is a dictionary; a key:value association
# see the relevant section

>>> f"Value for ’key’ is {d[’key’]1}."

"Value for ’key’ is 42."
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>>> f’Value for \’key\’ is {d[’key’]}.’ # string eds at ...{d[’
SyntaxError: invalid syntax

>>> f’Value for \’key\’ is {d[\’key\’]}.’

SyntaxError: f-string expression part cannot include a backslash

Note that you can use backslashes just as usual in the string part of the fstring, just not in
the formatting/expression parts between braces. If that restriction becomes cumbersome, do
not hesitate to evaluate the offending expression beforehand, put its value in a variable, and
reference that in the fstring.

Do not hesitate to use triple quotes even if you don’t need line returns, because then you
need not worry about escaping any type of quote:

>>> £"""Value for ’'key’ or "key" is {d[’key’]} or {d["key"]}."""
’Value for \’key\’ or "key" is 42 or 42.°

Given the special nature of braces in fstrings, they must be escaped if you want these
characters to appear in the string, but you can’t do that with a backslash: you need to use
double braces {{..}} ®:

>>> £"{3.1415:.2f}" # a formated expression
’3.14°
>>> £"{{3.1415:.2f}}" # now it’s just a literal string

>{3.1415:.2f}°
>>> f"{{{3.1415:.2f}}}" # combine the two.
’{3.14%}°

Finally, note that, as of the current version of Python, fstrings have much higher performance
than other ways of formatting strings — not that this is usually a bottleneck, but when it’s
both the most elegant and the fastest way to do this, why use anything else?

It is highly recommended to get used to them. For a complete reference on their syntax, see
the official documentation:

https://docs.python.org/3/reference/lexical_analysis.html#f-strings
https://docs.python.org/3/library/string.html#formatspec

As you can see, there is quite a lot going on in the formatting syntax. I'll just insist on a
very common thing to do with string formatting: aligning things in monospace fonts. The
relevant formating instructions are:

< left-align text in the field
A center text in the field
> right-align text in the field

In those examples x still contains *Python’:

®Speaking from personal experience, this makes using fstrings to generate ISTgX code, which has an
extremely high concentration of braces, a small nightmare.
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>>> fU[{x:<20}]"

’[Python 1’

>>> f"[{x:>20}]1"

[ Python]’

>>> £ [{x:4203}]"

[ Python 1’

>>> fU[{x:*A20}]" # fill with any character, here *
P [EEEkkEEPpythonHE kR w]

>>> fU[{x:#220}]"

T [#######E Py thon#######] "’

>>> fU[{x:\220}]" # it looks bigger but that’s because \ is escaped
# in the string literal below

P ENNANNNNANNNNNN Py thon NN NN NN\ T
>>> print(£f"[{x:\*220}]1") # when printed it’s the right size
[NNN\\\\Python\\\\\\\1]

Of course for numerical values the usual specifiers for the decimal type suffice to produce
quite legible tables:

>>> for i in range(0,10+1,2):
print(£"{i:6d} {i**2:6d} {i**3:6d} {i**4:6d}")

0 0 0 0
2 4 8 16
4 16 64 256
6 36 216 1296
8 64 512 4096
10 100 1000 10000

For debugging purposes, it is often useful to print the values of variables; to easily keep
track of which value corresponds to which variable, you can use the “=" formatter:

>>> x,y,z = "abc"
>>> f"{z=} {y=} {x=}"
llZ:!C! y:’b’ x21a1ll

Note that the formatting instructions after the : can use the value of variables. For this, it
suffices to surround the variable name with braces:

lines= [ "a", "bbbbbbb", "ccc"]

maxl = max(len(l) for 1 in lines)

for 1 in lines:
print(£"|{1:A{max1}}|")

| a [

| bbbbbbb |

| ccc |

Furthermore, fstrings can be nested; the usual rules regarding quote escapes apply:
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>>> db = dict()
>>> y = 2021
>>> db[f"{y}_budget"] = 42e5

>>> print(£f"{y}_budget : {db[£f’{y}_budget’]1}")
2021_budget : 4200000.0

Python 3.12 makes nesting more flexible ).

Finally, let us illustrate what I meant when I said that that types could implement the
__format__ method to roll their own formatting specifications:

>>> import datetime

>>> today = datetime.datetime.today()

>>> today

datetime.datetime (2019, 8, 20, 11, 53, 33, 122991)
>>> print(f"{today:%B %d, %Y}'")

August 20, 2019

Here, %B %d, %Y is a special formatting specification that works only on objects the datetime
class, where its meaning is defined. It works because at runtime, it is known that today is of
this type.

22.5 Nihilism: NoneType: expression versus statement

It is quite important to distinguish expressions and instructions/statements ™. Year after
year I belabour this point, and year after year students forget all about it by the time the
exam comes. Insert sad emoji here.

An expression, like 1+2, has a data type (here, integer), and a value.

Expressions can be nested: e.g. 3* (1+2). Fundamentally, an expression is either a base value
(1, 2,...) or a combination of several sub-expressions under an operator or a function).

Arithmetical and logical expressions are two kinds that you are familiar with, but there are
endlessly many variants.

A statement (FR: instruction), on the other hand, represents an order given to the machine:

X = 42 # create a memory space encoding 42, and bind it to x!
print (42) # display that on the standard output!
pass # do nothing!

A statement does not, morally, have any value attached to it, in the way that 2+2 does. There
is a fundamental difference of concept between the value 42, and the execution of the order

Ohttps://docs.python.org/3.12/whatsnew/3.12.html#pep-701-syntactic-formalization-of-f-strings
(MTechnically, in Python an expression is also a particular form of statement; I am more interested in the
semantics, here.
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'II

“take a bucket of paint and write this value, 42, on the wall!”. That 42 be written on a wall or

on the standard output is immaterial to this distinction.

Because statements do not carry an intrinsic value, there is generally no point in allowing
them to be combined or nested. The only thing you can do with them is put one after the
other.

In Python, some statements, like return 42 cannot be combined or nested in any way, under
pain of SyntaxError. Others, like print(42), can; sort of.

>>> print(print(42), print(69))
42

69

None None

What happens here? print is a function. Functions typically return something, some value,
but this is not the case here; print does something. In that case we prefer the word procedure
to function.

It is important to distinguish the cases where a function returns something from those when
it does not, so as to catch errors. The way Python does that — and many other languages as
well —is to have a “placeholder” type for “this has no type”, “absence of data”. A value to
return when you want to say “I returned nothing”. Thus procedures are naturally handled

in exactly the same way as every other functions, no special cases needed.

In Python, this special value is called None, and it is the only value belonging to the type
NoneType. Any function that does not return anything implicitly ends with return None.

And now we can understand what happens in print (print(42), print(69)): the outer-
most print begins by evaluating its arguments, in order. print(42) evaluates 42, displays
it, and returns None, which becomes the first argument value of the outermost print. Then
print(69) evaluates 69, displays it, and returns None. Finally, print (None,None) executes,
displaying the string representation of both Nones, which happens to be "None".

22.6 Booleans: bool

Booleans are a very simple data type, containing only two values: True, and False.

22.6.1 Comparison operators
A function that returns a Boolean is called a predicate.

You usually get Booleans as a result of a comparison operator. In Python, they are the
following;:
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All comparison operators have the same precedence, unlike in C, and that precedence is
lower than that of any arithmetic operation (as in pretty much all any language). They
compare the values of their operands, not whether they are the same memory object — the
operator for that is is.

An interesting and very unusual thing about the Python incarnation of the comparison
operators is that they can be chained as in maths: for instance, I can write

0 < x <=y <1

to mean

O < x and x <=y and y < 1

The semantics is only exactly the same in the absence of side effects, as we shall see in
Sec. 22.6.5p105: “The semantics of and and or, & implicit Boolean conversion”.

22.6.2 inand is

in and is, as well as their negations not in and is not, can be considered comparison
operators and have the same precedence as them.

in (and its negation not in), corresponding to € in maths, tests whether an element appears
in a collection — so long as the collection type implements the relevant methods:

>>> 2 in {1,3,4}
False

Recall that we saw that, in the case of strings, it also tests for substrings:

>>> "bc" in "abc

True

That does not apply to other collection types, such as tuples, lists, etc, since, unlike strings,
they can be nested:

>>> (2,3) in (1,2,3)
False

>>> (2,3) in (1,(2,3))
True
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Then there is also is (and is not), testing if two objects point to the same location in memory
— much more rarely used. Examples of common uses: x is None, type(x) is int (though
isinstance(x,int) is often to be preferred).

The operands of comparison operators need not be of the same type. The rule is that, when
comparing two objects of different types:

¢ If they are both a numerical type, they are converted to a common type and compared:

>>> 42 == 42.
True

It should be noted that, technically, bool is a numerical type — in fact it is a subclass of
int. Thus we have:

>>> 0 == False and 1 == True
True
>>> 2 == True or 2 == False
False

>>> 2 * True + True
3

This can result in some strangeness in the case of collections that rely on hashes of the
values of its items, such as sets and dictionaries:

>>> {True, 1, 0, False}
{0, True}

o Otherwise, they are automatically unequal.

>>> "42" == 42
False

o Unless the appropriate method has been defined in one of the operands, they cannot
be ordered:

>>> "42" < 42
TypeError: ’<’ not supported between instances of

str’ and ’int

Note that since they are comparison operators, they can be chained as well, and with any
other comparison operators.

Whereas in maths, almost all instances of comparison chaining are ordered, e.g.
e <ex;<ed=x<oo,
and when you see such expressions, it’s quite intuitively obvious what they mean.

Python has no restrictions on which operators can be chained. Consider the expression
None==None is None. What does it mean? If you forget that is can be chained, nothing
makes sense:
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>>> None==None is None

True
>>> (None==None) is None
False
>>> None==(None is None)
False

Both ==and is are, nominally, binary operators, but neither of the two possible interpretations
of that expression match what you obtain.

What it really means is:

>>> None==None and None is None
True

The same goes for in:

>>> None==None is None in {None}
True

22.6.3 Boolean operators

Boolean expressions involve Boolean operators in the same way that arithmetical expressions
involve arithmetical operators. The Boolean operators are as follows:

Maths / Logic  Python

V or

A and

= not
< ==

The last one is actually the standard comparison operator, not really a Boolean operator, that
just happens to work because logical equivalence is simply equality of Boolean values.

The truth tables of these operators are as usual.

All three true Boolean operators have lower precedence than any comparison operator, and
are here listed in order of increasing precedence. The only thing in Python with lower
precedence than or is 1ambda.

Precedence warning: if you find yourself writing

>>> reply="y’
>>> reply == 'y’ or ’yes
True

you have just introduced a large bug in your program: the test will always pass:
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>>> reply="n’
>>> reply == 'y’ or ’yes’
yes’ # non-empty, therefore True

The precedence rules evaluate that as (reply == ’y’) or ’yes’, whichis True.

Either write

reply == 'y’ or reply == ’yes’
or — less classical but more convenient — use the in operator and a collection, preferably a
tuple:

reply in (’'y’, ’yes’)

22.6.4 A fantastic fear of Booleans

As a point of syntax or style, there is a anti-pattern I see often — quasi systematically, in fact,
in some form or other — and dislike considerably: writing predicates with unnecessary if
statements and/or ==True tests. Here is an example of what I mean:

def p(a,b):
test = a==1and b == 2
# or any computation that yields True or False
if test == True:
return True
else:

return False

There are two things wrong with this picture; let’s start with the test. It is a Boolean
expression. Its value is already True or False. For any Boolean b, it holds that b is true if and
only of b==True is true. It does not get extra truer with extra tests ==True. If you go down
that road, why stop there? Why not go full retard, as they say, and write

>>> (b == True) == True
>>> ((b == True) == True) == True
>>> # you get the idea

just for those tasty incremental bits of truthiness? Just don’t, please. There is never a good
reasontowriteif test == Trueinstead of if test. Thesame goesforreturn test==True
versus return test.

Now on to the second wrong thing:

if test :

return True
else:

return False
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What are we doing, here? If test is True we return True. If test is False we return False.
test being a Boolean, we have covered all the values it can ever take. In other words, we
return the value of test, no matter what. Let’s do that: return test.

All in all, the predicate above should be written:

def p(a,b):
return a == 1 and b == 2

In exams, I have a policy of taking away points whenever I see that.

22.6.5 The semantics of and and or, & implicit Boolean conversion

Morally, Boolean operators act on two Booleans, and yield a Boolean. False or Trueisa
well-defined Boolean expression, of value True. Something like False or 42 should raise
an error along the lines of “hey, I expected a bool, and I got an int. What gives?”. Right?
Let’s ask Python:

>>> False or 42
42

>>> True and 42
42

>>> 42 or True
42

>>> True or 42
True

>>> not 42
False

>>> not not 42
True

>>> False or 0
0

>>> [] and 42
[]

Oh. Okay. “C’est pas faux.” Let’s stay calm and figure out what’s going on.

In Boolean contexts, that is to say, in a 1f of while test, or as operand to a Boolean operator,
everything that is not already a Boolean is forcibly converted to one, along the following
rules:

Everything becomes True unless it is on the following list, which intuitively captures the
“empty” object of each type:

¢ False itself, of course.
¢ None, because you can’t get emptier than that.

¢ Numerical values equal to zero: 0, and 0.0
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¢ the empty string ’’, the empty list [], the empty tuple (), the empty set set(), the
empty dictionary {}, and any empty container type, generally.

¢ anything that says so in its __bool__ method. If you write your own type, give some
thought to what conversion makes sense.

That actually makes a lot of sense: implicitly, testing an object becomes testing non emptiness.

But wait, that explains True or 42 being true, because that is equivalent to True or True,
and that explains not 42 being false, because that boils down to not True, but why does
False or 42 yield 42 instead of True?

First note that this is consistent, as in a Boolean context, 42 will be converted to True anyway.

The reason for that lies in the precise behaviour of or and and, which actually differs in
subtle but important ways from that of their mathematical counterparts.

In mathematics, both A and Vv are commutative: the statements
1
az0 A —>10
a
and
1
—>10 A a#0
a

are both well-defined and strictly equivalent for all values of a € R. Let us test that in Python
for a = 0:

>>> a=0

>>> a != 0 and 1/a > 10
False

>>> 1/a > 10 and a !'= 0

ZeroDivisionError: division by zero

Why this behaviour? In mathematics, all operands are “processed” simultaneously. In
Python — as in most languages — the operands are processed in order, left to right.

Furthermore, not all operands need be evaluated: In mathematics, given the expression
T V x, whatever the Boolean x, the result is T. Likewise, given L A x, the resultis L.

Python follows that convention, and never evaluates the second argument if the first suffices.
Thus, in the first version, 1/a > 10 is never evaluated, and can thus yield no error. In the
second version, it is evaluated first, and the second operand cannot “protect” it.

Finally, whenever Python examines the value that concludes the evaluation of a binary
Boolean operator, it returns that value itself, and not its Boolean conversion. Thus, for
instance, False or 42 first looks at False, which is not enough to conclude in an or; then it
looks at 42, and returns that. In fact, if it gets to the second operand, it does not even try
to convert it to bool, it just returns it as is. There is no need, as L V x and T A x are both
equivalent to x.
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In conclusion, Python’s binary Boolean operators are only commutative in the absence of
exceptions (and side effects).

Another way of expressing the behaviour of those operators is as follows, with ~ denoting
implicit Boolean conversion:

x if x =~ True
xory = ]
y otherwise

and

xandy =

x if x ~ False
y otherwise

Again, neither operator returns the Boolean conversion of their operands, but instead the
operands themselves; in both cases, y is evaluated only in the case where it must be returned.

A pattern that you may sometimes see that makes use of this behaviour looks like this:

default = 42

user = input(’Enter a number, or press Enter for the default: ’)
nb = user or default

print (' The number is’, nb, user)

It has the behaviour you would expect. Note that it works if the user enters 0, because input
yields a string, and "0’ is non-empty. It is not necessarily recommended to write in this way.

Let us come back to chained comparison operators. I said earlier that they were translated
into an and statement, but with a slight difference in semantics in the presence of side effects.
Let us clarify and demonstrate that fact.

Let us define a test function with no purpose except having a side effect — printing the value
it returns:

def x(x): print(x,end=" "); return x

First, let us see a similarity:

>>> x(10) <= x(2) <= x(3)
10 2 False

>>> x(10) <= x(2) and x(2) <= x(3)
10 2 False

Line and, the chain comparison stops as soon as it is broken; we see this because x(3) is
never executed.

And now, the difference:
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>>> x(1) <= x(2) <= x(3)
1 2 3 True

>>> x(1) <= x(2) and x(2) <= x(3)
1 2 2 3 True

Each operand is only evaluated once in a chain comparison.

22.6.6  Assertions: cheap unit testing and preconditions enforcing

Boolean expressions serve of course as tests in the usual control flow structures, but another
cool thing you can do with them is assertions.

An assertion is a statement about the state of your program that must hold if the state is
correct. It can be used as a mechanism for defensive programming — ensuring that the
preconditions of a function are met, e.g. this input representing an hour is between 0 and 24,
it does not make sense otherwise — or for (unit) testing — my function must return this on
that input, otherwise it is incorrect.

The syntaxes for the assert instruction are the following;:

assert <condition>
assert <condition> , <optional error data or message>

Its effect is to test the condition, and do nothing if it is True. Indeed, the condition states
the normal, expected behaviour of the program. If the condition is false, on the other
hand, something is very wrong with the state of the program, and an exception is raised,
interrupting the program.

It is very good practice to use asserts in your code whenever convenient. Like unit tests,
they can catch bugs at their source and prevent regressions.

Of course, the code within the assertions may have a negative impact on performance, in
which case they should be deactivated in a production environment. Assertions are only
executed in debug mode, which is on by default, and can be deactivated by passing the -0
(capital O, for Optimisation) flag to Python.

The behaviour of assert is thus equivalent to

if __debug__: # you can’t assign to this; use -0
if not condition: raise AssertionError #(optional_message)

Note that it is a bad idea to try to catch an assertion error, and have the behaviour of the
program depend on that. Assertions only trigger if the logic of the program is violated; they
are fundamentally outside of the program’s logic. They are a safeguard against incoherent
behaviour, not a control flow mechanism. That is why they can be deactivated or removed
at will.
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For instance, you should probably not use an assertion to test the sanity of a user’s input;
dealing intelligently with your users’ inability to formulate correct inputs is very much in
your program’s bailiwick; “user not very smart” is not an error condition, it’s a Tuesday.

You should use an assertion to ascertain that programmers (including you) use your function
correctly. Dealing with programmers’ inability to read and understand a function’s documen-
tation is not your responsibility. If your function only makes sense when n is positive, and
you have documented that fact, then by all means throw in an assert n>=0 at the beginning
of it. If the function is ever called with n negative, it’s a programmer error, everything should
stop right now so the programmer notices and fixes the error.

The optional message is not all that useful, as the traceback displayed when an exception is
raised reproduces the assertion’s line:

>>> n = 52
>>> assert n == 42
Traceback (most recent call last):
File "<pyshell#14>", line 1, in <module>
assert n == 42
AssertionError

I often see error messages that paraphrase the condition:

>>> assert n == 42, "n should be 42"
Traceback (most recent call last):
File "<pyshell#18>", line 1, in <module>
assert n == 42, "n should be 42"

As you can see it is completely redundant; I can read the condition already. It might serve
some use in that capacity if I caught the AssertionError, and did not have the traceback,
but as discussed above that goes against the grain of what an assertion means.

A better use for it that I can see is to provide the value that failed to meet the condition, if
applicable:

>>> assert n == 42, n
Traceback (most recent call last):
File "<pyshell#19>", line 1, in <module>
assert n == 42, n
AssertionError: 52

Here I can see that the actual value of n that triggered the assertion was 52, which is
non-redundant and actually helpful for debugging purposes.

Let’s take a silly example to illustrate the kind of use of assert I would like to see in your

code. Suppose I want to implement a function that computes the square of a number (very
difficult, that...).

I propose the following implementation:
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def square(n): return n**2

To illustrate the use of assertions to test preconditions, I'll add the requirement that my
function must only be called with nonnegative values. This condition is entirely artificial
here, but again, it’s just to showcase an assertion. I would then write:

def square(n):
assert n >= 0
return n**2

Once the function is written, I want to make sure it is correct. I know how to compute a
square independently of my implementation, so I do that for a few values —it’s good to test edge
cases, so for integers the first few and a large one generally suffice — and write

assert square(0) == 0
assert square(l) == 1
assert square(2) == 4
assert square(10) == 100

Nothing explodes when I run this code, so I am that much more confident that my function
is correct.

Do not remove or comment out your assertions! Again, they can be deactivated globally
for performance reasons if need be, and they protect against code regressions. Very often I
see students removing the assertions after having (allegedly) tested their function. I cannot
fathom the reasoning under that act —nor can they account for it, when I ask. And of course,
of course!, two times out of three, when the assertions are put back in, it turns out that the
code was incorrect.

An even better way to proceed would be Test-Driven Development (TDD). The idea is to
write the tests first, when you have decided what your function should do on paper, and only
then to implement the function, until all the tests pass.

An interesting case is when you have two implementations of the same function. It’s very
common to have an obvious, clearly correct but inefficient way to implement something,
which you later replace by a more finicky optimised version, perhaps operating on completely
different principles. Rather than getting rid of the old, correct but slow implementation,
you can use it in tests to check that the new implementation is equivalent to the old —and
prevent regressions while you continue to optimise the new version.

With two independent implementations, you can use a loop to test equivalence on a large
number of values: Here I would write:

for n in range(10): assert square(n) == n * n

This passes as well, so the **-based and *-based implementations seem equivalent.
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There is a drawback to the form above: if debug mode is deactivated, this does not disappear
completely, but becomes

for n in range(10): pass

Which is still a loop for nothing. Thus the following form should be preferred:

assert all( square(n) == n*n for n in range(10) )

We shall study that syntax later on, in Sec. 24.5.15158: “Comprehensions for every type; first
contact with generators”. Specifically, see Sec. 24.5.3.4,1¢3: “Reductions”, especially the
part about any and all.

In this syntax, it is harder to see for which value the assertion fails (if fail it does). We
can use the : = operator, which assigns a value to a variable in the course of evaluating an
expression, to store the last values computed before the assertion failed, and return them
with the AssertionError:

def square(n): return 8 if n==3 else n*n

assert all( (es:=square(en:=n)) == (ee:=n*n)
for n in range(10) ), (en, es, ee)

AssertionError: (3, 8, 9)

Here en, es, and ee store, respectively, the value of n that caused the failure, the value that
was computed by square, and the value that was expected.

22.6.7 Defensive typing considered harmful

As mentioned briefly in Sec. Sec. 22(,75): “Basic data types”, explicit type testing is not very
idiomatic. More than that, defending against unexpected types can be very harmful.

Consider this nice little function:

def f(x): return 1/2 * (x**2 + 2)

You test, for instance, £(2), and get 3.0. So far, so good.
You could be tempted to put an

assert isinstance(x, float)

but the net effect would be to refuse integers. What is £(2)? Error. £(2.) would pass,
though. Is that in any way helpful? Probably not.

So let’s imagine a more general
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assert isinstance(x, (int, float))

to defend against non-numerical types. But hold on a minute; let’s talk about this.

Let’s say you want to plot f; with something like mathplotlib, nothing could be easier;
cf. question (42)p259] for instance.

It works something like this (removing a bunch of imports and boilerplate to specify colours
etc)

X = np.linspace(-2,2,100) # plot between -2, and 2, with 100 samples
plot(x, f(x),...)

And boom! you get a pretty plot. But how does it work? What is this f£(x) object, really?

>>> X = np.linspace(-1,2,4)

>>> X

array([-1., ©O0., 1., 2.1)
>>> £(x)

array([1.5, 1. , 1.5, 3. 1)

>>> print(x, f(x))
[-1. O. 1. 2.] [1.5 1. 1.5 3. 1]

>>> type(x)
<class ’numpy.ndarray’>

It's an array of values. Numpy ™ arrays support all arithmetic operators, with the semantics
that each operation is performed on each value of the array:

>>> X¥*2
array([1., 0., 1., 4.1

>>> 10%x
array([-10., 0., 10., 20.1)

>>> X+X
array([-2., 0., 2., 4.])

That’s how myplot ends up containing all the £(x) values over the defined sample space x.
The array type supports all the operations (+, *, **)actually used in the definition of f,
and the way it handles them boils down to “do that on a lot of values instead of one at a
time”. This makes sense and is useful.

None of this would work if the function had been defended by

™numpy is a widely used library for efficient numerical computation.
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assert isinstance(x, (int, float))

An array is not a float nor an int. The plotting would fail, at least using this method.
You also exclude exact numerical types, such as Decimal ) or Fraction®).

The bottom line is, you can’t predict every possible type, past, present or future, that might
make sense with your function. Even if you could, the introspective nature of Python makes
it impossible to fully enforce anyway.

Embrace duck typing. If your input value can supports all operations you actually use on it,
that’s good enough. If not, an error will naturally appear.

For instance, let’s do some computations with other numerical types:

from decimal import Decimal
from fractions import Fraction

>>> f(Decimal (1)/Decimal (3))
TypeError: unsupported operand type(s) for *: ’'float’ and ’decimal.Decimal’

OK, it doesn’t like the 1/2 * ... because 1/2 is float, and using it defeats the point of the
Decimal type, which is to control the computation’s precision.

In that case, we can simply rewrite the function as

def f(x): return (x**2 + 2) / 2

which involves ints only. There is no precision loss there.

>>> f(Decimal (1)/Decimal (3))
Decimal (’1.055555555555555555555555556 ")

Let’s try with Fraction:
>>> f(Fraction(’1/3’))
Fraction(19, 18)

Isn’t that neat? Again, none of that would be possible with overly aggressive typing.

22.6.8 Beware: a trap in assert’s syntax

assert is an instruction, like return, not a function, like print, and thus it requires no
parentheses. Of course, you can always use parentheses around any expression without
changing its meaning, and so assert False and assert( False ) are strictly equivalent.
Likewise, the following, with an error message, seems perfectly innocuous:

©https://docs.python.org/3/library/decimal.html
(Whttps://docs.python.org/3/library/fractions.html
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assert (False, "It’s a trap!")

Yet, you receive a warning (in some contexts; Idle seems to eat them, but I see them when
using Python from the terminal in 3.10.8) when running the code:

Warning (from warnings module):
SyntaxWarning: assertion is always true, perhaps remove parentheses?

Whatis happening here? (el,e2,...,en) is the Python syntax for tuples; ordered immutable
lists of elements. They can also be written simply el,e2,...,enin some contexts. assert
may potentially take two comma-separated arguments, but the comma is part of its syntax,
there is no tuple involved. Putting parentheses around both arguments turns

(False, "It’s a trap!")

into a single tuple — here, a couple, so non-empty, and therefore equivalent to True. Hence
the warning.

22.6.9  Synthetic table of operator precedence and associativity

The table in Figure 1,115 presents all precedence classes for Python constructs — including
some not yet introduced in this document —in order of increasing priority. Where applicable,
the associativity is indicated. When in doubt, refer to it.

A few notes are required in order to clarify some of the entries. Strictly speaking, the concept
of associativity is only classically defined for binary operators. We extend the definition to
the following intuition:

The associativity of a syntactic construct is whichever side (left or right) the parentheses accumulate
on, if made explicit.

By that loose definition, a unary operator, like —, is right associative, because ——1 = —(—(1)),
and the parentheses accumulate on the right. The same idea applies to lambda and
. if .. else ...

23  Basic control flow

Here we recall the basic control flow structures. They mostly behave as expected and have
few game-changing Pythonic specificities that I am aware of, so there is not much to say
beyond giving the syntax.

The exception to that is the for loop. There is much more to it than meets the eye at first
glance, and we shall come back to it later.
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Figure 1: Precedence and associativity
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23.1  Conditional branching instruction: if

This is your usual if/elif/else statement, with the usual semantics.

if <cy1>:

<execute if c¢q>
elif <cy>:

<execute if -cj Acy>

elif <c,>:
<execute if AN —cr Acn>

else:
<execute if Ap_; —ci>

Just recall that the conditions are converted to Booleans if they are not already, with the
consequences discussed in the section on that data type.

As in any language (apart from, say, pure functional languages) be mindful of side effects:

The following two blocks of code are only equivalent under a certain assumption. What is it?

if test():
instrl ()

else:
instr2 ()

if test():
instrl ()

elif not(test()):
instr2 ()

23.2  Conditional expression: .. if .. else .. ternary operator

Sometimes, you have a simple test that is best written in one line, typically when you are
trying to return a conditional value or assign it to a variable, or perhaps use it in the middle
of a computation.

This can be done with the following syntax, where B is a Boolean and vi,e and v, are
expressions:

< Virwe > 1f <B > else < vgise >

which stands for the expression, or the value:

{vtme if B holds

Vise Otherwise

This corresponds to what is often called “the” ternary operator <cond> ? t : finCand
derived languages. The use of the definite article in this terminology is a bit imprecise: it is
an operator with three operands, hence ternary, but not the only possible one.
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Note that since this is an expression, and not an instruction, it can be used in the middle of a
computation

>>> (1 if False else 2) **2
4

and you you cannot use return (or any instruction) within it: write

return 1 if True else 2

or

if True:
return 1

else:
return 2

but never

return 1 if True else return 2

This construct can be chained, of course, though doing so is not recommended for reasons of
legibility. There are two ways to interpret the expression 1 if C1 else 2 if C2 else 3,
depending on the associativity of this — slightly weird — operator. Let us test that in a
systematic way:

def default(x,y): return 1 if x else 2 if y else 3
def left (x,y): return (1 if x else 2) if y else 3
def right (x,y): return 1 if x else (2 1if y else 3)

for x in (0,1):
for y in (0,1):

print(x,y," ", default(x,y), left(x,y), right(x,y))
00 333
01 2 2 2
10 131
11 111

Thus we see that the ternary operator is associative to the right which, after a minute of
reflection, appears as the most natural option.

Functions being first-class objects, this construct is perfectly capable of switching between
functions:

>>> (str.lower if True else str.upper) ("Abacus")
*abacus’

117



>>> (str.lower if False else str.upper) ("Abacus")
"ABACUS’

This is to be used with parsimony; if at all.

The ternary operator has the lowest precedence of all Python operators.

23.3  While loop

The while loop is as usual:

while <condition>:
<intructions block>

break and continue statements can be used in a for loop, with the usual semantics.

There is one Pythonic surprise, though: while may be paired with an else clause, executed
at the natural end of the loop — that is to say, after the condition turns to False —but not in
the event of a break. This also works with for loops, and an example is provided in the
corresponding section.

This syntactic construct is rarely used, and the choice of else for the keyword is widely
acknowledged as injudicious.

You may mentally substitute nobreak for else when trying to wrap your head around that
concept.

If you use that construct at all, I'd recommended commenting the break and else lines to
make the logic clear.

234 for .. in .. rangeloop

The syntax of the for loop that most closely resembles the classical “i++” approach is the
range construction:

for k in range(0,10,2):
print(k, end=’ ’)

As you can guess, the last argument, the increment, is optional and defaults to 1. Following
the same convention as for slices, the starting point is inclusive, and the end point is exclusive.

for k in range(10,0,-2):
print(k, end=’ ’)

10 8 6 4 2
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There is also a syntax with just one argument: range(n) is interpreted as range (0,n). This
often appears when generating the indices of a string or list:

s = "Python"
for k in range(len(s)):
print(s[k], end=" ’)

This syntax appears a bit restrictive, and it is not immediately clear whether the range syntax
is actually an intrinsic part of the for loop’s own syntax or something else.

As it happens, range is not tied to for’s syntax:

>>> range (10)
range (0, 10)

>>> type(range (7))
<class ’range’>

but it’s not clear at this point what it is and what you can do with it. For now let us just say
that the range type is an iterable and indexable/subscriptable sequence type — you can use
for loops, r[i] indexed access and r[i: j:step] slice notation on them.

We shall come back to this in greater detail when speaking of generators later on, but know
that for in Python is really a “for each”, that iterates over every item in a collection type that
supports the operation — an iterable type. Ranges are just one such type, but strings, lists,
tuples, sets, etc, are as well.

for <var> in <collection>
<block in which var takes the value...
. of an element of the collection. >

So you can just write

for c in "Python":
print(c, end=’ ’)

Not only is this clearer and less error-prone, since there is no point in reasoning on indices if
your logic does not depend on them, but this is actually slightly more efficient in general, as
you don’t have to generate an extra range object.

It is important to note that the iteration variable exists outside the scope of the for loop,
and holds the last value it took during the loop. For instance, after iterating on "Python" as
above, we have:

>>> C

n
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This does not apply to for loops appearing in comprehension expressions.

The iteration variable can actually be replaced by a structure of variable names, in which
case the same kind of pattern matching as in standard assignments on nested structures
(cf. Sec. 24.1p130: “Tuples: class tuple”) is performed. For instance, here we iterate over
lists of couples:

>>> 1 = [ (n, n**2) for n in range(5) ]

>>> 1
[0, 0, (1, 1), (2, 4, (3, 9, (4, 16)]

>>> for x,y in 1:
print (£"{x} -> {y} ", end="")

0 -> 0 1 ->1 2 -> 4 3 -> 9 4 -> 16

This is often used with, for instance, the enumerate construct, which provides automatic
indexing of an iterable:

>>> list(enumerate("Python"))
[Co, 'P’), (1, ’y’), (2, 't’), (3, 'h’), (4, ’o0’), (5, 'n’)]

>>> for k,c in enumerate("Python"):
print(£"{k}:{c} ",end=""’)

0:P 1:y 2:t 3:h 4:0 5:n

Also useful is the zip function, to consume several iterables at the same time:

>>> for x,y,z in zip([1,2,3], "abcd", "XYZ"):
print(x,y,z)

w N =
n o o
N = >

Note that it stops when the shortest iterable is exhausted.

Also occasionally useful is the reversed function, which reverses an (ordered) iterable:

>>> for x in reversed(range(3)):
print (x)

Again, we shall examine the underlying notions in more detail in the sections on iterables,
generators, etc.
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break and continue statements can be used in a for loop, with the usual semantics.

Like while, for loops may also have an else clause in Python, executed at the end of the
loop but not in the event of a break.

This example, lifted from Python’s own documentation, — with some additional comments —
illustrates the use of this construct:

for n in range(2, 10):
for x in range(2, n):
if n % x == 0:
print(n, ’equals’, x, ’'*’, n//x)
break # found a factor
else:# if no break
# loop fell through without finding a factor
print(n, ’'is a prime number’)
is a prime number
is a prime number
equals 2 * 2
is a prime number
equals 2 * 3
is a prime number
equals 2 * 4
equals 3 * 3

O 00 N O V1 b W N

23.5 try .. except

You may already be familiar with exceptions if you have used Java or any other somewhat
modern, mid-to-high level language. Whenever something goes wrong with your program,
rather than crashing outright, it “raises” and “exception”.

If the exception is not caught / handled at some point by code that invoked the faulty
sub-program, the execution is interrupted. The exception itself is an object that can carry
some information about the type and parameters of the failure.

try is a flow-control structure dealing with exceptions. Its syntax admits many variants, as
follows:

try:
<code that may fail>

except <ExceptionNamel>
<what to do if this exception is raised>

except <ExceptionName2> as <var>: # as is optional,
<what to do in that case> # exception is bound as <var>

except (<Ex3, Ex4, ...): # catch any of those
<what to do in that case>

121



except : # catches all other exceptions
<what to do in that case>

else: # optional
<executes if the try block does not raise any exception>

finally: # optional
<always executes after, regardless of exceptions and breaks>

As you can see, it is somewhat similar to a switch/case structure (which did not exist in
Python before version 3.10), but specialised for exceptions.

Exception names — actually classes — are among Exception (of which all others are
subclasses), AssertionError, NameError, TypeError, IndexError, KeyError, ValueError,
OverflowError, ZeroDivisionError, etc.

A classical example, seen whenever user input is involved:

n = None
while n is None:
try:
n = int(input("Enter a number: "))
except ValueError:
print("Invalid number. Retry.")

You can define your own exception types by subclassing Exception. This not essential, and
will be clearer after reading the section on objects.

If you want a catch-all that can manipulate the raised exception, unlike except:, you can
use, for instance:

except Exception as e: print(repr(e))

23.6  Pattern matching: match. .case

For the longest time, Python had no equivalent to any kind of switch/case construct.
Alternatives included chaining if. .elif constructs and using dictionaries, none of which
was very satisfactory. Then, for version 3.10, the developers suddenly woke up and added
the match. . case statement. This turned out to be a very significant addition.

Not only does match cover everything that is expected of a switch construct, but it goes
deeper, and enables structural pattern matching, a powerful tool more often seen in statically
typed functional languages such as OCaml or Haskell. match is not quite as convenient as
the equivalent in those languages, but we are 90% of the way there, and I for one welcome
our new match-ing overlords.
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In this section, we shall take a very superficial view of what it can do. We shall come back
to it later, after Sec. 24.6,1¢5): “Packing and unpacking” and Sec. 27|153): “Object Oriented
Programming in Python”, and explore the power of structural pattern matching a bit more
in depth. That will be the object of Sec. 28/506): “Advanced structural pattern matching”.

23.6.1  Syntax overview
For now, the syntax:

match expr:
case patternl: <execute if expr matches patternl>
case pattern2: <execute if expr matches pattern2 but not 1>

case patternN: <execute if expr matches patternN but not 1..N-1>

Patterns are a new class of syntactic constructs, which can be thought of as a generalisation
of assignment targets. In the statement x = 2, x is the assignment target, and now x is bound
to the value 2.

More complex assignment targets can be found in Sec. 24.6(,165): “Packing and unpacking”:
forinstance [a,b] = [1,2] breaksdown [1,2], and binds ato 1 and b to 2. This is structural
pattern matching: finding, if possible, an assignment of the variables in the left-hand side
that matches the structure of the right-hand side. Patterns in the match statement generalise
that.

Intuitively, thematch statements attempts tomake patternl = exprhappen,thenpattern2 = expr
if the first didn’t work, and so on. If a pattern works, it bind variables (if the patterns
contains variables), and executes the code corresponding to the case.

Syntax note: Unlike all other keywords, such as def, if, etc, match and case keywords
are so-called soft keywords, which is to say you can still use them as variable or argument
names.

>>> def = 7

SyntaxError: invalid syntax
>> if = 7

SyntaxError: invalid syntax
>>> match = 1

>>> match

1

This does not prevent them from being recognised as keywords when they are used in the
right grammatical context, which is to say that of a statement, rather than an expression.

23.6.2  The different types of patterns, by example

Let us take an example that covers the different types of patterns, if only superficially. We
shall go through it pretty much line by line.
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match x:

case 0: return "Ze Zero or Neo"
case 1 | -1: return "Neo or Negative Neo"
case int(): return "integer != 0"
case "INSA": return "lotta homework"
case str() as s: return f"a string '{s}’"
case "a", 1, 3.0: return "a very specific sequence"
case [x, y, z]: return f"3 element sequence {x}-{y}-{z}"
case [1]2 as x, 3|4 as y] as 1: return f"or/as {x} {y} {1}"
case x, [*1], y, z: return f"4 elem seq, 2nd is seq {1}"
case x, *rest: return f"at least 1 element {x}:{rest}"
case {1:v, 2:V, 3:x} if x==v+V: return f"dict 123"
case {2:v, **r}: return f"dict 2 -> {v}; {r}"
case {3:8}: return "38"
case _: return "who knows?"
for x in [-1, O, 1, 2,
"INSA", "Meh",
(1,2,3), ["a", 1, 3.0], ("a", 1, 3.0), {"a", 1, 3.0},
(1, 31, [1, 471, [3, 11,
(1,>, [1,2]1, [1,2,3], [1,2,3,4], [1, 2, [3, 41, 51,
[y, r2, 31, 4, 51, 1, O, 4, 51,
{1, 2, 3}, {1:"a", 2:"b", 3:"c"},
{1:4, 2:3, 3:7}, {1:4, 2:3, 3:8%}, {1:4, 3:8},
1 g
print (f"{repr(x):>30} -> {match(x)}")
-1 -> Neo or Negative Neo
0 -> Ze Zero or Neo
1 -> Neo or Negative Neo
2 -> integer != 0
"INSA’ -> lotta homework
"Meh’ -> a string ’'Meh’
(1, 2, 3) -> 3 element sequence 1-2-3
[’a’, 1, 3.0] -> a very specific sequence
(’a’, 1, 3.0) -> a very specific sequence
{1, 3.0, ’a’} -> who knows?
[1, 3] -> or/as 1 3 [1, 3]
[1, 4] -> or/as 1 4 [1, 4]
[3, 1] -> at least 1 element 3:[1]
(1,) -> at least 1 element 1:[]
[1, 2] -> at least 1 element 1:[2]
[1, 2, 3] -> 3 element sequence 1-2-3
[1, 2, 3, 4] -> at least 1 element 1:[2, 3, 4]
[1, 2, [3, 4], 5] -> at least 1 element 1:[2, [3, 4], 5]
[1, [2, 3], 4, 5] -> 4 elem seq, 2nd is seq [2, 3]
[1, O, 4, 5] -> 4 elem seq, 2nd is seq []
{1, 2, 3} -> who knows?
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{1: ’a’, 2: 'b’, 3: ¢’} -> dict 2 -> b; {1: ’a’, 3: ’'c’}
{1: 4, 2: 3, 3: 7} -> dict 123
{1: 4, 2: 3, 3: 8} -> dict 2 -> 3; {1: 4, 3: 8}
{1: 4, 3: 8} -> 38

It should not be too surprising to see

0 -> Ze Zero or Neo

This is the standard behaviour of a switch/case statement, as seen in other languages: the
case is triggered if the expression is equal to the literal pattern 0.

Next, we see an OR pattern 1 | -1 matching either of two constants.

-1 -> Neo or Negative Neo
1 -> Neo or Negative Neo

More generally, you canusep | q to create a pattern that matches if either p or ¢ matches —
tested in order, which can matter if the patterns bind variables. Pretty straightforward so far.

2 -> integer != 0

Now, 2 is not covered by our previous patterns, and it somehow matches int (). Note that
replacing int () by int would fail with error message

case int: return "integer != 0"
AAA

SyntaxError: name capture ’'int’ makes remaining patterns unreachable
This is because int is an ordinary variable name, like x or y, that just happens to be bound
to the class for integers by default. As a pattern, a variable name simply matches everything,

and is bound to the matched object.

This is called a capture pattern. Writing case int: in our match x: would therefore be
tantamount to writing int = x, with the result of binding the variable int to the value of x.

The reason Python protests is that, since a capture pattern always matches, every case:
below that line becomes useless: they can never be tested. Recall from the syntax definition
that match executes the first case that matches, and only the first.

So, back to what is actually written, what does int() mean? This is a class pattern. It
matches if the expression is an instance of the class int, as tested with isinstance().

Note that this means that anything in a sub-class of int matches as well. Recall that bool is
a subclass of int; we have:

>>> isinstance(True, int)
True
>>> match True:
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case int(): print("yes")

yes

Class patterns go far beyond just testing the type, though; between the parentheses, one can
test the values of attributes as well. We shall come back to that in Sec. 28 p206): “Advanced
structural pattern matching”. Meanwhile, just remember that you need a () suffix to test a
type in a pattern, and leave it at that.

"INSA’ -> lotta homework
"Meh’ -> a string ’'Meh’

The first corresponds to a literal pattern again, and the second to a class pattern, with a twist:
str() as s. str() is obviously the class pattern, and as is a keyword that can be used
within a pattern to bind all or part of the matched expression to a variable name.

In that case, we match any string and bind it to s. This is not the most useful use of as,
though, as we could have reused x. In the case where the matched expression has no
convenient name already available, e.g. in amatch [1,2,3]: binding the matched value
that way can be quite useful.

We shall soon see cases where as binds only parts of the matched value, rather than all,
where the keyword is much more obviously useful.

The next cases are where things start getting a bit more complex. You might want to pause here
and come back after reading Sec. 241,130): “Container data types” if you're not entirely clear on what
lists, tuples, sets, and dictionaries are, and how they are written.

Let us focus on a subset of the rules:

case "a", 1, 3.0: return "a very specific sequence"
case [x, y, z]: return f"3 element sequence {x}-{y}-{z}"
case _: return "who knows?"
(1, 2, 3) -> 3 element sequence 1-2-3
[’a’, 1, 3.0] -> a very specific sequence
(’a’, 1, 3.0) -> a very specific sequence
{1, 3.0, 'a’} -> who knows?

a", 1, 3.0isasequence pattern, and one that happens to only contain constants. It is very
important to note that it could equally have been written ("a", 1, 3.0 or ["a", 1, 3.0],
with no difference in semantics whatsoever! That means there is no direct type distinction
between 1list and tuple in patterns. Any ordered sequential type will match.

This is a bit shocking, but not too much when you consider that this is coherent with how
unpacking works: (a,b) = [1,2] has the same effect as [a,b] = [1,2], for instance.

Also note that a set will not match, even with the right values. In fact, there is no pattern
support for sets at all:
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>>> match 1:
case {"a", 1, 3.0}: pass

SyntaxError: invalid syntax

case [x, y, z] also presents a sequence pattern, this time with variables. It works exactly
as expected from an unpacking, binding its variables to the components of any three-element
sequence. There again, it could have been written (x, y, z) or simply x, y, z withno
change in meaning.

Whatof {1, 3.0, ’a’}? Being a set, it does not match any of the two sequence patterns, but
it matches _, which is the wildcard, or catch-all pattern. As its name indicates, it matches
everything.

It does not bind, though, which is a bit of a subtlety, as _ is a valid variable name in
Python, and thus this could as well be a capture pattern, matching anything but also binding
to _. case _ will often be the last line of your match statement. If you need to bind,
case x: <do something with x> can serve equally well.

Let us now focus on this:

case [x, y, z]: return f"3 element sequence {x}-{y}-{z}"
case [1]2 as x, 3|4 as y] as 1: return f"or/as {x} {y} {1}"

case x, [*1l], y, z: return f"4 elem seq, 2nd is seq {1}"
case x, *rest: return f"at least 1 element {x}:{rest}"

[1, 3] -> or/as 1 3 [1, 3]

[1, 4] -> or/as 1 4 [1, 4]

[3, 1] -> at least 1 element 3:[1]

(1,) -> at least 1 element 1:[]
[1, 2] -> at least 1 element 1:[2]
[1, 2, 3] -> 3 element sequence 1-2-3
[1, 2, 3, 4] -> at least 1 element 1:[2, 3, 4]

[1, 2, [3, 4], 5] -> at least 1 element 1:[2, [3, 4], 5]
[1, [2, 3], 4, 5] -> 4 elem seq, 2nd is seq [2, 3]

Here we have sequence patterns, with a few twists. [1]2 as x, 3|4 as y] as 1 demon-
strates as-bindings of both parts of the matches value, in x and y, and the entire value itself,
in 1.

x, *restandx, [*1], y, zboth demonstrate the use of packing (Sec. 24.6(p168): “Packing
and unpacking”), and the latter shows deep exploration of the structure: the second element
must be a sequence type.

Sequence patterns are even more powerful than in unpacking contexts, though, because
each element can be any pattern, as already demonstrated by [1]2 , 3[4]. For instance,
[2,"a"] would not match the pattern [str(), _], because the first element is not of type
str.
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An important limitation of sequence patterns is that at most one starred name may appear
in them. Otherwise, the matching would be ambiguous. For instance, the pattern [*a, *b]

may match [1,2] as [], [1,2],or [1], [2],or [1,2], []. Likewise, [*a, "x", *b]is
ambiguous, as there may be several instance of "x" in the list. The “one starred name”
limitation avoids all such problems.

If you want to do that kind of stuff — for instance, splitting a list along certain keywords —
you should use manual programming with index searches, or regular expressions, or even a
full-fledged parser generator. That kind of tasks has a way of getting complex quite quickly,
and match/case is not meant to handle them on its own.

Finally, we deal with dictionaries, or, more generally, mappings:

case {1:v, 2:V, 3:x} if x==v+V: return f"dict 123"

case {2:v, **r}: return f"dict 2 -> {v}; {r}"
case {3:8}: return "38"
case _: return "who knows?"

{1, 2, 3} -> who knows?
{1: ’a’, 2: 'b’, 3: ¢’} -> dict 2 -> b; {1: ’a’, 3: ’'c’}
{1: 4, 2: 3, 3: 7} -> dict 123
{1: 4, 2: 3, 3: 8} -> dict 2 -> 3; {1: 4, 3: 8}
{1: 4, 3: 8} -> 38

The set {1, 2, 3} is not matched by anything — except the wildcard, of course — because
a set is not a mapping. {2:v, **r}is an interesting mapping pattern.

It matches any mapping (in particular, dict and its derivatives) that contain at least the key
2, whose corresponding value is bound to v. The remainder of the matched mapping. is
bound to r, following the ** syntax for dictionary unpacking. ** can only appear at the end
of a mapping pattern.

However, note that {2:v} alone would also match the same values! It just wouldn’t
bind the remainder of the dictionary. This is what happens with case {3:8}: it matches
{1: 4, 3: 8}.

I really do not like this syntax — or rather its semantics. It is misleading. It looks like
case {3:8} is a constant — not a literal, not an atomic value, but a constant nonetheless.
You would expect the pattern {3:8} to match the value {3:8}, and nothing else, but that’s
not how it works. Instead it matches any extension of the pattern.

At least it is not inconsistent with assignment semantics, because no unpacking exists for
dictionaries:

>>> {a:b} = {1:2}

SyntaxError: cannot assign to dict literal here. Maybe you meant ==’ instead of
’:!?
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Still, I would rather have seen case {3:8,...} or a mandatory case {3:8, **r} rather
than this. It is what it it; keep that in mind if you match dictionaries.

That said, you can do some pretty neat things in practice, so long as you are clearheaded
about what the syntax means: let us extract the name and first phone number of a student,
from a record containing other, irrelevant information, which we ignore:

>>> match {"name":"Toto", "phones":[123,911], "sex":"safe"}:
case {"name":n, "phones":[p,*r]}: print(n,p)

Toto 123

23.6.3 A simple application: handling a command line

Let us use match to handle a basic command line interface:

def cmdmatch(c):
ops = {"cp":"copy",
match c.split():
case ["cp"|"mv" as c, *options, source, target]:
for o in options:
match o:
case "-v": print("I’'m verbose")
case "-i": print("I’'m interactive")
case _ : raise ValueError (o)
print (£"I {ops[c]} {source} to {target}")
case ["cp"|"mv" as c, *r]:
raise TypeError(f"{ops[c]} needs at least 2 arguments")

mv'":"move"

>>> cmdmatch("cp -i -v toto tata")
I'm interactive

I'm verbose

I copy toto to tata

>>> cmdmatch("mv toto tata'")
I move toto to tata

>>> cmdmatch("mv -x toto tata")
ValueError: -x

>>> cmdmatch("mv toto")
TypeError: move needs at least 2 arguments

As you can see, match is a rather natural and straightforward tool for handling that type of
problem.

We shall see more advanced applications of structural pattern matching in Sec. 28,04
“Advanced structural pattern matching”.
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24  Container data types

So far, we have seen basic, atomic types — with the weird exception of the string type, which
is both atomic and a sequence, depending on length. Now we focus on composite data types,
which specifically serve as containers for groups of elements of (other?) types.

24.1  Tuples: class tuple

Tuples in Python work pretty much in the same way as they do in mathematics, and share
the same syntax:

>>> t = (1, "toto", 3.14) # note the heterogeneous types
>>> t

(1, ’toto’, 3.14)

>>> type(t)

<class ’tuple’>

In some contexts, the surrounding parentheses are optional:

>> t =1, "toto", 3.14
>>> t
(1, ’toto’, 3.14)

Elements are grouped in a specific, sequential order. Therefore they are indexable (subscript-
able) and slice-able, following the same syntax as seen for strings.

>>> t[1]

"toto’

>>> t[:2]

(1, "toto’)

>>> t[:-1]

(1, ’toto’)

>>> t[:0]

O # empty tuple

>>> t[:1]

(1,) # singleton tuple

Note the strange syntax for singleton tuples; this is necessary, because (1) is just the
expression 1 in parentheses, and should be equivalent to it — you should always be able to
put an expression in parentheses without changing its meaning. Having a weird syntax in
the specific case of singleton tuples is an acceptable compromise to avoid confusion between
tuple parentheses and expression parentheses.

Tuples can be nested:

>>> t = (1, (2,3) , 4)
>>> t[1]1[0]
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They can be concatenated and multiplied, like strings, again because those operations make
sense on any sequential container type:

>>> (1,2) + (3,4)

(1, 2, 3, 4

>>> (1,2) * 5

(1, 2, 1, 2, 1, 2, 1, 2, 1, 2)

Like strings, and unlike, say, lists, they are immutable:

>>> t[0]=8
TypeError: ’'tuple’ object does not support item assignment

If you want to modify a tuple, just construct a new tuple from the old one, following the
same recipe as seen previously for strings:

>>> (8,) + t[l:]
8, (2, 3, 4

There is a degree of pattern-matching in some contexts, which enables you to perform
assignments on nested structures: for instance

>>> (a, (b,c), d) = (1, (2, 3), 4)
>>> print (a, b, c, d)
1234

>>> (a, *m, b) = (1, 2, 3, 4)
>>> a, b, m
(1, 4, [2, 3D

See Sec. 24.6,165: “Packing and unpacking” for more details on the role of the * in the
(a, *m, b), and note that the result would be the same with [a, *m, b] ora, *m, bon
the left-hand side.

As mentioned for basic types, the name of a class acts as a constructor for it, and can therefore
be used for purposes of conversion from another to this one. For instance:

>>> tuple ("Python")
(’P!’ !y,’ ’t’, !h!’ 10’, !n!)

Of course, that only works if the conversion makes enough sense that somebody thought of
implementing it:

>>> tuple (1)
TypeError: '’

int’ object is not iterable

131



We shall see what “iterable” means in more detail soon, but intuitively it means being a
container whose elements can be enumerated in some arbitrary order, one after the other, to
build a tuple. An object that cannot do that cannot be converted into a tuple.

Tuples themselves are iterables, of course, and so they support for each loops:

for x in (1,2,3):
print (x,end="")

Like pretty much all containers, they support the in and not in operators to test whether
an element is contained within them. Or rather, whether they contain an element of equal
value (as opposed to equal memory location).

>>> 2 in (1,3,4)
False
>>> 3 in (1,3,4)
True

Of course, they have a length:

>>> len( (1,2,3) )

3

>>> len(1,2,3) # don’t forget the parentheses!
TypeError: len() takes exactly one argument (3 given)

Tuples can be compared of course, with the semantics that two tuples are equal if and only if
they are of equal length and elements of equal index are equal. More clearly:

(a1y...,an) = (b1,...,bn) <= n=m A a=DbVk

The same applies to all sequential containers.

>>> t = (1,2,3)

>>> t == (1,2,3)

True

>>> (1, 2, 3) == (2, 1, 3)
False

>>> (1,2) == (1,2,3)

False

Again, be careful with parentheses:

>>> 1,2 == 1,2,3
(1, False, 2, 3)

Note that two tuples of equal values do not necessarily occupy the same memory space,
even when written as literal values:
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>>> (1,2,3) is (1,2,3)
False

Contrast to integers and string literals

>>> 3 is 3

True

>>> "abc" is "abc"
True

An optimised execution might detect that and optimise memory. As of version 3.6.3, even
python3 -0 does not do so. Since tuples are immutable, I cannot imagine any point in ever
using is for them anyway.

What about inequalities? As seen with strings, and as applicable to any sequential, indexable
(subscriptable) type, the total order on elements is lifted into the lexicographical order on
containers. Let u,v € £* be words representing the containers @, then

u=xay
u<v <= uisprefixofv v Ix,y,z€L*, a,beL:{v=xbz
a<b.

>>> (1,2) < (1,2,3)
True
>>> (2,2) < (1,2,3)
False

Note that you should only attempt to compare homogeneous tuples, as comparison is
undefined between different types. In the following example, at some point, Python
attempts to compute 2 < "a str", and it does not go well:

>>> (2,3) < ("a str",1,2,3)
TypeError: ’'<’ not supported between instances of

’ ’

int’ and ’str
As always with a dynamic language, such errors may not appear immediately, as the type is
only checked at runtime: no error is raised in the following code

>>> (2,3) < (1,2,3,"a str'")

False

because, since 2 > 1, the comparison is stopped immediately, and 2 < "a str" is never
actually run.

(@Here I am using notations that we shall see this semester in formal languages theory. It should still be
pretty intuitive: X is the set of characters, and Z* the set of strings. xay means the concatenation of x, a, and y.
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24.2  Lists: class 1ist

Lists function almost exactly the same as tuples, with a bracket-based syntax:

>> 1 = [1, "toto", 3.14]
>>> type(l)
<class ’list’>

The only meaningful difference is that lists are mutable, whereas tuples are not. That is to
say, they can be modified in-place:

>>> 1[1] = True
>>> 1
[1, True, 3.14]

The del keyword can be used to remove elements from lists, in indexed notation:

>> 1 = [0, 1, 2, 3, 4]
>>> del 1[2]

>>> 1

[6, 1, 3, 4]

Be careful when deleting several elements in succession, as indexes change after the first
deletion:

>> 1 = [0, 1, 2, 3, 4]
>>> del 1[1], 1[3]

>>> 1

[0, 2, 3]

We can also assign to entire slices, replacing the entire sublist:

>> 1 = [1, 2, 3]

>>> 1[1:] = list("abc") # or simply 1[1:] = "abc", any iterable will do
>>> 1

[1, ’a’, ’b’, ’c’]

Note that the right-hand-side of the assignment need not be a list, specifically; any iterable
type will do:

>>> 1[1:3] = (1,2)
>>> 1

[1, 1, 2, ’c’]

>>> 1[1:3] = range(5)
>>> 1

[1! 0’ 11 21 3! 4’ ’C’]
>>> 1[1:3] = 5
TypeError: can only assign an iterable

134



Note that in the edge cases where the slice is of length one or zero, the behaviour remains
that of subsequence replacement:

>>> 1 = list(range(5))

>>> 1

[0, 1, 2, 3, 4]

>>> 1[1:1] = list("abc")

>>> 1

(6, ’a’, ’b’, ’c’, 1, 2, 3, 4]

>>> 1[1:2] = list("xyz")

>>> 1

e, 'x’, ’y’, ’z’, ’b’, ’c’, 1, 2, 3, 4]

Compare the last line to

>>> 1[1] = list("xyz")
>>> 1
[®! [’X’l ’y’! ’Z’]l ’y’! ’Z” ’b’! ’C” 11 2! 31 4]

Replacing an element by a list nests the list, modifying the outer list in-place. Replacing a
slice of length one by a list concatenates the list before the element to the replacing list, and
that to the list after the element. Replacing a length of length 0 inserts the new list in place.

24.2.1  Lists versus tuples

I have read in several sources that tuples are best used for small heterogeneous data structures
or records like

>>> student = ("Julius", "Caesar", 55)

Components are accessed through indexing:

>>> student[2]
55

Lists, on the other hand, should be used for homogeneous collections of unbounded length:
lists of int, or lists of strings, etc.

I never found any concrete justification for that received wisdom, and, as I can figure out, is
(almost) completely baseless, and hold the real question to be that of mutability.

Obviously any structure of unbounded length should preferably be homogeneous — otherwise
iterating on them requires type dispatch. That is true of tuples as well as of lists. Of course,
if it is of unbounded length, you are probably in a context where you want to add elements,
which implies mutability, which implies using lists.

I find it a dangerous idea, under most circumstances, to use indexing to access elements of
a record — unless it is of very small size, follows a very obvious order, and will never need
extension.
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Indeed, if you ever want to add data to your records, or reorder the fields? A lot of code will
need refactoring. You are much better off using a dictionary (class dict, see the relevant
section), a singleton (a class, singleton or not, see the section on objects), or a named tuple .
Thus, generally, neither lists not tuples should be used for that purpose. Exception include
packing and unpacking (see relevant section) function arguments and multiple return values;
in that case tuples should be preferred.

Immutability being the only concrete difference between the two types, the real criterion
when deciding what type you should use for your “lists” is: “do you need mutability?” —
i.e. do you need to add or modify elements. If not, go with tuples, as they are a bit more
efficient, can be used in sets and dictionaries, as we shall see shortly, and by using them you
know that your code does not contain hard-to-debug side effects.

If you do need mutability for something specific, by all means go with lists. Usually, you
don’t. If you think you don’t, and it turns out there is a case where you end up needing it,
convert your tuple into a list, and you are set; since lists support all operations tuples do, the
part of your code that uses tuples should not see the difference.

To expend on the question of efficiency, tuples are generally more memory-efficient and
faster than lists in almost all respects — so long as you don’t need to modify or append to
them, of course.

What Python calls lists are actually dynamic arrays of pointers (even when the elements are
of basic types): they overallocate memory exponentially to allow for fast appending, and
are reallocated in a larger memory space when that excess capacity becomes insufficient. A
tuple is allocated once, with exactly the right amount of memory:.

>>> from sys import getsizeof
>>> help(getsizeof)

getsizeof(...)
getsizeof(object, default) -> int
Return the size of object in bytes.

>>> t = tuple(range(10))
>>> 1 = list(range(10))
>>> getsizeof(t)

128

>>> getsizeof(l)

200

As a parenthesis, “list” is really a misnomer for Python 1ists. In programming, “list” usually
(systematically in functional languages) refers to linked lists: cells containing a pointer to the
next cell, which have very different algorithmic properties from dynamic arrays. There are
also structures explicitly called arrays in Python, which are mainly useful for interfacing
with C code, and for intensive numerical computations (e.g. in NumPy).

(”https://docs.python.org/3/library/collections.html#collections.namedtuple
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24.2.2  Pointers and memory

To be clear, in Python, every variable is a pointer, except for basic types: int, float, str,
bool. They are implicitly dereferenced when used.

Note about terminology: In the Python community, people often use the word reference
instead of pointer.

24.2.2.1  The danger of multiple pointers

When you write t = (1,2,3), you create a variable t, which points to a location in memory
containing the structure. In the case of tuples, since the memory is never modified, there is
hardly any reason to give it much thought. When it comes to lists, this becomes crucial.

Consider the following code:

>>> 1 = list(range(5))
>>> 1

[®! 11 2’ 3! 4]

>>> m = 1

>>> m

[6, 1, 2, 3, 4]

>>> m[1] = "Hello"

>>> m

[0, '"Hello’, 2, 3, 4]
>>> 1

[0, ’Hello’, 2, 3, 4]

>>> m is 1 # test whether they point to the same memory address
True

The list 1 was modified, though no line of code explicitly did so. But since m and 1 are
pointers, m = 1 just means “copy the pointer 1 into a new pointer m”. This does not create
a deep copy of the target list; you just end up with two different pointers, pointing to the
same memory location. They become two names for the same list.

24.2.2.2  Case study: nested lists/ matrices

Occurrences of shared pointers can become harder to see in nested lists:

>>> 1 = list(range(5))

>>> 11 = [1,1]

>>> 11

[re, 1, 2, 3, 431, [0, 1, 2, 3, 4]]
>>> 11[0][2] = "X"
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>>> 11
[[0! l! ,X', 3! 4]’ [®, ]'! ’X,’ 3, 4]]

This is a source of danger in many common situations. Say that you want to initialise a
n x n matrix with 0: there is a seemingly very elegant way to do so: [0] * nyields a list
with n zeros; thus repeating [ [0] * n ] n times yields the desired matrix

n=>5

>> M = [ [0] * n ] * n

>>> mprint(M) # a matrix printing function I defined.
[6, 0, 0, O, O]

[6, 0, 0, O, O]
[6, 0, O, 0, 0]
[6, 0, O, O, 0]
[6, 0, O, 0, 0]

So far so good. However, when you actually alter the matrix, it does not behave in the
desired way:

>>> M[2][1] =1
>>> mprint (M)
[®1 11 ®’ ®! ®]

[6, 1, 0, O, O]
[6, 1, O, 0, 0]
[6, 1, 0, 0, 0]
[6, 1, 0, 0, 0]

Thinking in terms of pointers, what happens is not surprising: [0] * nis evaluated, and is
handled as a pointer; let us denote it by 1. The list [ [8] * n ] is therefore equivalent to
[1],and Mis [1,1,1,1,1].

In order to properly initialise a matrix, you need to evaluate the expression “[0]*n” n times,
to create n different lists in memory. This can be done in a loop — or most elegantly using
list comprehensions, which we shall see in more detail in Sec. 24.5;57): “Comprehension
expressions”.

>>> M = [ [0] * n for _ in range(n) ]
>>> M[2][1] =1
>>> mprint (M)

[6, 0, 0, 0, 0]
[6, 0, O, O, 0]
[6, 1, O, 0, 0]
[6, 0, O, 0, 0]
[6, 0, 0, 0, O]

Additional problems of a similar nature appear when trying to copy matrices: we discuss
this in Sec. 24.2.3149): “Shallow copies and deep copies”.
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24.2.2.3  In-place assignment on mutable structures

Another thing that should be noted is the behaviour of +=:

>> 1 = [1,2] ; m = ["a’, 'b’] ; oldl =1
>>> 1 4= m
>>> 1

2

[1!
>>> oldl
[1, 2, ’a’, ’b’]

As you can see, 1 is appended to in-place. Thus 1 += m is not actually equivalent to
1=1+m

1 =1T01,2] ; m=1["a’, ’b’] ; oldl =1

>> 1 =1 +m
>>> 1

[1! 2’ ’a’1 ’b’]
>>> oldl

[1, 2]

Indeed,1 = 1 + mfirst evaluates 1 + m, which creates a new list in memory - let us call its
pointer p — then performs 1 = p, redefining 1 to point to the new memory location, while
the original is untouched.

24.2.2.4  Infinitely deep lists

Finally, note that it is possible to create infinite looping structures:

>>> il=[1]
>>> il.append(il)

>>> il

(1, [...11

>>> len(il)

The list i1 is infinite in the sense that, though it only has two elements, its second element is
always equal to itself, which makes it infinitely deep.

If you tried to write the entire list, you would write, endlessly, something along the lines of:
tt, 1, 1, 1, .... 1... 111
The only reason Python does not choke when trying to display it in the interactive mode

—i.e. trying to get a repr(..) — is because it is careful to memorise which pointers it has
already encountered, and thus detects such loops, printing an ellipsis . . . instead.
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Any recursive function that does not perform similar bookkeeping will loop on such lists.
Here is a naive list printer:

def recf(l):
print(end="1[")
for e in 1:
if type(e) is list:
recf(e)
else:
print(e,end="; ’)
print(end="1 ’)
>>> recf([1,2,3])
[1; 25 35 1

>>> recf([1,1list(’abc’),3])
[1; [a; b; ¢; 1 35 1

>>> recf(il)
[(1; [1; [1; [15; [1; [1; [1; [1; [1;
KeyboardInterrupt # I interrupted the program.

Needless to say, although it is important to know that this is possible, it is not recommended
to define infinite lists unless you have a very, very good reason for it.

24.2.3  Shallow copies and deep copies

What if you want to copy a list, so as to alter two versions of it independently? The simplest
way to proceed is to use the type constructor 1ist(..). There is also a . copy () method.

Recall that the 1ist(..) constructor takes any iterable, including other lists, and creates a
list containing the same elements, in the order of iteration. Thus we have:

>>> 1 = list(range(5))

>>> 11 = list(l)

>>> 1 is 11 # they are indeed different objects in memory
False

>>> 1[2] = X’

>>> 1,11

cre, 1, ’x’, 3, 41, [0, 1, 2, 3, 41)

Now let us do the same thing with matrices:

>>> n 5

>> M = [ [0] * n for _ in range(n) ]
>>> MM = list (M)

>>> M is MM

False

>>> M[2][1] =1

>>> mprint (M)
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[6, 0, O, 0, 0]
[6, 0, O, O, 0]
[6, 1, O, O, O]
[6, 0, 0, 0, 0]
[6, 0, O, 0, 0]

>>> mprint (MM)
[0, O, O, 0, 0]

[6, 0, 0, 0, 0]
[0, 1, O, O, O] # what?
[6, 0, O, 0, 0]
[6, 0, 0, 0, 0]

Despite M and MM being different objects in memory, we still, somehow, managed to alter one
through the other. What'’s going on here?

The reality of it is. .. we did not actually modify one through the other. Strictly speaking, we
actually modified neither M nor MM, as objects.

Recall that a list is actually a list of pointers to the objects it contains. A pointer is basically
an integer. When M was copied, a new list containing the same values, the same integers, the
same pointers, was created. Let us visualise this by using a command revealing the memory
locations of each object:

>>> help (id)

idCobj, /)
Return the identity of an object.

This is guaranteed to be unique among simultaneously existing objects.
(CPython uses the object‘s memory address.)

>>> [ id(e) for e in M ] # list comprehension

[140180209944968, 140180127633608, 140180210018824,
140180210019208, 140180209944520]

>>> [ id(e) for e in MM ]

[140180209944968, 140180127633608, 140180210018824,
140180210019208, 140180209944520]

As expected, M and MM contain the same pointers. We represent this graphically using
PythonTutor in Figure 2(,14). Thus, M[2] and MM[2] are actually the same list.

What we did is called a shallow copy: we copied the list of pointers, but we did not bother to
dereference the pointers to copy the objects we point to. A copying operation that recursively
copies contained objects is called a deep copy. This operation is provided by the small, aptly
names copy module:

>> M = [ [0] * n for _ in range(n) ]

>>> from copy import deepcopy
>>> MM = deepcopy (M)
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Figure 2: In-memory representation of shallow matrix copy, using PythonTutor.

>>> M[2][1] =1
>>> mprint (M)

[0, 0, 0, O, O]
[0, 0, 0, O, 0]
[6, 1, O, 0, 0]
[6, 0, 0, 0, 0]
[0, 0, 0, 0, O]

>>> mprint (MM)

[6, 0, O, O, 0]
[6, 0, O, 0, 0]
[0, 0, 0, 0, O]
[6, 0, 0, 0, O]
[6, 0, 0, 0, O]

>>> [ id (e) for e in M ]

[140180233630728, 140180127751240, 140180127750856,
140180127750664, 140180127751368]

>>> [ id (e) for e in MM ]

[140180127749320, 140180165209800, 140180127751560,
140180127751752, 140180127751944]

As the ids show, this time every single sublist has been fully duplicated in memory. At last
our matrix copy behaves as expected.

24.2.4 How not to iterate on lists

Let me I share with you some terrible code I have seen in the 2018-2019 resit exam, in answer
to exercise 51 p25). (I have adapted the exercise and the code somewhat). It illustrates a very
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common mistake with in-place modification of iterable structures, whether in Python or in

C.

The aim of the exercise is to write a function remove_bad (1, bad) returning a new list identical
to 1 except in that elements equal to bad have been removed from it.

Here is (an adaptation of) the code the student produced:

1 =1_1,2,3,2,2,1]

def remove_bad(l,bad):
for i in range(len(l)):
print(i,l) # for debugging purposes
if 1[i] == bad:
l.remove(l[i]) # removes the first occurrence, in-place

print (remove_bad(1l,2))

o [1, 2, 3, 2, 2, 1]
1 [1, 2, 3, 2, 2, 1]
2 [1, 3, 2, 2, 1] # we have successfully removed the first 2
3 [1, 3, 2, 1] # and another
4 [1, 3, 2, 1]
IndexError: list index out of range
in remove_bad, if 1[i] == bad:

There is a grave problem here — leaving aside that removing elements of 1 in-place does not
answer the question, which demands a new list.

The algorithmic problem is that the length of 1 is computed once, at the beginning of the loop.
When removing elements from the list in-place, its length diminishes with each element that
is removed. At the end of the loop, if any element was removed, i takes index values that
no longer exist.

The only case where this algorithm behaves correctly — again leaving aside that it does not
answer the question — is when the list does not contain any element that should be removed.

The moral of the story is: be extremely careful about in-place alteration, especially in the
presence of iteration.

24.2.5 Sorting

The sorted function takes any iterable (tuples, lists, sets, ... ), and returns a fresh sorted list
of their elements:

>> 1 = [2, 7, 4, 0, -6]
>>> sorted(1l)

[-6, 0, 2, 4, 7]

>>> 1
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This is not to be confused with the sort method, which is a procedure, that sorts in place:

>>> print(l.sort())
None

>>> 1

[-6, 0, 2, 4, 7]

The order can be reversed through use of the optional, keyword argument reverse:

>> 1 = [2, 7, 4, 0, -6]

>>> sorted(l,reverse=True)
[7, 4, 2, 0, -6]

>>> l.sort(reverse=True)
>>> 1
[7! 47 21 ®! _6]

If there is a need to order a sequence according to a non-standard ordering, the optional
keyword argument key can be provided. key is a function converting the elements of the
sequence to be sorted to keys. It is according to their keys, then, that the elements are
ordered. For instance, if we wish to order strings according to their length instead of the
usual Unicode-based lexicographical ordering, we can do:

>>> 1 = [’School’, ’Platypus’, ’Sleep’]

>>> sorted(l) # the usual order
[’Platypus’, ’School’, ’Sleep’]

>>> sorted(l,key=1en)
[’Sleep’, ’'School’, ’Platypus’]

>>> sorted(l,key=1lambda s:s[2])
[’Platypus’, ’'Sleep’, ’'School’]

Here len is the usual function returning the length of a string, and lambda s:s[2] is merely
an anonymous function associating to each string its third character.

Both sort and sorted implement stable sorting algorithms, which means that values that
compare equal are kept in their previous order. This is extremely useful when sorting in
multiple passes. Imagine having a list of students sorted in the usual alphabetical order.
Then sort it by project group; an unstable sort could shuffle the students’ names in each

group.
The sorting algorithm used by Python is actually Timsort, a sophisticated blend of merge
sort and insertion sort. It is very efficient.
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24.3  Sets: class set

Sets in Python play the same role as sets in mathematics: they are unordered but iterable
collections, without duplicates.

They support the standard set operators:

Mathematics Python

== set equality: A CBand BC A

# =
- <= inclusion: x € A = x € B
2 >=
C <
D >
N &
U |
\ or — - set difference: {x ¢ B| x € A}
S) A symmetric difference: AUB\ ANB

>>> s = set(range(5)) ; ss = set(range(3,8))
>>> s, SS
({0! 17 2! 3! 4}7 {3! 4! 51 6’ 7})

>> 1 in s , 7 in s
(True, False)

>>> s & ss # intersection

{3, 4}

>>> s | ss # union

{0, 1, 2, 3, 4, 5, 6, 7}

>>> s - SS # difference

{0, 1, 2}

>>> s A ss # symmetric difference

{0, 1, 2, 5, 6, 7}

>>> {} # you can’t define an empty set that way

{3}

>>> type ({})

<class ’dict’> # it’s actually the empty dictionary
>>> set() # this is how you make an empty set
set()

>>> § <= SS , S >= SS

(False, False) # inclusion is of course a *partial* order
>>> set() <= s # empty set is smaller than everybody

True
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They are not a sequential type, which means that there is no indexed access to elements, nor
slices.

>>> s[2]
TypeError: ’set’ object does not support indexing
When iterated upon, each element is visited once, but the order of iteration is not guaranteed:

>>> for e in s:
print(e,end=’")

01234 # iteration follows the same order as display

>>> { ’'Python’, ’abba’, 'ABBA’, ’'A’,’a’}

{’a’, ’ABBA’, ’A’, ’Python’, ’abba’}

>>> { ’Python’, ’abba’, ’ABBA’, A’}

{’A’, ’ABBA’, ’'Python’, ’'abba’} # order has changed

>>> { 10010, 1, 86}
{1, 10010, 86} # order does not correspond to order on elements

For all intents and purposes, the order in which the elements of a set are displayed or iterated
on should be considered random — or, more judiciously, undefined. It is not really random,
but entirely dependent upon the internal implementation.

Duplicates are meant with respect to value, not memory location.

>>> t = (1,2)
>>> tt = (1,2)
>>> t is tt
False

>> { t, tt }
{1, 2>}

Beware: since Booleans are actually a subclass of integers, that actually have the same values
as 0 and 1 —not merely as an implicit conversion to Boolean, unlike other numbers — and
thus they will be confused in a set:

>>> { 0, False, True, 1 }

{0, True}

0 is added first, then False, but since it has the same value as 0, is is treated as a duplicate,
despite being of a different (sub)type. Then True is added, and 1 is detected as a duplicate
of it, which explains the result.

Sets are mutable, but can only contain immutable objects, as they are implemented using
hash tables. In particular, that excludes sets of sets.
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>> {1, 2, {4, 5%}, 31}
TypeError: unhashable type:

set’

In the next section, we shall explore what hashable means.

Even if you are working exclusively with lists, a quick jaunt through sets can be extremely
useful to efficiently remove duplicates from a collection:

>>1=1[2,1, 2, 1, 1, 1, 3, 3, 2, 2]

>>> list(set(1l))
[1, 2, 3]

This elegant solution, as anything involving sets, requires the elements to be hashable. A
method working on anything would be of quadratic complexity —here using a comprehension
expression, cf. Section 24.5,157:

>>> 1 = [[1], [2], (2], (1], (11, [1]1, (31, (11, [2], [1]]

>>> list(set(1l))
TypeError: unhashable type: ’list’

>>> [ e for k,e in enumerate(l) if e not in 1[:k] ]

[r11, [21, [31]

24.3.1  Frozen sets: class frozenset
But what if you want sets of sets?
Let us first understand what that ‘unhashable’ error means.

The idea of hash tables, which Python sets use internally, rests on the computation of a
“summary” (called hash) of the value of an object, which is then used to determine the address
in memory where they are stored.

The hash is a deterministic function — although highly chaotic — so equal values imply equal
hashes. The converse is not always true because some information is lost, as the hash is
short. In a hash table, the hash of the value of an object determines the memory location
where the object is stored.

When checking whether an object is already in the table, you just hash it, and use direct
memory access to see if it is there, as opposed to, say, iterating over the container and testing
equality against each value, as you would in a list. Membership testing (€, in) is therefore
very efficient for large collections, as it is amortised to O(1) — constant time — with some
trickery.

All of this rests on the assumption that the value of an object is constant. If your object
is mutable, its value may change over time (that’s what being mutable is all about), and
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thus its hash may change as well. But any set that would contain that object has no way of
knowing whether or when a change takes place. Its hashes will not be recomputed. Thus
the set ends up being inconsistent. This is why such structures are restricted to hashable
(that is to say, generally, immutable) elements.

frozenset is an immutable alternative to set, though otherwise compatible with it — for
instance, comparison operators ignore whether a set is frozen or not.

>>> S = frozenset(s) ; SS = frozenset(ss)

>>> S, SS
(frozenset ({0, 1, 2, 3, 4}), frozenset({3, 4, 5, 6, 7}))
>>> s == §, ss == SS§

(True, True)

You can now create a set of frozen sets:

>> { S, SS }
{frozenset ({0, 1, 2, 3, 4}), frozenset({3, 4, 5, 6, 7})}

244  Dictionaries: class dict

Dictionaries are a “key”/“value” structure, encountered in various languages under diverse
names, such as associative arrays, associative memory, mappings, etc.

A dictionary should be regarded as a set of keys, which can take any (immutable) value, to
each of which another (unique) value is associated. There is no restriction upon the mutability
of associated values, only of keys, and this for reasons identical to the restriction on sets,
for they share the same type of hashtable-based implementation — with a few specialised
optimisations to accounts their different roles.®

Like sets, dictionaries are fundamentally unordered, though from Python 3.7 onwards their
implementation is guaranteed to preserve the order in which elements are inserted ®. Like
all other collections we have see so far, they can contain elements of heterogeneous types —
though this should be used parsimoniously.

Recall that, counter-intuitively, we could not use {} to define empty sets: this is because {}
stands for the empty dictionary:

>>> {}

{1}

>>> type({})
<class ’dict’>
>>> dict() == {}

)The most frequent operation on a set is to test whether a given element belongs to it; sets are optimised for
that. In the case of dictionaries, it is expected that you you are most often looking for values associated to a
valid key, so they are slightly less efficient in the case where the key you are looking for is not there.

®This was already an “accidental” property of the implementation of CPython 3.6. You need to use an
OrderedDict if you want another order or compatibility across all versions.
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Dictionaries can be initialised in extenso — or in display form — in the same way as sets et
cetera, by listing their entries, separated by commas. Each entry, however, has a special,
colon-separated <key> : <value> syntax:

>>> age = {’Toto’:15, ’Tata’:27, ’Mamie’:97 }

>>> age
{’Toto’: 15, ’'Tata’: 27, ’Mamie’: 97}

Alternatively, they can be defined using the type constructor dict (), and a tuple of couples,
or any other suitable sequence types:

>>> dict( [ ('Toto’, 15), (’Tata’, 27), (’Mamie’, 97 ) ] )
{’Toto’: 15, ’'Tata’: 27, ’Mamie’: 97}

Note that only one value, at most, can be associated to any given key. If several associations
are given, only the last one counts:

>>> {’Toto’: 15, ’Tata’: 27, ’Mamie’: 97, ’'Toto’:99}
{’Toto’: 99, ’'Tata’: 27, ’'Mamie’: 97}

The key values are treated, syntactically, as indexes:

>>> age[’Tata’]

27

This makes dictionaries an indexable type, stricto sensu, as it implements the __getitem__
method that underlies the object[index] syntax. However, they remain fundamentally
unordered, like sets. You can choose keys in an ordered way if you like — though if your
keys are 0..n, you are better off using a list or a tuple. At any rate, do not attempt to use slice
notations on dictionaries.

>>> age[1:3]

TypeError: unhashable type: ’slice’

See Sec. 22.4.6ps3): “Slicing and dicing, concatenation, repetition” on slices to understand
why that message is what it is. Regardless, no slices on dictionaries.

In standard dictionaries, trying to access undefined keys results in an error.

>>> age[’IDONTEXIST!’]

KeyError: ’'IDONTEXIST!’

There are, however, various ways to handle notions of “default values”, as we shall see later.

Dictionaries are a mutable structure, like sets and lists. Entries can be added, altered, or
removed outright, all using the index-like notation:
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>>> age[’IDONTEXIST!’] = "Well, *now*, I do!"
>>> age
{’Toto’: 15, ’'Tata’: 27, ’Mamie’: 97, ’IDONTEXIST!’: ’Well, *now*, I do!’}

>>> age[’IDONTEXIST!’]
"Well, *now®*, I do!’

>>> del age[’ IDONTEXIST!’]
>>> age
{’Toto’: 15, ’'Tata’: 27, ’'Mamie’: 97}

>>> age[’IDONTEXIST!’]
KeyError: ’IDONTEXIST!’

>>> del age[’IDONTEXIST!’]
KeyError: ’IDONTEXIST!’

Note that, in particular, dictionaries cannot appear as keys to other dictionaries. They can
appear as associated values, though:

>>> { age : 21 }

TypeError: unhashable type: ’dict’

>>> { 21 : age }

{21: {’Toto’: 15, ’Tata’: 27, ’'Mamie’: 97}}

Like sets, dictionaries are iterable. For all iteration-related intents and purposes, they are
treated as the set of their keys:

>>> for k in age:
print (k,age[k])

Toto 15
Tata 27
Mamie 97

Consistently with this view of dictionaries as sets of keys, their length is defined as their
number of defined keys, or, equivalently, or stored key/value associations:

>>> len(age)
3
Likewise, you can easily tests the presence of a key with in:

>>> ’'Toto’ in age
True
>>> ’toto’ in age
False

150



If you want to iterate on key/value pairs directly, you can use the items method to get a
“view” object — not an object any of the usual types — containing those pairs:

>>> age.items ()
dict_items([(’Toto’, 15), (’Tata’, 27), (’Mamie’, 97)1)

>>> for k,v in age.items():
print (k,v)

Toto 15
Tata 27
Mamie 97

Likewise, if you want to iterate on the values only, there is a method for that:

>>> age.values()
dict_values([15, 27, 971)

In Python 3.9+, you can merge two dictionaries using the union (|) operator, as for sets.
However, this operation is not commutative: if the two dictionaries define different values
for the same key, only the last value is taken into account:

>>> {’Toto’: 15, ’Tata’: 99} | {’Tata’: 27, ’Mamie’: 97}
{’Toto’: 15, ’'Tata’: 27, ’'Mamie’: 97}

There is also an | = operator, which updates a dictionary in place; the dictionary operators
| and |= therefore play the same role for dictionaries as + and += do for lists. |=1is a nicer
syntax for the dict.update method, just as += is syntactic sugar for list.extend.

>> d = {’Toto’: 15}
>> d |= { ’Tata’: 27 }

>>> d

{’Toto’: 15, ’'Tata’: 27}
>>> d |= [ ("Mamie", 97) 1]
>>> d

{’Toto’: 15, ’'Tata’: 27, ’Mamie’: 97}

The last line shows that update accepts in the right-hand side any iterable convertible to a
dictionary, whereas the union expect two dictionaries:

>>> {’Toto’: 15, ’Tata’: 27} | [ ("Mamie", 97) ]

TypeError: unsupported operand type(s) for |: ’'dict’ and ’'list’

Prior to Python 3.9+, creating a fresh, merged dictionary required the use of dictionary
unpacking, as discussed in section Sec. 24.6.2.1,173: “Merging two dictionaries”.

Leaving aside dictionary merging, let us move on to the set of keys (ignoring associated
values). There is a method to get a set-like objects representing the set of keys, which enables
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you to use set operators, which are not usable directly on dictionaries (with the exception of
| in Python 3.9+):

>>> age.keys()
dict_keys([’Toto’, ’Tata’, ’Mamie’])

>>> age & {’Toto’, ’xx’}
TypeError: unsupported operand type(s) for &: ’'dict’ and ’'set’

>>> age.keys() & {’Toto’, ’xx’}
{’Toto’}

In the case where associated values are hashable, the dict_items object returned by the

items method is also set-like:

>>> {’Toto’: [] }.items() & age.items()
TypeError: unhashable type: ’list’

>>> {’Toto’: 15 }.items() & age.items()
{(’Toto’, 15)}

Those three view objects, keys, items, values, are dynamic, in the sense that they are always
updated along with the underlying dictionary:

>>> K = age.keys()

>>> age[’Banana’] = 10
>>> K
dict_keys([’Toto’, ’Tata’, ’'Mamie’, ’Banana’])

>>> del age[’Banana’]
>>> K
dict_keys([’Toto’, ’Tata’, ’Mamie’])

However, they cannot be used to modify the underlying dictionary indirectly.

Two dictionaries are considered equal for the purpose of == if they contain identical pairs
key/value. Other comparison operators are not supported:

>>> {’Toto’: 15 } <= age
TypeError: ’ not supported between instances of ’dict’ and ’dict’

<=

If you want to reason about the “inclusion” of a dictionary into another, you can use its
items view:

>>> {’Toto’: 15 }.items() <= age.items()
True
>>> {’Toto’: [] }.items() <= age.items()

False # this works, despite [] not being hashable
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Since there are a few subtleties with those view objects, for instance values being unsuitable
for any comparison,

>>> age.values() == age.values()
False # == always returns False on that view

I would advise, for purposes of comparison, to explicitly and systematically convert views —
especially values and, to a lesser extent, items — to sets or whatever you need; that may be
suboptimal in terms of execution time, but at least the semantics of the comparisons become
entirely clear:

>>> set(age)

{’Toto’, ’Mamie’, ’Tata’}

>>> set(age.items())

{(’Tata’, 27), (’Mamie’, 97), ('Toto’, 15)}

>>> set(age.values())

{97, 27, 15}

>>> set({’Tata’: 27 }.items()) <= set(age.items())
True

24.4.1 Handling default values
24.4.1.1 The get(key, default) method

Suppose that we want to count the number of appearances of each letter in a string. From

s = "AABaaBAAA"

we expect to obtain

{’A’: 5, 'B’: 2, ’a’: 2}

With what we have seen so far, we cannot write

def count(s):
d = {}
for c in s:
d[c] += 1
return d

Traceback in d[c] += 1
KeyError: ’'A’

because the first time a letter is encountered, it has no corresponding associated value; we
cannot increment something that is yet undefined. We have to test whether the key has been
encountered previously, and initialise the field if not:

def count(s):
d = {}
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for c in s:
if ¢ in d:
dic] += 1
else:
d[lc] =1
return d

Would it not be better if we could say that, by default, we have encountered a key zero
times? As it happens, we can, using the get method:

>>> age.get(’Toto’) # this item exists
15
>>> age.get(’XXX’) # this one does not
None # here I wrote it explicitly;
# the interactive mode won’t print it unless requested
>>> age[’ XXX'’]
KeyError: ’XXX’

get is thus a more forgiving version of indexed access, returning None — by default — when the
key is unknown. The default returned value can be changed through an optional argument:

>>> age.get(’Toto’,"I’m not here!")
15

>>> age.get(’'XXX’,"I’m not here!")
"I'm not here!"

Thus our count function becomes:

def count(s):
d = {1}
for c in s:
d[c] = d.get(c,0) + 1
return d

There is also the setdefault method, occasionally useful, which behaves in all ways like
get, except that it not only returns the default value, but inserts it in the dictionary if needed.

Thus, one can write, for instance

d.setdefault(key, []).append(value)
to add to a list of values that may not exist yet.

24.4.1.2  defaultdict, from collections

There is a variant of the dictionary class that is created with a “default factory”. This factory
is a function which is called when a key is missing, and returns the value now associated
with this key. Let us begin by importing the type constructor:
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from collections import defaultdict

Let us create a dictionary such that all default values are zero:

>>> d = defaultdict(lambda: 0)

Note in passing that you could also create a defaultdict and initialise it with the values of
another dictionary D like so:

>>> d = defaultdict(lambda: 0, D)

In both cases lambda: 0 is merely a niladic function (i.e. it has no arguments) that returns
zero. This is our factory — the advantage of having a function in that role rather than simply
a default value will become clear later.

>>> d
defaultdict (<function <lambda> at 0x7fb0®a51bdel8>, {})

The display is a bit verbose, but only the {} at the end matters: for now, the dictionary is
empty.

>>> d[5]

0

>>> d

defaultdict (<function <lambda> at 0x7fb0®a51bdel8>, {5: 0})

>>> d[’hey’]

0

>>> d
defaultdict(<function <lambda> at 0x7fb0®a51bdel8>, {5: 0, ’hey’: 03})

Key/default values associations are created on the fly whenever a key is looked up.

Thus our function becomes:

def count(s):
d = defaultdict(lambda: 0)
for c in s:
d[c] += 1
return d

Suppose now that instead of simply counting occurrences, we wish to list the indexes where
they appear: on the previous example s = "AABaaBAAA" we would expect

{’a’: [0, 1, 6, 7, 8], ’B’: [2, 5], ’a’: [3, 41D

Before encountering a letter, we have seen it at no index; thus our default should be the
empty list. We can then append to it the relevant indexes. Our default factory is therefore the
function of no argument returning a new list. We could write it lambda: [], but we already
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have a function (actually, a callable) for that, and it is the list constructor 1ist, which does
return a new empty list when called with no arguments. (Actually, we could have used int
in place of 1ambda: 0 as well, as it returns 0 with no argument. Most type constructors, when
called with no argument, return whatever makes sense as the “zero” or “empty” element for
that type.)

Thus we obtain the function:

def occs(s):
d = defaultdict(list)
for k,c in enumerate(s):
d[c].append (k)
return d

Note how essential it is in this application that a default factory, a function, be provided, and
not merely a default value. Let us simulate passing a default value by defining a list and
giving a factory that always returns a pointer to that same list:

1=T]
def occs(s):
d = defaultdict(lambda:1)
for k,c in enumerate(s):
d[c].append (k)
return d
print (occs(s))

defaultdict(<function occs.<locals>.<lambda> at 0x7f4c9fe3ceal>,
{’A’: [0, 1, 2, 3, 4, 5, 6, 7, 8],
'B’: [0, 1, 2, 3, 4, 5, 6, 7, 8],
a’: [0, 1, 2, 3, 4, 5, 6, 7, 81})

All values point to the same list 1. Thus, when values are mutable, it is essential to be able to
create a fresh value for each key. Hence the need for a “factory”.

The defaultdict structure enables some pretty nice tricks. See for instance a trick to
represent trees, in this snippet of code.

24.4.1.3 Counter, from collections

For the specific use-case of counting elements, there is actually a nice variant of dict called
Counter. Still with s = "AABaaBAAA", we have:

>>> Counter(s)

Counter({’A’: 5, 'B’: 2, ’a’: 2})

Counters in Python play the role of multisets, or bags, in mathematics. That is to say, sets
where elements may appear multiple times. Thus they support some specific arithmetic
operations:
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>>> Counter (s)+Counter(s)
Counter({’A’: 10, 'B’: 4, ’a’: 4})

As a fun example, an anagram of a word or sentence is another word or sentence using
exactly the same letters, and the same number of each. We ignore case. Generally, in the
case of sentences, we ignore whitespace and punctuation as well. Testing if two strings are
anagrams is easy thanks to counters:

>>> def is_anagram(u,v):

u,v = ( e.replace(" ","").upper() for e in (u,v) )
return Counter (u) == Counter(v)
>>> u = "Counting Eh Tv"
>>> v = "Vincent Hugot"
>>> is_anagram(u,v)
True
Theu,v = .. line makes use of a comprehension expression to avoid repeating the same

code twice; cf. Section 24.5(,157).

24.5 Comprehension expressions

Implementing any non-trivial algorithm means performing operations on collections of
elements: initialising, filtering, transforming. . .

Say that you need to build the set S of all even numbers less than 10; in mathematics, this is
written using the set-builder notation — also called set abstraction or set comprehension or set
intension:

S={nel,9]| IkeN:n=2k}

So far, you know of two ways to define this set in Python. First, you can compute it yourself
and write it in extenso — this is called a display expression in Python:

>> S ={ 0, 2, 4, 6, 8 }

Of course, that is only realistic for small collections, and is unworkable if it depends on
another variable.

Second, you can write some code to programmatically compute it, by initialising the container
and augmenting it in a loop:

>>> S = set()
>>> for n in range(10):
if n%2==0:
S.add(n)
>>> S
{0, 2, 4, 6, 8}
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This is what you would do in most circumstances.

There is a third way, available in a few languages, Python included: comprehension expressions.
The idea is to use pretty much the same set-builder notation as in mathematics, where useful,
to achieve greater conciseness and clarity. For instance, we could write:

>>> { n for n in range(10) if n%2==0 }
{0, 2, 4, 6, 8}

>>> { 2*k for k in range(5) }
{®! 21 4! 6! 8}

24.5.1 Comprehensions for every type; first contact with generators

Let us see how this works, and how flexible it is. The example so far was for sets, but this
construction works for any collection type; at least with a few syntactic tweaks. The idea is
that the delimiters determine the type of collection being created, and indeed that holds for
sets, as we have seen, and lists as well:

>>> [n for n in range(10) if n%2==0]

[6, 2, 4, 6, 8]

This also holds for dictionaries, with a key : value syntax:
>>> {n : n**2 for n in range(10) if n%2==0}

{0: 0, 2: 4, 4: 16, 6: 36, 8: 64}

However, if you follow this pattern for tuples, you get

>>> (n for n in range(10) if n%2==0)
<generator object <genexpr> at 0x7fb79904d468>

instead. Despite not having a nice, textual representation, generators — or, more generally,
iterators — are actually the central iterable structure powering every for loop behind the
scene, and are so fundamental they get to use the basic (. .) delimiters. To get a tuple, you
have to use the tuple constructor and write:

>>> tuple(n for n in range(10) if n%2==0)
o, 2, 4, 6, 8
Using the type constructor in this way always works as expected.

>>> list(n for n in range(10) if n%2==0)
[®1 2’ 4’ 6! 8]

>>> set(n for n in range(10) if n%2==0)
{0, 2, 4, 6, 8}
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What actually happens here is that this is equivalent to passing the generator as argument to
the constructor:

>>> tuple((n for n in range(10) if n%2==0))
(0, 2, 4, 6, 8)

Since this is not a very nice-looking syntax, in contexts where you pass a generator expression
as the single argument to a function, its parentheses can be omitted.

A small syntactic exception if for dictionaries: the key : value syntax is only a trick to dis-
tinguish set comprehensions from dictionary comprehensions. Using couples (key, value)
would be ambiguous, as a set of couples does not have the same behaviour as a dictionary.
What happens behind the scenes is that dictionary comprehensions are converted todict (. .)
constructor calls on a collection of couples:

>>> {n:n**2 for n in range(10) if n%2=-=0}
{0: 0, 2: 4, 4: 16, 6: 36, 8: 064}

>>> dict(n:n**2 for n in range(10) if n%2==0)
SyntaxError: invalid syntax

>>> dict((n,n**2) for n in range(10) if n%2==0)
{0: 0, 2: 4, 4: 16, 6: 36, 8: 064}

>>> {(n,n**2) for n in range(10) if n%2=-=0} # not the same thing
{c6, 36), (0, 0), (8, 64), (4, 16), (2, 4>}

In all cases, why does passing a generator to a constructor work? Because generators are
iterable, and collection constructors just iterate over them to build the required collection, in
the same way they would, say, a list, or a range.

We shall see what a generator is, exactly, in Sec. 29p715): “Iterables, iterators, and generators”.
In the meantime, let us just say that a generator is an object that produces values on demand,
until they are exhausted:

>>> G=(n for n in range(5) if n%2==0)
>>> type (G)

<class ’generator’>

>>> next (G)

0

>>> next (G)

2

>>> next (G)

4

>>> next (G)

StopIteration # exception: the generator is exhausted

This is why they do not have any nice textual representation: you can’t know that a generator
will produce without asking them to produce a value, and doing so alters their state. Values
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are produced once, on demand, and are not stored in memory. Thus a generator can only be
read once, and is then lost. This makes them very lightweight in memory, and enables us to
have infinite generators as well.

24.5.2  Loop nesting in comprehensions

So far we have seen that comprehensions have two components: a generator expression,
which does all the heavy lifting, and, optionally, delimiters — and, in the case of dict, a
special key : value syntax — to specify which type constructor the resulting generator
should be fed to.

Now, let us see what we can do with generator expressions. In

>>> [n // 2 for n in range(10) if n%2==0]
[®! 11 2’ 3! 4]

we use an expressionn // 2, a for loop, which defines n, and a conditional expression.
More complex expressions can involve additional variables and levels of nesting:

>>> [ (x,y) for x in 'ABCD’ if x != 'D’ for y in (0,1,2) ]
[CCA’, ®, C’A’, 1), (A, 2), (CB’, ®, ("B’, 1), ('B’, 2),
e, o, ¢, D, ¢, 2)]

Unlike in mathematics, however, you cannot put clauses in any order:

>> [ (x,y) for y in (0,1,2) if x != D’ for x in ’ABCD’]

UnboundLocalError: local variable ’x’ referenced before assignment

Is there a general rule of thumb to fully understand this syntax? Of course there is! The
generator expression

[ (x,y) for x in ’ABCD’ if x != ’'D’ for y in (0,1,2) ]

is actually “morally” ) equivalent to a function containing the code
for x in ’ABCD’:
if x I= 'D’:
for y in (0,1,2):
yield (x,y)

We shall see the yield keyword in greater detail in Sec. 29.2715): “yield and yield from”.
Let us just say for now that it’s very much like a function’s return, but instead of completely
exiting the function, it pauses it after yielding a value, so that you can later “unpause” it,
causing it to resume execution to just after the yield keyword that paused it, until it yields
another value and pauses again.

If yield is confusing you, think in terms of adding to a list for now:

... and also technically, but I have omitted a few steps to clarify the exposition here.
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L =[]
for x in ’ABCD’:
if x '= 'D’:
for y in (0,1,2):
L.append( (x,y) )
print (L)

(ca’, &, CCA’, 1), CCA’, 25, ('B’, 0, ('B’, 1), (’B’, 2),
age, o, ¢, b, ¢, 2)]

Seeing this, the general rule of thumb for comprehensions is clear: you nest for and
if clauses in exactly the same manner as though you were writing normal loops and
conditionals. The only things that change are that

(1) you write everything on one logical line, without opening a new block each time with
a colon :

(2) the expression in the innermost for or if is put at the very beginning of the expression
instead

(3) the outermost construct must be a for
(4) you cannot have an else clause in your ifs.

Regarding the restriction on else clauses, do not forget that you can use the ternary operator
syntax:

>>> [ "Even" if n%2==0 else "0dd" for n in range(5) ]
[’Even’, ’0dd’, ’Even’, ’0dd’, ’Even’]
For legibility reasons, I would add space or indentation when using this construct to visually

separate the ternary operator from the loops.

Of course, the logical line can be broken up following the usual rules; in te case of
comprehensions, you can actually use line breaks pretty arbitrarily. For instance, the
following works quite well:

L = [ (x,y) for x in ’ABCD’

if x '= ’D’
for y in (0,1,2) ]

24.5.3 Common comprehension patterns

Let us see a few common comprehension patterns — and mistakes
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24.5.3.1  Cartesian product

We have seen examples of cartesian products in the previous section already, without naming
them as such.

As a reminder, the cartesian product of two sets A and B is the set
AxB = {(x,y) ‘ XEA,yEB},

and we generalise this notion to other structures, such as lists. This is written quite easily:
>>> [ (x,y) for x in (1,2,3) for y in (4,5,6) ]
[, 4, @, 5, 1, 6, @, 49, @, 5, 2, 6),

3, 4, (3, 5, 3, 6)]

Note that you cannot write that using and:

>>> [ (x,y) for x in (1,2,3) and y in (4,5,6) 1]
NameError: name 'y’ is not defined

Comprehensions actually allow the use of Boolean expressions after for .. in, but the
semantics is not what you would intuitively expect:

>>> [ x for x in (1,2,3) and (4,5,6) ]
[4, 5, 6]

To understand what is happening here, please refer to Sec. 22.6.5,105: “The semantics of and
and or, & implicit Boolean conversion” on the semantics of and and or chains. The bottom
line is, you will probably never have to use Boolean operators after for .. in. You may of
course freely use them after if.

24.5.3.2  Mapping [ element by element transformation
A common need is to transform a collection, applying a function to each of its elements: thus
€1y...,€n
becomes
fler)y...,flen) .

In functional programming, we use the map higher-order function™ for that. This exists in
Python as well, but it is just as convenient to use comprehensions:

>>> def f(x): return f"f({x})"
>>> [ £(x) for x in "abc" ]
["fCa)’, "£(b)’, "f£(c)’]

“You may indirectly have heard of it in the context of Map/Reduce frameworks.
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Of course, you don’t need to define a function for that, as the transformation can be performed
directly in the comprehension’s leftmost expression:

>>> [ £"g({x})" for x in
[’gCa)’, ’g()’, ’g(c)’]

abc" ]

>>> [ (x, x//3, x%3) for x in range(5) ]
[, O, O, (1, O, 1D, (2, 0, 2), (3, 1, 0), (4, 1, 1)]

24.5.3.3  Filtering

Another common need is to filter a collection C, keeping only those elements that satisfy a
predicate P: C becomes — using set notation —

C'" = {eeC|Ple)}
In functional programming, there is a higher-order filter function for that, and again, it
exists in Python, but is just as convenient using comprehensions, where we have for instance:

>>> def P(x): return 65 <= ord(x) <= 65+26
>>> [ ¢ for c in "loUPwPerER" if P(c) ]
[’U!’ ,P!’ ’P!’ ,E,’ !R’]

There again, defining a separate predicate is not at all necessary:

>>> [ ¢ for c in "loUPwPerER" if 97 <= ord(c) <= 97+26 ]
[’1!’ ,o!’ ’w!’ ,e,’ !r’]

24.5.3.4  Reductions

It is common to want to reduce a collection to a single value. Of course that value can be
something complex, like another collection, but often it is something simple, like an integer.
Either way, in functional programming, there is a reduce higher-order function for that —
also extent in Python, though somewhat hidden. Here we focus on some simple reductions,
using comprehensions.

First the sum function:
sum(C) = Z e.
eeC

This very useful function has the good taste to be predefined in Python. It takes any iterable
collection as argument. This means that, like the 1ist, tuple, and other collection type
constructors, it can be used quite elegantly with generator expressions. Let us compute
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>>> sum( k for k in range(10+1) )
55

It would be a bad idea, although not a wrong one, to create a list to pass as argument to sum —
or any function taking an iterable:

>>> sum( [ k for k in range(10+1) ] )

55

Not only is this less legible, but behind the scene you now need to compute all the values of
k, and store them all in memory in a list, before even staring the computation of the sum.

In contrast, the first version computed the values of k one at a time, incrementing the sum
along the way, in the same efficient way you presumably would if you wrote the code for
> 19, k directly.

Rule of thumb: If you are writing a comprehension expression for the purpose of a reduction,
always use generators rather than wrapping it into an intermediary structure.

There is no predefined prod function that performs the product:

prod(C) = He.
ecC

That should not stop us from defining one, and computing

51 = Hk = 1x2x---x5 = 120:

def prod(QC):

r = 1 # neutral element for *; just like 0 for +
for e in C: r *= e
return r

>>> prod(range(l, 5+1))
120

>>> prod( 1/k for k in range(l,5+1) )
0.008333333333333333

>>> 1/120
0.008333333333333333

Two interesting reductions are the builtin min and max functions, which, interestingly, can

be used either as variadic functions, returning a minimal/maximal element out of their
arguments, or as a reduction on a single iterable:
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>>> min (1)

TypeError: ’int’ object is not iterable
>>> min(3,1,2)

1

>>> min([3,1,2])

1

Like sorted(..) and list.sort(), they take an additional key argument to define the order
according to which the notion of minimal/maximal element should be defined:

>>> 1 = [’Platypus’, ’School’, ’Sleep’] # in the usual order

>>> min(l), max(1l)
(’Platypus’, ’'Sleep’)

>>> sorted(l,key=1lambda s:s[2])
[’Platypus’, ’'Sleep’, ’School’]

>>> max(l,key=lambda s:s[2])
’School’

Let us use this to find, for instance, the index of the minimal element of a list:

>> 1 = [75, 76, 99, 74, 11, 98, 85, 7, 5, 87]

>>> min (1)

5

>>> 1.index (5)

8

>>> min(range(len(l)), key=lambda i:1[i])
8

The most frequent element in a list:
>>> 1 = [!Ay, 1c1, ,B', ’B’, ’C,, ’C’, ’C,, ’C’, ’C’, !A!]

>>> max(set(l), key=1.count)
'C’ # 1 would work instead of set(1l), but less efficient

Be mindful of the fact that not all objects are totally, or linearly, ordered. Thus there is not
always a smallest, or greatest, element. Sets for instance, are only partially ordered with
respect to C. min and max return a minimal/maximal element; in fact the first one they
encounter. In the case of partial orders, the actual order in which elements are encountered
matters, and reordering the arguments or the collection can change the result:

>>> min({0},{0,1})
{0}

>>> min({0,2},{0,1})
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{0, 2}

>>> min({0,1},{0,2})
{0, 1}

Another common reduction is the concatenation of multiple strings, provided by the
str.join method:

>>> "" _join( chr(k) for k in range(65,65+26) )
"ABCDEFGHIJKLMNOPQRSTUVWXYZ’

For Booleans, there are the two functions all and any, acting on iterable collections of
(implicit or explicit) Booleans:

all(C) = /\b = Vbe(C,b.
beC

and

any(C) = \/ b IbeC:b.

beC

>>> all([])

True # neutral element for *and*
>>> all([True, False, True, True])
False

>>> all([True, True, True])

True

>>> any ([]1)

False # neutral element for *or*
>>> any ([True, False, True, True])
True

>>> any([False, False])

False

Of course, they can be used with any types of values, with implicit Boolean conversion:

>>> any([ O, O 1)

False

>>> any([ O, (1,2) 1)

True

We have seen a typical use in the section on assertions:

assert all( square(n) == n*n for n in range(10) )

This compactly translates the statement:

Vn € [0,9], square(n) = n?
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24.5.3.5  Index manipulation, permutations

You can use comprehension expressions to act on indexes as well as elements: for instance,
the inversion

>>> 1 = list(range(5))

>>> [ 1[-i-1] for i in range(5) ]
[4, 3, 2, 1, 0]
Of course inversion in particular can be done more elegantly with the slice 1[: :-1].

Let us try more general permutations. The application of the permutation o on a list
l=[ey,...,en] is the list

10'7] = [6071 (T)y=vey €s-1 (n)}

. - 01234
~\1 20 4 3

be a permutation — in Cauchy’s notation — on [0,4]. That is to say, we send the element of
index 0 onto index 1, the element of index 1 onto index 2, the element of index 2 onto index
0, and exchange the last two.

Let

1 = 1list("ABCDE")

def o7'(i): return (1,2,0,4,3).index(i) # get the index where i appears
# I use o ! for clarity. In actual code, use a valid identifier

lo-' = [ 1[o'(i)] for i in range(5) ]
print( lo ! )

24.5.3.6  Flattening a sequence of sequences

Say that you have a sequence of sequence, and want to flatten all those sequences into one,
concatenating them all. You can do so easily with a comprehension:

>> 1 =71 (1,2,3), (4,5, (6,7,8) ]

>>> [ e for sl in 1 for e in sl ] # sl = sublist
[1, 2, 3, 4, 5, 6, 7, 8]
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24.5.3.7  Element repetition [ stutter
Sometimes, you want to “stutter” a sequence, repeating an element a number of times. It is
not immediately trivial how to do so:
>>> [ (c,c,c) for c in 1list("ABCD") ]
[(’A” lAl’ lA’)’ (’B!, ’B,’ ’B’)’ (’C” ’C’, ’C,)’ (!D” ,Dl’ ’D!)]
does not give the expected result by itself. You still need to flatten that. There is, to my
knowledge, no magical syntactic trick to automatically flatten the tuple:

>>> [ c,c,c for c in 1list("ABCD") ]
SyntaxError: invalid syntax

>>> [ *(c,c,c) for c in 1list("ABCD") ] # unpacking attempt
SyntaxError: iterable unpacking cannot be used in comprehension
However, repetition is actually very easy to write, with the right idea:
>>> [ ¢ for c in list("ABCD") for _ in range(3) ]

[!A!’ ,A,, ’A’, ,B,, !B!’ ,B,, !C!’ ’C,, !Cl’ ’D,, !D!’ lD!]

In this code, _ is just the name one traditionally uses for a variable whose name does not
actually matter, since one does not actually ever use its value. It could as well have been
called i.

24.6  Packing and unpacking

24.6.1  Starred expressions: sequence types

At the most basic level, packing is the act of grouping several elements in a sequence type,
like so

>>> t = ("Hello", 24, True)

and unpacking is to “explode” the package back into its individual components, through
pattern matching;:

>>> s,i,b = t # or, equivalently, (s,i,b) =t
>>> print(s,i,b)
Hello 24 True

The pattern-matching works on any sequence type — concretely, that means lists and tuples —
but not on unordered types, as it would be ambiguous:

>>> [s,i,b] = t
>>> s,i,b
(’Hello’, 24, True)
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>>> {s,1,b} = t
SyntaxError: can’t assign to literal

The * operator enables the programmer to selectively pack or unpack elements in some
contexts:

>>> r = range(7)
>>> first, second, *middle, end = r

>>> first
>>> second

>>> middle
[2! 31 4! 5]
>>> end

>>> [type(e) for e in (first,second,middle,end)]
[<class ’int’>, <class ’int’>, <class ’'list’>, <class ’int’>]

Here, we have used * to pack the middle elements in a list while unpacking others. As you
can see, this is quite a convenient way of isolating the first and last few elements from the
rest. The alternative would be to write multiple slices

>>> r = range(7)

>>> first = r[0]
>>> second = r[l]
>>> middle = r[2:-1]
>>> end = r[-1]

>>> (first, second, middle, end)
(0, 1, range(2, 6), 6)

>>> (first, second, list(middle), end)
(®! 11 [2! 3! 41 5]! 6)

Let us note here that *-packing provides us with a list, regardless of the initial type of the
container being unpacked:

>>> s = set(range(5))
>>> a, *rest = s

>>> a, rest
o, [1, 2, 3, 4D
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In contrast, slicing preserves the type of the underlying indexable. Note as well that
*-packing works on all iterables, whereas slices require indexable types. In the code above, a
is only first in the arbitrary order of iteration — we merely isolated an arbitrary element from
the rest, similar to a call to the pop () method, but without altering the original set. We could
not have used slices to achieve the same effect, as sets are not indexable:

>>> a = s[0] ; rest = s[1:]
TypeError: '’ object does not support indexing

set

Only a single starred expression can appear on the left-hand side. The reason for this
restriction should be pretty clear: how the two starred variables should share the elements
would be difficult to define.

>>> *a,*b = r

SyntaxError: two starred expressions in assignment

We have covered the uses of * in left-hand sides of assignments. Let us now see where we
may find them in expressions.

In a comma-separated element enumeration context — this is to say, when enumerating the
elements of a list, tuple, or set, or when writing arguments to a function call — a * can be
used to unpack a collection directly within the enumeration:

>>> r = range(5)

>> ['A’, *r, 'Z’°]
[’A’! 0’ 1! 2! 31 4’ ,Z’]

>>> {’A’, *r, 7’}
{®, 17 ’A” 2, 37 4’ 'Z’}

>>> print(’A’, *r, 'Z’, sep=’,’)
A,0,1,2,3,4,Z

For the last line, recall that print is a variadic function, printing the separator sep between
each two of its successive arguments. Its output shows that each element of r was passed as
a separate argument to the function.

Contrary to the restrictions of left-hand side packing, in the context of expression unpacking
there is no restriction to how many starred expressions may appeatr:

>>> print(*{3.15, 6.7, 90.}, *r, 'A’, *r, 'Z’, sep=" , )
90.0 , 3.15 , 6.7 , 6 , 1, 2,3 ,4,A,0,1,2,3,4,71Z

The only restriction is of course that any function call must in the end be made with the right
number of arguments. print being variadic, we have not run into this:

>>> def f(a,b,c): print(a,b,c)
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>>> f£(*[1,2], 3)
1 2 3

>>> £(*[1,2,3,4])
TypeError: f() takes 3 positional arguments but 4 were given

24.6.2 Doubly-starred expressions: dictionaries
What about dictionaries?
>>> age = {’Toto’:15, ’Tata’:27, ’Mamie’:97 }

>>> print(*age)
Toto Tata Mamie

As you can see, single star syntax unpacks the list of the dictionary’s keys — a behaviour
entirely consistent with the view that, for iteration purposes, a dictionary is assimilated to
the set of its keys.

However, this usual single-star syntax does not work well in the context of dictionary item
enumeration:

>>> { "Jojo’:15 , *age }

SyntaxError: invalid syntax

This is to be expected; in this context, both keys and values are needed. For this, there is a
special double-star unpacking syntax that does work as hoped:

>>> { "Jojo’:15 , **age }

{’Jojo’: 15, ’'Mamie’: 97, ’'Tata’: 27, ’Toto’: 15}

However, it works only in that context, and does not generate, say, key/value couples usable
in classical contexts:

>>> [*age]
[’Toto’, ’'Tata’, ’Mamie’]

>>> [**age]
SyntaxError: invalid syntax

Nor can it be used in left-hand sides:
>>> {’Mamie’: 97, **d } = age

SyntaxError: can’t assign to literal

This stands in contrast to single-star packing:
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>>> [ a, *b ] = age
>>> b
[’Tata’, ’Mamie’]

Working only in the context of dictionary item enumeration does not make double-star
syntax nearly so niche a tool as you would expect, though, as dictionaries are present in
unexpected places. ..

Consider the following code, where we define two functions with the same named arguments,
which, incidentally, correspond to the keys of our toy dictionary:

def f(Toto, Tata, Mamie):
print (Toto, Tata, Mamie)

def g(Mamie, Toto, Tata):
print(Toto, Tata, Mamie)

Recall how we used the single-star unpacking syntax in function calls to pass positional
arguments. We can actually do the same thing with double-star unpacking syntax to pass
keyword arguments, this time:

>>> f(**age)
15 27 97
>>> g(**age)
15 27 97

What we have done here is equivalent to having written

>>> f(Toto=age[ ' Toto’], Tata=age[’Tata’], Mamie=age[’Mamie’])
15 27 97

Internally, functions actually use dictionaries to handle the values of their keyword arguments,
and we make use of that fact.

Be careful not to confuse single- and double-starred unpacking: as f accepts both positional
and keyword arguments, it is also possible to unpack the set of keys in a function call, with
very different results:

>>> f(*age)
Toto Tata Mamie
>>> g(*age)
Tata Mamie Toto

Note that, in £(**age) and g(**age), the order of arguments does not matter — which is
fortunate, since dictionaries are unordered structures anyway. Recall that order does not
matter either when arguments are passed by keyword — which is one of the selling points
of calling functions in such a way;, as it avoids some silly programming mistakes.
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The f(argname=argvalue, ...) syntaxcouldin principlehavebeendefinedas f£(’argname’
instead, and though the latter is not actually valid python syntax, it is still “morally” equiva-
lent to what takes place.

Some standard dictionary methods make use of that, such as the update method, which
updates a dictionary in-place according to the contents of another one, passed as a argument:

>>> age.update( { ’a’ : 1, ’b’: 2 } )

>>> age
{’Toto’: 15, ’'Tata’: 27, ’Mamie’: 97, ’a’: 1, ’'b’: 2}

Thanks to the implementation of update, the above could equally well be written:

>>> age.update(a=1,b=2)
>>> age
{’Mamie’: 97, ’Tata’: 27, ’'Toto’: 15, ’a’: 1, ’'b’: 2}

We shall see how such a function might be defined in more detail in the Sec. 25.1174:
“Variadic function definition”.

24.6.2.1  Merging two dictionaries

If you want to (non-recursively) merge two dictionaries into a new one without altering the
original, you can (1) in Python 3.9+, simply use the union (|) operator, as for sets (2) prior to
3.9, to obtain the same behaviour, unpack both of them into a fresh one:

>>> age = {’Toto’:15, ’'Tata’:27, ’'Mamie’:97 }

>> d = { AA’ * i : 10*i for i in range(1l,3+1) }

>>> d

{’AA’: 10, ’AAAA’: 20, ’AAAAAA’: 30}

>>> { :'::':age, 7‘::‘:d }

{’Toto’: 15, ’'Tata’: 27, ’Mamie’: 97, ’AA’: 10, ’'AAAA’: 20, ’AAAAAA’: 30}

Note that, should the two dictionaries share keys, associations in d will overwrite those in
age:

>>> { **{0:1}, **{0:2} }

{0: 2}

In some sources, I have seen this pattern recommended instead:

>>> dict(**age, **d) # or dict(age, **d)

{’Toto’: 15, ’'Tata’: 27, ’Mamie’: 97, ’AA’: 10, 'AAAA’: 20, ’AAAAAA’: 30}

Yes, it also works for that purpose, but only to some extent. But why does it work at all?
Because, like update, dict () treats its keyword arguments as dictionary associations, for
the purpose of building a new dictionary:
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>>> dict(a = 1, b = 2)
{’a’: 1, ’b’: 2}

This makes manually defining dictionaries with string keys a little more elegant. But beware:
the keyword argument syntax is not as flexible as the k:v dictionary item syntax:

>>> dict(a = 1, b = 2)
{’a’: 1, ’b’: 2}

>>> dict(l=a, 2=a)
SyntaxError: keyword can t be an expression

>>> dict(**{1 : ’a’ , 2 : 'b’})
TypeError: keyword arguments must be strings

>>> dict(**{’a’:0},**{’a’:1})
TypeError: type object got multiple values for keyword argument ’a

Thus this method of merging will fail on dictionaries whose keys are not strings, or who
have keys in common.

The {**d1, **d2} syntaxis very clear and very efficient. Use it. The only real alternative is
to copy the first dictionary, then update that with the second; this is both much less elegant,
and almost twice as slow in tests. Comprehension flattening patterns or itertools.chain
methods are even slower.

25 Advanced function definitions

25.1  Variadic function definition

This follows Sec. 21.5.4 63): “Defining functions; predicates and procedures” and Sec. 21.5.7 p75):
“Optional arguments”.

Variadic functions such as print are pretty neat, but so far we have not seen how we can
define our own. Let us come back to function definitions, in full generality; we shall need
dictionaries and packing/unpacking.

Recall the last pattern we gave for function definitions, including optional parameters:
def <functionname> (<argl>, ..., <argN>,

<optargl> = <defvall>,... <optargM> = <defvall>):

So far, all of our arguments, whether mandatory or optional, could be passed either as
keyword or positionally. We shall see that, in all generality, arguments can also be exclusively
positional or exclusively keyword.
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The more general definition pattern is either of two patterns below, where I name the
parameters according to the following conventions:

pk  positional and keyword parameters without default value
pkd positional and keyword parameters with default value (optional parameters)

p exclusively positional parameters — traditionally written args
k exclusively keyword parameters — traditionally written kwargs
def <fun> (
<pkl>, ..., <pkN>,
<pkdl> = <defl>, ..., <pkdM> = <defM>,
*<p>,
e <k>
DE:

or, perhaps more rarely,

def <fun> (
<pkl>, ..., <pkN>,
*<p>,
<pkdl> = <defl>,..., <pkdM> = <deflM>,
B X <k>
DR

In both cases, all variables are assigned a value during a function call, according to the
following discipline:

o the optional parameters <pkd_> have their default values, if not overridden later.
¢ the first N positional arguments are affected, in order, to positional parameters <pk_>.

o excess positional arguments are all affected, as a tuple, to <p>. If there is no such excess,
<p> is the empty tuple. This is the nub of variadic functions, such as print.

<p> absorbs this excess at the point where it appears in the definition. This means that
in the first form, excess positional arguments first override the default values of the
<pkd_>, whereas in the second form, the defaults can only be overridden by keyword
arguments.

o then come keyword arguments, which can specify the value of missing positional
arguments <pk_> or override the default value of optional arguments <pkd_>.

o any excess keyword arguments, that is to say arguments neither <pk_> nor <pkd_>, are
then absorbed, as a dictionary, by <k>, which is the empty dictionary by default.

Let us illustrate all this with examples: let us define a function according to the first form:

def f( pkl, pk2,
pkdl="d1’, pkd2=’d2’,
* p , kX k
):
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print("f ",pkl,pk2,pkdl,pkd2,p,k)

We have:

>>> £(1,2) # ‘‘normal’’ positional call
f 12 d1 d2 O {}

>>> f(pk2=2,pkl=1) # keyword call
f 12d1d2 O {}

>>> £(1,pk2=2) # partial positional, partial keyword
f 124d1d2 O {}

>>> £(1,pkd2=99,pk2=2) # overriding default via keyword
f 12d199 O {}

>>> £(1,pkd2=99,pk2=2,a=78) # excess keyword is absorbed
f 12 d1 99 () {’a’: 78}

>>> £(1,2,3) # positional; override some defaults
£f 12 3d2 (O {}

>>> £(1,2,3,4,5,6) # override all defaults; excess positionals absorbed
f 1234 (5, 6) {}

>>> £(1,2,3,4,5,6,a=90,b=55) # same; excess keywords absorbed
f 1234 (5, 6) {’a’: 90, ’b’: 55}

And now with the second form:

def g( pkl, pk2, *p,
pkdi="d1’, pkd2="d2’, **k
):
print("g ",pkl,pk2,p,pkdl,pkd2,k)

We have:

>>> g(1,2)
g 12 () di d2 {3}

>>> g(pk2=2,pkl=1)
g 12 (O di d2 {}

>>> g(1,pk2=2)
g 12 (O di d2 {3}

>>> g(1,pkd2=99,pk2=2)
g 12 () di 99 {}

>>> g(1,pkd2=99,pk2=2,a=78)
g 12 () dl 99 {’a’: 78}

176



>>> g(1,2,3) # excess positional absorbed: defaults untouched
g 12 (3,) d1 d2 {3}

>>> ¢g(1,2,3,4,5,6) # defaults cannot be overridden positionally
g 12 (3, 4, 5, 6) d1 d2 {}

>>> g(1,2,3,4,5,6,pkd2=777) # but can be overridden by keyword
g 12 (3, 4, 5, 6) d1 777 {}

>>> ¢g(1,2,3,4,5,6,a=90,b=55)
g 12 (3, 4, 5, 6) d1 d2 {’a’: 90, ’'b’: 55}

Let us now illustrate that by writing our own toy versions of print and dict(..):

def myprint(*args):
for a in args:
print(a,"",end="")
print() # newline

We have:

>>> myprint ()

>>> myprint (1)

1

>>> myprint(1,2)

12

>>> myprint (*range(5))
012 34

Now for dict(..), we have:

def mydict(**kwargs):
return kwargs

>>> d,D = dict(a=1,b=2), dict(c=3,d=4)

>>> mydict (**d, **D)
{a’: 1, 'b’: 2, 'c’: 3, 'd’: 4}

>>> mydict(**d, **D,another="stuff’)
{’a’: 1, 'b’: 2, ’'c’: 3, ’d’: 4, ’another’: ’stuff’}

With this, we have covered function definition in all generality, except for two advanced
features: decorators, and annotations.
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25.2 Function decorators

Function decorators are a means of altering how a function, method, or class works, without
modifying its definition — or even needing access to it. Examples include automatically
logging function calls and debug information, measuring time elapsed — cf. Sec. 31.4p2¢):
“Examples and performance tests” — automatic memoisation — cf. question (244),369) and
functools.cache, — defining read-only attributes, getters and setters ™), and more.

Fundamentally, a decorator is nothing more than a higher order function, taking a function
as input and yielding another function as output. Python supports a special “@” syntax
making this process more elegant, but it is not required.

25.2.1 A plain decorator

For a first contact, we shall not use any special syntax at all. Let us make a decorator
announce_call that modifies the behaviour of a function by printing “Hello” and “Goodbye”
before and after it is executed. While this is a bit silly in and of itself, you can substitute
those printing operations for any kind of pre- and post-processing you want; think of this as
a template for more useful decorators.

The general idea of decoration is to “wrap” the function inside another function, called a
wrapper. The wrapper is in charge of calling the original function, to which it passes along
any argument it receives. Before and after that, it does whatever it needs to do; here, printing.
The decorator then returns the wrapper, which in effect becomes the decorated function.

def announce_call(f):
def wrap(*a, **k):
print ("Hello!")
res = f(*a, **k)
print ("Goodbye!")
return res
return wrap

To use it, without any pretty syntax, we can define our function as usual, and after that
rebind it to the modified version of itself.

def e(x): return f"e({x})"
e = announce_call (e)

>>> e
<function announce_call.<locals>.wrap at 0x7fa6758c7be®>

>>> e (1)
Hello!
Goodbye!

“WSeehttps://docs.python.org/3/library/functions.html#property
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’e(l)y

It works as expected, of course, but is a tad cumbersome: the name of the altered function is
repeated three times. Instead, you can and should use the special @-syntax for decorators:
simply write @<your decorator> on the line preceding the definition of your function.

@announce_call
def f(x): return f"f({x})"

@announce_call
def g(x): return f"g({x})"

print([£f(x) + g(x) + g(x) for x in range(2)])

Hello!
Goodbye!
Hello!
Goodbye'!
Hello!
Goodbye!
Hello!
Goodbye!
Hello!
Goodbye'!
Hello!
Goodbye'!
[7£(0)g(0®)g(0)’, "£(1)g(1)g(1)’]

25.2.2  Decorators with their own states

Now let us write a more sophisticated decorator count_calls, such that functions not only
say hello and goodbye, but also say their name, display their arguments, as well as their
return values on goodbye, and count the total number of times they have been called; each
function must have its own independent counter.

Getting the name of a function is easy: a function is an object with a __name__ attribute that
contains just this information.

The counter is more delicate. This can be done in an OOP style, defining a callable class with
a counter attribute, but this is much simpler and cleaner in a more functional style, using a
lexical closure.™

The idea is that the decorator is called once, and once only, for each decorated function — at
definition time — while the wrapper is called once for each call of the decorated function.
With good reason, since the wrapper is the decorated function.

®Using on-the-fly function attributes is also a possibility: f.my_counter = .....
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Thus, our counter shall be a variable initialised by the decorator, and used, nonlocally, by
the wrapper. Each wrapper shall therefore have its own independent counter.

def count_calls(f):

i=20

def w(*a, **k):
nonlocal i
i+=1
call = £"{f.__name__}[{i}]({’,’.join(map(repr,a+tuple(k.items())))})"
print(f"@< {call}...")
res = f(*a, **k)
print (£" {call} = {repr(res)} >@")
return res

return w

@count_calls
def f(x): return f"f({x})"
@count_calls

def g(x): return f"g({x})"

print([£f(x) + g(x) + g(x) for x in range(2)])

@< f[1]1(O®)...

f[1](0) = "£(0)’ >a@
@< g[11(®)...

gl11(®) = "g(0)’ >@
@< g[21(®) ...

g[21(8) = ’'g(®)’ >a@
@< f[2]1(C1)...

f[2]1(C1) = "£(1)’ >a@
@< g[31(1)...

gl31(1) = ’g(1)’ >@
@< g[41(1)...

g[41(1) = ’g(1)’ »>a@
[’£(0)g(0®)g(®)’, "£(1)g(1)g(l)’]

This is a nice little debugging decorator; let us apply it to a function with a more complex

behaviour: the Fibonacci sequence:

@count_calls
def fib(n):
return n if n <= 1 else fib(n-1) + fib(n-2)

print (fib(3))

@< fib[1]1(3)...
@< £fib[2]1(2)...
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@< £ib[3]1(1)...
fib[3](1) =1 >@

@< fib[4]1(0)...
fib[4]1(0) = 0 >@
fib[2]1(2) =1 >@

@< £fib[5]1(C1)...
fib[5](1) =1 >@
fib[1]1(3) = 2 >@

25.2.3  Decorating wrappers to preserve function metadata

The use of decorators has an undesirable side effect, in that decorated functions forget their
original identity: recall that they are their wrapper. Let us consider a well-documented little
function, that happens to be decorated:

@count_calls

def helpful():
"I'm well-documented!"
return "Happy!"

>>> helpful
<function count_calls.<locals>.w at 0x7fddbda6fa30>

>>> helpful.__name__

w

>>> help (helpful)
Help on function w in module __main__:

W(*a, i:z':k)

The nice documentation has been lost, along with the name of the function. Bad decorators!
What is the solution to bad decorators, you ask? Why, more decorators, of course!

Let us import the wraps decorator from the functools module:

from functools import wraps

Now we can decorate our wrapper functions to overwrite their metadata — name, docu-
mentation — by that of the function they decorate, which is passed as argument to wraps;
let us use that in count_calls:

def count_calls(f):
i=20
@wraps (£)
def w(*a, **k):

181


https://docs.python.org/3/library/functools.html#functools.wraps

nonlocal i

This time all helpful information is preserved:

>>> helpful

<function helpful at 0x7fe59e3bba30®>

>>> helpful.__name__

"helpful’

>>> help (helpful)

Help on function helpful in module __main__:

helpful ()
I'm well-documented!

As a bonus, wraps adds a __wrapped__ attribute to the wrapper it decorates, ponting to the
original, undecorated function. This can be useful; maybe we do not want to count some
calls in the case of count_calls; maybe we want to bypass the cache in the case of memoise,
etcetera.

Let us demonstrate:

>>> helpful ()

@< helpful[1]Q)...
helpful[1]() = ’Happy!’ >@

’Happy !’

>>> helpful.__wrapped__
<function helpful at 0x7f3aad8a7d90>

>>> helpful.__wrapped__Q)
’Happy !’

>>> helpful ()

@< helpful[2]Q)...
helpful[2]() = ’Happy!’ >@

’Happy !’

Note that __wrapped__ will not be very useful for recursive functions, as the original
definition of f will contain calls to £, not to £.__wrapped__, so only the outermost call is
unwrapped.

This can be a problem when you want some decorator to be active in some circumstances
but not others; for instance, we probably don’t want verbose things like @count_calls or
@trace active during unit tests.

A frighttully kludgy way I found around this for global functions is to use a context manager
to temporarily rebind the function’s name in the global scope. In the following code, £ib(5)
is traced, the assert unit test is untraced, and £ib(2) is traced.
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@contextmanager
def unwrap(f):
"""Temporarily un-decorate global function

if hasattr(f, "__wrapped__"):
globals()[f.__name__] = f.__wrapped__
yield
globals()[f.__name__] = £
else: yield
@trace
def fib(n):

return n if n <= 1 else fib(n-1) + fib(n-2)
print("->", fib(5))

with unwrap(£fib):
assert [fib(n) for n in range(10)] == [0, 1, 1, 2, 3, 5, 8, 13, 21, 34]

fib (2)

25.2.4  Chaining decorators

Decorators may be chained; this presents no difficulty whatsoever:

@announce_call
@count_calls
def helpful():

>>> helpful ()

Hello!

@< helpful[l]Q)...
helpful[1]() = ’Happy!’ >@

Goodbye!

’Happy !’

25.2.5 A fun decorator: trace

Let us come back to the Fibonacci function. Here is a cool decorator to print its call tree — or
indeed that of any function:

def trace(f):
vl = 0
@wraps (£)
def w(*a, **k):
nonlocal 1vl
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tree = "| " * 1vl + "+"

print(f"{tree} {f.__name__3}({’, ’.join(map(repr,a))})")
vl += 1
res = f(*a, **k)
vl -=1
return res
return w
@trace
def fib(n):

return n if n <= 1 else fib(n-1) + fib(n-2)

print (£fib(5))

fib(5)
+ fib(4)
| + £ib(3)
| | + £fib(2)
| | | + fib(1)
| | | + £fib(0®)
| | + £ib(1)
| + £fib(2)
| | + £fib(1)
| | + £ib(®)
+ fib(3)
|  + £fib(2)
| | + £ib(1)
| | + £fib(®)
| + fib(1)

Do you understand why and how it works?

Note: I do not have the necessary IIgX font to display that here, but the tree can be made
much prettier by using Unicode ordinal 9474 in place of | and ordinals 9500 and 9472 in
place of +.

25.2.6  Parametric decorators

What if you need to have a decorator that takes parameters? For instance, let us write a
decorator who_says, behaving much like announce_call, except that the messages it prints
can be customised by a parameter:

@who_says("Simon")
def f(x): return f£f"f({x})"

print (£(0))
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Simon says Hello!
Simon says Goodbye!
£(0)

To implement that, we are going to nest functions three levels deep . .. but don’t panic, it is
actually all fairly straightforward when you think about it.

In order for things to work properly, the expression who_says ("Simon™) must be a decorator.
Therefore, who_says must be a function that takes an argument and returns a decorator. The
decorator itself is done as usual, by declaring and returning a wrapper function.

Thus we have a pattern:

def deco_with_params(params):
def deco(f):
@wraps (£)
def wrap(*a, **k):
. params ... f(*a,**k)...
return wrap
return deco

Let us apply it to our problem:

def who_says(who):
def deco(f):
@wraps (f)
def wrap(*a, **k):
print (who, "says Hello!")
res = f(*a, **k)
print (who, "says Goodbye!")
return res
return wrap
return deco

We get the expected behaviour.

25.2.7  Class decorators

Decorators can be used on classes, and can be — callable — classes. This is outside the scope
of this document.

26  Reading and writing files

For now I shall just give you the bare minimum you will need in the exercises.
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Files are opened with the open function, which is quite rich in functionality. Let us say that
mytext.txt is an existing text file. It contains the text:

This..is
a
text_file.

Let us open it; by default, we are in read-only mode:

>>> f = open("mytext.txt")

>>> f
<_io.TextIOWrapper name='mytext.txt’ mode=’'r’ encoding='UTF-8’>

Once the file is open, it acts as an iterator on the text’s lines, which is both convenient and
very efficient, as we do not load all the file in memory at once, but just a single line of it. By
default, line returns are normalised to "\n’ regardless of the file’s own CR/LF style.

>>> [1 for 1 in f]
[’This is\n’, ’a\n’, ’text file.\n’]

Note that doing so moves the imaginary reading head in the file, and thereafter the stream is
exhausted. If you want to read the file again, you need to position the stream back at the
beginning, which can be done with seek (0):

>>> [1 for 1 in f£f]
[]

>>> next(f)
StopIteration

>>> f.seek(0)
® # I'm now at position zero. Again.

>>> [1 for 1 in f]
[’This is\n’, ’a\n’, ’text file.\n’]

The str.split method is very convenient, in conjunction with line iteration, to extract
information from text files:

>>> [1l.split() for 1 in f£f]

[[’This’, ’is’], [’a’], [’text’, ’'file.’]]

Alternatively, you can read all the text at once:

>>> f.read()

"This is\na\ntext file.\n’
>>> f.read()

'’ # stream is exhausted
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Note that both methods rely on the same stream:

>>> f = open("mytext.txt")

>>> [1 for 1 in f]

[’This is\n’, ’a\n’, ’text file.\n’]
>>> f.read()

L]

>>> f.seek(0)

>>> f.read()

"This is\na\ntext file.\n’
>>> [1 for 1 in f]

[]

When you are done, close the file.

>>> f.close()

Writing is much the same; you must specify write-mode by passing "w" to open. The file
need not exist yet. In write mode, you have, unsurprisingly, access to the write method:

>>> g = open("blah.txt","w")

>>> g.write(’This is\na\ntext file.\n’)
21 # number of characters written
# always equal to the length of the string.

>>> g.close()

26.1 Thewith .. as statement, for files

The recommended way to handle files is through the use of context managers and the
with .. as statement.

Without going into detail or generalities, the idea is to minimise the work that needs doing
to ensure your files are properly closed and you don’t leak file descriptors.

with introduces a code block, and you can open as many files as you want at once:
with open(ROfile) as f, open(RWfile,"w") as g:

<block with f and g opened>

Within this block, you can do whatever you want with f and g. Any variable defined with
this block will remain accessible outside of it.

The point of this construction is that, no matter what happens, whether you exit the block
normally or exceptions are raised, the files are properly closed. Thus you don’t need to close
them manually or worry about them much.
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This is a good pattern. Use it.

27  Object Oriented Programming in Python

This continues Sec. 21.2,¢3): “A few words about Object Oriented Programming (OOP)”.

You will have a course on OOP (in Java) during the first semester. While the general concepts are the
same, the details can change significantly from one language to the next.

27.1  Empty class, dynamic attributes

Let us define our own class, representing a person. For now, let us start by defining an
empty class we can play around with:

class Person:
pass

Now that we have defined a class, we can instantiate it into objects:

>>> p = Person()
>>> p
<__main__.Person object at 0x7f82091eab70>

>>> type(p)
<class ’__main__.Person’>

__main__ is of course the name for the current, main module. The class we just defined
belongs to it.

Now that we have an object, we can play around with it. For now, it has no attributes, but in
Python, you can sometimes define those on the fly:

>>> p.a
AttributeError: ’'Person’ object has no attribute ’a’

>>> p.a = 21 # on-the-fly new attribute. It works here,
# but not on all objects.

>>> p.a

21

>>> del p.a

>>> p.a
AttributeError: ’'Person’ object has no attribute ’a’
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27.2  Why we have constructors

Let us add some attributes, with default values, to our class:

class Person:
L

name =
age = 0

Playing around with instances, we see that each object has those default values, and its own
namespace once defined:

>>> p, q = Person(), Person()
>>> p.name

>>> p.name = "Toto"
>>> p.age = 25

>>> f"{p.name} {p.age} {q.name} {q.agel}"
"Toto 25 0’
However, consider this:

class Person:

name =
age = 0
hobbies = [’Knitting’, ’'Reading’]

All instances actually share the same list, which is very limiting:

>>> p, q = Person(), Person()
>>> p.hobbies

[’Knitting’, ’Reading’]

>>> del p.hobbies[0]

>>> p.hobbies

[’Reading’]

>>> q.hobbies

[’Reading’]

We have encountered that kind of problem before, for instance for default values of the
defaultdict type. The solution is to call a function to make new instances of the needed
objects. This is the notion of constructor which we have already discussed. A constructor is a
function or method that initialises an object, that instantiates a class. In Python, each time
you use a constructor, like 1ist(...), the method named __init__ plays that role. \)

Note that this “double-underscore” naming style is that used, by convention, by Python to
denote special methods. We already mentioned __len__, for instance, which is the special
method actually handling 1len(. .)’s length or cardinality computations. There are many

There is another, __

new__, that I shall not discuss, and which can be ignored in 99% of use cases.
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more special methods, some of which we shall discuss in good time, and others we shall list
in Sec. 27.10(p201): “Special, magic, dunder methods”.

27.3  Static attributes, and the type metaclass

The attributes we have defined so far are actually static attributes. That is to say, they are
attached to the class, more so than to instances of it.

You can and should preferably access them directly from the class:

>>> Person.age
0

Actually, what this means is that a class is itself an object. But if that is so, then what class is
class itself an instance of?

>>> type (Person)
<class ’type’>

So type is really also a class — a metaclass, of which all other classes are instances. But what
is type an instance of? Is that an object as well?

>>> type(type)
<class ’type’>

Type is a perfectly ordinary instance of. . . itself. The type function is therefore a constructor,
which can be used to define new types, new classes, on the fly, since they are perfectly
ordinary objects:

>>> help(type)

| type(name, bases, dict) -> a new type

>>> C = type(’C’, (object,), dict(a=1))
>>> C
<class

__main__.C’>

>>> type (C)
<class ’type’>

>>> C.a
1

Here we see that, internally, the attributes — and methods — associated with an object are
actually handled by a dictionary, like function calls.

type is also an instance of object. All objects are derived from object by inheritance. And
object is a type. It’s objects all the way down indeed. ..
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>>> isinstance(type,object)
True

>>> type(object)

<class ’type’>

The idea of inheritance, which we shall see later, is that some classes are specialised instances
of others, adding and altering behaviour, and inheriting the rest. For instance frozenset
shares a lot of behaviour with set, with a few twists of its own.

27.4  Constructors: beware of mutable structures

Let us add a constructor to our class. It is its job to initialise attributes, given a number of
pertinent arguments. Its first argument, as for all non-static methods, is generally called
self@and is a pointer to the object being defined itself. Within the definition of a method,
you must refer to any local attribute as self.something.

class Person:
def __init__(self, name=’’, age=0, hobbies=[]):
self.name = name
self.age = age
self.hobbies = hobbies

Person("Toto", 25, ['Knitting’, ’Reading’])

e
1l

q = Person("Tata", 97, [’Snoozing’])

>>> p.hobbies
[’Knitting’, ’'Reading’]
>>> q.hobbies
[’Snoozing’]

This time, we have a much more convenient way of defining new objects, and it seems like
we have different lists at last. We must, since we provide those new lists to the constructor.
But what happens if we don’t, and use the default value?

>>> p, q = Person(), Person()
>>> p.hobbies.append(0)

>>> p.hobbies
[0]
>>> q.hobbies

q

[0] # oops, still the same 1list.
>>> r = Person()

>>> r.hobbies

[0] # everyone shares the same

@though I am very lazy and often write it s for short, which you might notice in my code; use self in
production code; do as I say, not as I do.
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What happens here is that the default values were evaluated once, when the line

def __init__(self, name="’, age=0, hobbies=[]):

was run, yielding a pointer which will then be shared among all objects using the default
value. We need the new list to be generated at each call of __init__. A solution would be to
write self.hobbies = hobbies.copy() or self.hobbies = list(hobbies), so that every
list of hobbies passed to the constructor is copied. This may or may not be what you want.
If you want the lists passed to the constructor not to be copied, but want a fresh empty list
by default, write something like this:

class Person:
def __init__(self, name=’’, age=0, hobbies=None):
self.name = name
self.age = age
self.hobbies = 1list() if hobbies is None else hobbies

p = Person("Toto", 25, ['Knitting’, ’Reading’])
q = Person("Tata", 97, [’Snoozing’])
r, s = Person(), Person()

>>> r.hobbies.append(0)
>>> r.hobbies

>>> s.hobbies

27.5 matching attributes

Recall that in Sec. 23.6(p122): “Pattern matching: match. .case”, we used class patterns such
as int () and str(), and said we can go farther and match attributes as well?

Let us do that:

p = Person("Toto", 25, ['Knitting’, ’Reading’])

match p:
case Person(age=25, hobbies=[x,y]): print(p.name, y)

Toto Reading

It follows about the same conventions as for mappings: so long as at least the attributes you
are looking for are present, and each one matches its assigned pattern, it matches.

Note, crucially, that although Person(age=25, hobbies=[x,y]) looks like a constructor
invocation, it is not. In this example it happens that the attributes and the constructor
arguments are the same, which is good practice where possible, but that need not be the
case. The name argument is missing anyway.
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Like mapping patterns, class patterns syntactically look like they define an object, but in fact
match only part of it.

A class pattern C(a=1,b=2) has no guarantee to match an object C(a=1,b=2):

class C:

def __init__(s,a,b):

S.X = a+b
myobj = C(a=1, b=2)

match myobj:
case C(a=1, b=2): print("yes")
case C(x=3): print ("Beware!")

Also note that attributes are matched by name, exclusively. A pattern C(x,y) would be
rejected with

TypeError: C() accepts O positional sub-patterns (2 given)

despite C having a two-arguments constructor, which is expected as constructors have
nothing to do with matching, as belaboured above, and so would C(x), with

TypeError: C() accepts O positional sub-patterns (1 given)

The problem is that attributes are not intrinsically ordered, so “bind x to the first attribute”
makes no sense, absent a notion of “first”.

We shall see in Sec. 28206 “Advanced structural pattern matching” that we can use data
classes to enforce an order between attributes, and match accordingly.

27.6  Instance methods and static methods

A method — or instance method — is a function associated to an object, and potentially acting on
it, altering it.

Methods are not fundamentally different from attributes — when it comes down to it, they
are simply attributes that happen to be callable.

Let us define the getold(years) method for instances of Person. It increments their age by
years, and causes them to state their new age.

Like __init__, instance methods always take self as their first argument. The rule is that,
if c is an instance of class C, then a call c. £(x) is equivalent to C. £(c,x).

When presenting the code, I shall not repeat previously defined methods, so as to save space,
and just write . .. to indicate some code has been elided.
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class Person:
# I don’t repeat __init__

def getold(self,years):
self.age += years
print(f"{self.name} says: I am now {self.age} years old.")

Let us test this:

>>> p = Person("Toto", 25, [’Knitting’, ’Reading’])
>>> p.age

25

>>> p.getold(1l)

Toto says: I am now 26 years old.

>>> p.age

26

The second form works as well:

>>> Person.getold(p, 3)
Toto says: I am now 29 years old.

>>> p.age
29

What if you want your class to contain a method that does not rely on a specific instance?
For instance, let us say that we want to compute the average age of many persons? Then,
while this operation is clearly associated with the type Person, is is just as clearly not tied to
a specific person, to a specific instance; especially if you want a specific behaviour for the
empty population.

In that case, you define a static method. Such a method does not have privileged access to
any of the instances of the class, only to its static namespace. Therefore, it should not take
self as its first argument but whatever you want, as would a normal function. In the end, it
is merely a function in the namespace of the class.

Let us define our variadic static method avgage so that it returns the average age of its
arguments, or None if called with no arguments.

class Person:

def avgage(*ps):
return sum( p.age for p in ps ) / len(ps) if ps else None
Person("Toto", 25, [’Knitting’, ’Reading’])
Person("Tata", 97, [’Snoozing’])
r, s = Person(), Person()

Q T
I

Let us test this:
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>>> Person.avgage() # None
>>> Person.avgage (p)

25.0

>>> Person.avgage(p,q)

61.0

>>> Person.avgage(p,q,r,s)
30.5

But wait, what happens if we call it from an instance of the class?

>>> p.avgage ()
25.0
>>> p.avgage (q)
61.0

So far, there is nothing distinguishing our “static” method from any other, beyond the fact
that we didn’t call the first argument self — but this is a convention, not a syntactical
requirement. So when the method is called from an instance, its first argument, as always, is
that instance. The above is therefore equivalent to

>>> Person.avgage (p)
25.0

>>> Person.avgage(p,q)
61.0

And maybe that is the behaviour you want; but if not, if you want the method to behave the
same regardless of whether it is invoked from the class or an instance, then you should use
the @staticmethod decorator, like so:

class Person:

@staticmethod
def avgage(*ps):
return sum( p.age for p in ps ) / len(ps) if ps else None

Then the instance is no longer passed as argument:

>>> p.avgage ()
>>> p.avgage(q)
97.0

A related decorator is @classmethod, which passes the class of the instance object as first
argument, instead of the instance — this allows calling other class or static methods, and is
useful in the case of inheritance.

27.7  String representations str and repr

So far, our objects have been somewhat cryptic to look at in the interactive mode:
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>>> p
<__main__.Person object at 0x7f370d00dac8>
>>> q
<__main__.Person object at 0x7£f3710d95b70>

Sure, it tells us the main information: type and memory address, allowing us to see that
those are two different objects, but it would be nice to have palatable string representations
of our persons. So far, conversion to string yields the same display, wrapped in a string;:

>>> str(p)
'<__main__.Person object at 0x7f370d00dac8>’

There are actually special methods which we can override to change this: __repr__ and
str

The first one is called to get a representation of the object for Python — the canonical string
representation which, if at all possible, should be valid Python code to build a copy of the
object. It is called by the builtin repr function.

The second one is called by str to convert an object in a “pretty”, human friendly, represen-
tation. Lacking a specific implementation, it defaults to using the repr.

To fully understand the difference between the two, consider this:

>>> str(’Hello’)
"Hello’

>>> repr(’Hello’)
ll’Hello!ll

>>> print(str(’Hello’), "and",repr(’Hello’))
Hello and ’Hello’

>>> repr(repr(’Hello’))
'\’ Hello\’"’

The repr version contains the Python quotes and escapes necessary to encode a str object,
and would be used by a programmer trying to generate Python code in a string, say, for
later execution by timeit. The str version contains what you actually want to see when
you decide to print a string. print(str(x)) is equivalent to print (x).

Let us define a canonical string representation for Person:

class Person:

def __repr__(self):
return f"Person({repr(self.name)}, {self.age}, {self.hobbies})"

Let us test this:

196



>>> p

Person(’Toto’, 25, [’Knitting’, ’'Reading’])
>>> repr(p)

"Person(’Toto’, 25, ['Knitting’, ’Reading’])"
>>> str(p)

"Person(’Toto’, 25, [’Knitting’, ’Reading’])"

>>> p.getold(10)

Toto says: I am now 35 years old.

>>> p

Person(’Toto’, 35, [’Knitting’, ’'Reading’])

But, before we defined this, why did we have a repr at all? Why do we have a str, when
we have not defined it? How does it know that it should default to repr? Because no class
stands on its own; all inherit from object, and it defines a number of standard behaviours
that we can override if we so choose.

27.8 Inheritance

Inheritance is the process through which new classes inherit the behaviour of other classes.
They can then choose to redefine and override some of them, and add their own new
behaviours. The syntax to inherit from a class is as follows:

class <DerivedClass> (<ParentClass>):

Implicitly, all classes inherit, at least, from object, so

class Person:

was strictly equivalent to

class Person(object):

Let use derive a class from Person:

class Teacher (Person):

def lecture(self):
print (f’{self.name} lectures: "You are doing it wrong!"’)

Let us test that and see that a teacher can indeed behave in all respects as a person, but, they
can also lecture people.

>>> VH = Teacher("V. Hugot", 33, [])

>>> VH
Person(’V. Hugot’, 33, [])

>>> VH.getold(1l)
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V. Hugot says: I am now 34 years old.

>>> VH.lecture()
V. Hugot lectures: "You are doing it wrong!"

>>> p.lecture()
AttributeError: ’Person’ object has no attribute ’lecture’

We have

>>> isinstance (VH, Teacher)

True

>>> isinstance(VH, Person)

True # it is a subclass

>>> isinstance(VH, object)

True # of that too; always

>>> isinstance(VH, list)

False # just checking isinstance can return False ;-)

This is all well and good; however, we would like to override some of the inherited
behaviours to make them more specific to the case of teachers. For one thing, the string
representation still states Person; let us update it to say Teacher.

Note: this is a somewhat artificial example to illustrate inheritance, and in this specific case, you
could just bypass that and get the current class name with obj.__class__.__name__. But let us
pretend that does not exist.

class Teacher (Person):

def __repr__(self):
return f"Teacher({repr(self.name)}, {self.age}, {self.hobbies})"

Now it behaves as it should:

>>> VH
Teacher(’V. Hugot’, 33, [])

Since only the first word changes, could we not have used the previous representation, and
simply changed the first word? Yes we could have, for we can call methods from parent
classes:

def __repr__(self):
return Person.__repr__(self).replace("Person","Teacher",1)

has the same effect as before. Instead of calling Person explicitly, and needing to pass self,
would it not be great if we could, for an instant, treat self as an instance of the parent class
only? We can, thanks to super (), which returns a delegate object to the parent class, with
full access to all applicable attributes. The code becomes:
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def __repr__(self):
return super().__repr__().replace("Person","Teacher",1)

with, again, the same results. Super is preferred for single inheritance — for instance, should
you decide to change the base class, you can do so transparently, without having to alter all
the methods that used a call to a parent, provided that the new parent class is compatible
with the calls that are made. It is also a little bit more readable.

In the case of multiple inheritance, it is a powerful tool, but requires careful design and
consideration to work correctly. In Sec. 27.9,199: “Multiple inheritance”, we shall assume
that we are using versions of __repr__ that do not use super().

Let us create another derived class: what about students? Well, they can’t lecture people,
but they can goof around, acquiring new hobbies in the process:

class Student (Person):

def goof(self,hobby):
self.hobbies.appendChobby)
print (f’{self.name} goofs around with {hobby.lower()}’)

def __repr__(self):
return super().__repr__().replace("Person","Student",1)
Let us see Bob discover the joys of knitting:

>>> Bob = Student("Bob", 19, [])

>>> Bob.goof(’Knitting’)
Bob goofs around with knitting

>>> Bob
Student (’Bob’, 19, [’Knitting’])

Let us not forget that everyone is still a Person, and that Persons, Teachers, and Students
can be mixed in any context that merely needs a Person:

>>> all ( isinstance(o,Person) for o in (p,q,VH,Bob,PVH) )
True

>>> Person.avgage(p,q,VH,Bob,PVH)
41.4

27.9  Multiple inheritance

Advanced notion: skip this section unless you have a clear and present need to use the technique —
in which case you will need a lot more documentation.
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Python supports multiple inheritance, which means that a class can inherit from several —
though inheriting just from one is much more common. The syntax is as follows:

class <DerivedClass> (<ParentClassl>,...,<ParentClassN>):

Multiple inheritance has a reputation for difficulty and potential danger, to the point that
Java does not support it at all, as opposed to, say, C++. Whether that reputation is fully
deserved, whether the danger is intrinsic to multiple inheritance as a concept or whether it
is the result of poor implementations and uses of it, remains a matter of some debate. Let us
just see briefly how it works in Python.

Consider the case of professors; clearly, they are a subset of teachers, but, as researchers,
they are eternal students. Thus, they can behave as both — where that does not conflict.

class Prof(Teacher,Student):
pass

>>> PVH = Prof("V. Hugot", 33, [])

>>> PVH.goof(’Video Games’)
V. Hugot goofs around with video games

>>> PVH.lecture()
V. Hugot lectures: "You are doing it wrong!"

So far so good. But what about methods shared by the two parent classes, but implemented
differently? In that case Teacher and Student have conflicting definitions of __repr__.
Which one prevails? @@

>>> PVH
Teacher(’V. Hugot’, 33, [1)

It turns out that Teacher prevails. Why? Because Python’s method to resolve this conflict
— known as the diamond problem — is to use left-to-right priority in the order of inheritance.
Teacher comes first in the definition Prof (Teacher, Student), so that is what is used.

The details are a bit more complicated. Python builds a method resolution order (MRO), which
is a linear order among classes derived from the inheritance graph according to algorithms
we shall not get into. When a method is called, Python invokes it from the first class, with
respect to the MRO, that implements it.

You can consult the MRO of any class, as it is stored as an attribute of the class object:

>>> Prof.__mro

( <class ’__main__.Prof’>,
<class ’__main__.Teacher’>, <class ’__main__.Student’>,
<class ’__main__.Person’>,

@)Here we are assuming there is no use of super().
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<class ’object’>)

In other words, when Prof calls a method, Python first looks for an implementation in
Prof itself; if Prof does not implement the method, it looks into the parents, in the order
Teacher, then Student, then it looks into the common ancestor Person, and as a last resort,
into object.

27.10  Special, magic, dunder methods

Special, magic, or dunder — for double underscore — methods are methods with a special
role in Python. By convention, they are named according to the template __methodname__.

What is magical or special about them? Nothing intrinsic; they are ordinary methods,
without any special syntax or mechanics. What makes them special is that important parts
of the Python language calls them implicitly and automatically, in certain circumstances.

So far we have seen __len__, which is called by the len function; __repr__, which is called
by the repr function, and thus any time a value is displayed in the Python interactive mode;
__str__, which is called any time you print something; __init__, which is called any time

a new object is created. We shall see __next__and __iter__, which are central to iterable
structures in Sec. 29712): “Iterables, iterators, and generators”, and there are many more.

Operators such as + are actually syntactic sugar for method calls. If you want to define
a type that supports those operators — “operator overloading”, — all you have to do is
implement the corresponding methods.

Binary operators:

+ __add__(self,other)

- __sub__(self,other)

* __mul__(self,other)

// __floordiv__(self,other)
__truediv__(self,other)
__mod__(self,other)
__pow__(self,other[,modulo])
<< __lshift__(self,other)
>> __rshift__(self,other)
& __and__(self,other)

A __xor__(self,other)

| __or__(self,other)

LIRS
e

Binary comparison operators:
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< __1t__(self,other)
<= __le__(self,other)
== __eq__(self,other)
=! __ne__(self,other)
>= __ge__(self,other)
> __gt__(self,other)

Note that every binary operator has a normal version and a “reversed”, or “reflected”
version. That means there are also methods __radd
_rlt__,__req__, etc.

__rsub__, __rmul __rdiv__,

S— —_

The difference between, say, __add__ and __radd__ is this: suppose I want to roll my own
wrapper for int — for some reason — with support for addition. I get the class

class INT:
def __init__(self, a): self.a = a
def __add__(self, other):
print("__add__")
return self.a + other

When an object of my class is the left operand of +, everything works as expected. But not
when my object is on the right:

>>> INT(1) + 2
add

3

>>> 1 + INT(2)
TypeError: unsupported operand type(s) for +: ’'int’ and ’INT’

Why is that? Well, recall the rule seen in Sec. 27.6(p193): “Instance methods and static
methods”:

The rule is that, if c is an instance of class C, then a call c. £(x) is equivalent to
C.f(c,x).

That means that INT(1) + 2 is translated into INT.__add__(INT(1), 2) — without recom-
puting INT (1), of course. Then, howis1 + INT(2) translated? Intoint.__add__(1,INT(2)).
The problem is int is not programmed to deal with operands of type INT; it does not know

that class exists!

Must we modify the builtin class int to get support for our homemade INT? Fortunately no.
It suffices to add an __radd__ method to our INT class:

class INT:
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def __radd__(self, other):
print("__radd__")
return other + self.a

and things work as expected:

>>> 1 + INT(2)
__radd__
3

Why and how does that work? When int fails to handle the other operand, of type INT, it
obligingly returns a very special value NotImplemented. Think of it like a little brother for
None: like None, it is the only one of its type:

>>> type(NotImplemented)
<class ’NotImplementedType’>

What's special about that value is that the Python interpreter will actively be on the lookout
for it as the return value when executing magic methods for binary operators, such as
__add__. If it does not detect it, the buck stops there. If it does detect it, it tries to reverse the
operands and invoke __radd__ from the other type. If that method is not implemented, or
is but ends up returning NotImplemented for those particular arguements, only then does it
give up and raise a TypeError.

If that is not clear, play with the following code:

class A:
def __add__(s,0):
print("Aadd")
if isinstance(o,int): return "intOK"
return NotImplemented

class B:
# pass
def __radd__(s,o0):
print ("Bradd")
if isinstance(o,A): return "yes"

Try executing AQ)+1 and AQQ+B() with and without the return NotImplemented line and
the __radd__ method in B, until you understand what is going on.

That means that any proper implementation of a binary operator, that wishes to let other
classes fully support it with their own operators, should be of the form:

if isinstance(other, sometype):
return # something

elif isinstance(other, someOtherType):
return something_else
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return NotImplemented

Without the last line, the method would return None, which is as valid a return value as any
other, and the interpreter would stop there.

Incrementation / in-place assignment operators:

+= __iadd__(self,other)
-= __isub__(self,other)
= __imul__(self,other)
= __idiv__(self,other)

//= __ifloordiv__(self,other)

%= __imod__(self,other)

**=  __ipow__(self,other[,modulo])
<<= __ilshift__(self,other)

>>= __jrshift__(self,other)

&= __iand__(self,other)

A=  __ixor__(self,other)

|= _ior__(self,other)

Not that there are NotImplemented shenanigans at work here again: when executinga += b,
Python first tries __iadd__ — there is some expectations that it implements an in-place
version of __add__, cf. Sec. 24.2.2.35139): “In-place assignment on mutable structures” — and
if that is not implemented or returns NotImplemented, it triesa = a + b, which invokes
__add__. That too can fail, in which case it tries __radd__, as seen before.

Consider the following code for an illustration:

class A:

def __add__(s,0):
print("A.add")
if isinstance(o,int): return "Aa"
return NotImplemented

def __iadd__(s,0):
print("A.iadd")
return NotImplemented

class B:
def __radd__(s,o0):
print("B.radd")
if isinstance(o,A): return "yes"
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B.radd
>>> a

yes

Unary operators, conversions, etc:

- __neg__(self)

+ __pos__(self)
abs() __abs__(self)

~ __invert__(self)
complex() __complex__(self)
int(Q) __int__(self)
float() __float__(self)
oct() __oct__(self)
hex() __hex__(self)
repr() __repr__(self)
str() __str__(self)
bool () __bool__(self)
hash(Q) __hash__(self)
len() __len__(self)
reversed() __reversed__(self)

Other special operators

X[index] __getitem__(self, index)
X[index] = v __setitem__(self, index, V)

x in X __contains__(self, other)

fx) __call__(self, *args, **kwargs)

Note that your classes can support some operations even if they are not explicitly defined.
For instance, if __contains__ is not implemented, x in X will default to iterating on the
structure X via __iter__ in search of x. If __iter__ is not implemented either, it will try to
iterate on X anyway by testing indexes 0, 1, 2,... via __getitem__. Only if that is not
implemented either does it give up.

We shall see more of those specific iteration problems in Sec. 29512): “Iterables, iterators, and
generators”. Just remember, with this example and that of __add__and __radd__ seen at the
beginning of this section, that there is plenty of implicit behaviour involved in translating
what you write into magic method calls.
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27.11  Against paradigmatic integralism

The following advice may not be universally accepted, to put it mildly: Do not force yourself
to put everything into objects. While cars and such offer nice examples where the object
abstraction works fairly well, and there are plenty of cases where methods should belong to
specific types, things break down quickly in more complex cases.

For instance, when several types of objects interact, it often becomes difficult to decide
which of the objects should own the actions that are jointly performed; that is, who owns
the method, and who is merely a parameter of it. For instance, should the operation
“concatenating a list of strings” belong to the type of lists or that of strings? What about
operations involving three or four different types?

Use classes where it is clear that the abstraction work, and stick with standard procedural
code for everything else. The ratio of the two will vary widely depending on the specific
problem.

If all you need are namespaces, use modules.

28  Advanced structural pattern matching

Now that we have seen more of OOP, let us come back to pattern matching. Be sure to
have read Sec. 23.6(p12;): “Pattern matching: match. .case” and Sec. 27.5(5192): “matching
attributes” before this.

As a guiding example, we shall implement the transformation of formulee of propositional
logic into Negation Normal Form (NNF). You should have seen this already in your Logic
course.

If propositional logic does not excite you overmuch in and of itself, understand that, at the
end of the day, what we are doing is manipulating inductive structures by applying precise
structural rules. A considerable number of very interesting things depend on the very same
techniques.

Any arithmetic expression, such as 2 x (x — 1) 4 3, is an inductive structure; any computation
done on it is done by breaking down its structure and applying rules to rewrite it or compute
its value.

Any program code is also an inductive structure — refer to the Languages Theory course,
especially the section on grammars — and program compilation proceeds inductively, by
breaking down the code’s structure. You will see that next semester during the Compilation
course.

Therefore, the techniques used there are not at all tied to propositional logic, but are
extremely general and important for a vast class of problems. And the match keyword
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provides an extremely good way of tackling such problems. In Sec. 45,2817: “A smidgen of
Computer Algebra”, you will implement a rudimentary Computer Algebra System capable
of computing derivative functions symbolically.

With this out of the way, recall that formulee of propositional logic (PL) are those built with
operators A, V,, =>, <= ,..., the first three being the only indispensable ones, since =
and <= can be refined in terms of those three @,

In other words, PL formulze ¢ are generated by the grammar
¢ = x ]l oA | oVe | mo | =0 |

For instance, let us consider the formula
¢ = =(x=(yvz).

A formula is in NNF when it only uses A, Vv, = and all negations appear on atoms (here,
variables). So @ above is not in NNF, since it is the negation of an implication, which is not
an atom — and not even allowed as an operator.

To put a formula in NNF without changing its truth table, it suffices to rewrite it according
to the following rules, until nothing is left to be rewritten:

xX=yYy — -xVy
—|(XVy) — XAy
-(xAy) — -xV-y
-oX = X

The first is the definition of =, which we get rid of, the next two are the De Morgan’s laws,
and the last is the elimination of the double negation. Notice that negation is systematically
pushed inwards or removed.

Let us implement this transformation. The first question is: “how do I represent my
formulee?”.

For the purpose of pattern matching, we could take variable names to be strings, define
constants AND, OR, NOT, and represent a formula as a tuple

(<operator>, <left operand>, <right operand>)

so that ¢ becomes

(NOT, (IMPLIES, "x", (OR, "y", "z")))

@) Alternatively, all operators can be defined in terms of a single, less intuitive operator: either NOR or
NAND. But this is just a bit of trivia, outside of the scope of the current discussion.
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That would work quite nicely, using only sequence patterns, but we can do better by using
data classes and their patterns. It would be nice if Or was an object, and we could write
or("y","z"), nest it in bigger formulae and enjoy the same kind of pattern matching as for
tuples above. Let’s make it so!

The @dataclass decorator applies to a barebones class definition, just a class name and a list
of (typed @) attributes, and automatically generates the magic methods implementing the
obvious constructor and repr. By obvious, I mean that an attribute x becomes a constructor
argument x, and the constructor does self.x = x.

Furthermore, @dataclasse specifies the order of the attributes for the purpose of class
patterns as the order in which the attributes were written in the code.

Let us partake in all this syntactic sugar for the benefit of our formulze:

from dataclasses import dataclass

@dataclass

class BinOp:
1: object
r: object

class And (BinOp):
symb = "&"

class Or (BinOp):
symb = "[|"

class Implies (BinOp):
symb = "->

"

@dataclass
class Not:
f: object

f = Not(Implies("x", Or("y", "z")))

>>> f
Not (f=Implies(l="x’, r=0r(l="y’, r="2z")))

A binary operator is just something with two attributes 1 and r — and in practice the names
won’t matter much, since dataclasses have ordered attributes, and we shall match according
to order and not name. And, Or, and Implies, as well as equivalence and whatever else you
want, are particular binary operators, to which I add a symb attribute that will be useful later
on, to prettify the string representation of the formula.

Not is the only unary operator possible, so we don’t bother abstracting it with a class UnaryOp,

@)The type annotation for the attributes is generally not examined by Python itself, so we can get away with
just :object
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that would be overkill.

With this, using the constructors obligingly provided by @dataclass, we can define a
formula f. Thanks to the automatically defined repr — thanks again, @dataclass — we
can visualise it as well, even if in a little verbose form.

Now let us write a function fstr to obtain a nicer string representation of our formulee,
using pattern matching.

def fstr(f):

match f:
case str(): return f # variable
case BinOp(l,r): return f" ({fstr(1)} {f.symb} {fstr(r)})"
case Not(f): return f"-{fstr(£)}"
case _: raise ValueError (f)

>>> fstr(f)
-(x > (v | 2))

Now that is a little bit more compact and legible. Note that BinOp will match any object of
class And, Or, and Implies. We could have written three case lines

case And(l,r): return f"({fstr(1)} & {fstr(r)})"
case Or(l,r): return f" ({fstr(1)} | {fstr(x)}P"
case Implies(l,r): return f"({fstr(1)} -> {fstr(r)})"

but that would not have been very elegant. If we had many functions like this, we would
need to add a line to each of them each time we add a new operator. By using the symb
attribute instead, our function will naturally adapt to any new operator, so long as its symb
attribute is defined.

A quick note. When writing such functions, it is a good idea to begin by writing something
like

case _: raise ValueError(f)

If nothing matches, you get None. It’s a pain to debug if you get Nones you don’t expect
because you forgot a case. Languages like OCaml or Haskell, where structural pattern-
matching is most at home, are capable of telling you when your patterns are not exhaustive,
and give you examples of values that are not matched (at least when there are no guards).
Python cannot do that, beyond detecting obvious capture patterns of wildcards that are not
on the last case.

Let us now write a function rmimp to get rid of implications. It is a simple transformation:
the identity everywhere except where it can apply

X=yYy — ~XVy.
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We obtain:

def rmimp(f):

match f:
case str(): return f
case Implies(l,r): return Or(Not(rmimp(l)), rmimp(r))
case BinOp(l,r): return type(f) (rmimp(l), rmimp(r))
case Not(f): return Not(rmimp(£f))
case _: raise ValueError (f)
>>> fstr(F := rmimp(£))

-C-x | Gy | 2z
We match Implies(1l,r) before BinOp(1l,r) because, of course, the latter is strictly more
general than the former; if it were first, Implies would be shadowed, never to be matched.

We use a nice little trick in

case BinOp(l,r): return type(f) (rmimp(l), rmimp(r))

We match a binary operator, but we don’t know which, aside the fact that it cannot be
Implies. We want to reproduce it identically, recursively transforming its children. We
cannot write BinOp (rmimp (1), rmimp(r)) because that is not even a well-defined formula.
We need to know which operator.

So we use the fact that type (f) returns the class of £, which is callable: the constructor
is called. So type (£f) (rmimp (1), rmimp(r)) becomes And(rmimp(1l), rmimp(r)) if fis of
type And, and so on, which is exactly what we want.

There remains to apply De Morgan’s laws and negation elimination, and we have our NNF.
X = X
Observe that De Morgan’s laws

-(xVy) — -xA-y
-(xAy) — —-xV-y

are of the same form apart from the exchange of A and V, a fact we shall exploit to factorise
the two rules into one:

def nnf(f):
z = nnf ; morgan = {And:Or, Or:And}

match f£:
case Not(Not(£f)): return z(f)

case Not(BinOp(l,r) as g):
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return morgan[type(g)](z(Not(l)), z(Not(r)))

case BinOp(l,r): return type(£f)(z(1l), z(r))
case Not(f): return Not(z(f))

case str(): return f

case _: raise ValueError (f)

>>> fstr(f)

-(x > (y | z)

>>> fstr(F)

-C-x | Gy | 2

>>> fstr(N := nnf(F))
(x & (-y & -2))

Note the recursive calls to (z(Not (1)), z(Not(r))) in the De Morgan rule: it would be
wrong to write Not (z (1)), because then the function could forget to simplify Not (Not (. .))
patterns.

28.1  An overlong aside on naming conventions

Apart from the factorisation of the De Morgan’s rules, the other neat little trick in nnf is
z = nnf. What is the point of it? You do a lot of recursive calls in such functions, and the
shorter they are to write, the better for the legibility of the code. With this, we have short
recursive calls without sacrificing the legibility of the name of the function exposed to the
user.

Furthermore, you should observe by now that all those functions on formulee are very
similar-looking. Of course they are, since they act on the same inductive structure. Thus is is
often expedient to copy and paste the case patterns of a function to quick-start the writing
of the next — it saves time and helps ensure you don’t miss too many cases.

But if I copy cases from, say, rmimp, into my new function nnf, I get lines of the form

case Not(f): return Not(rmimp(f))

and if I forget to rename every single instance of rmimp into nnf, then I get interesting errors,
whereby nnf escapes into rmimp.

To save the time necessary to rename all those calls, and avoid that type of mistake, I
personally @@ find it convenient to take the convention of naming the recursive function z
everywhere. It also avoids problems whenever you choose to rename your functions. . .

Sometimes also, you come to realise that you need to make your pattern-matching a
subfunction to the real function of interest. For instance, in Sec. 45,8): “A smidgen
of Computer Algebra”, when you simplify an arithmetical expression, each action may

(@d)Emphasis on I, personally. This is not at all standard; I haven’t seen many people do that.
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introduce new opportunities for simplifications; so you gain from repeating the simplification
until a fixpoint is reached. In that case, you have something like

def simp(e):
def z(e):
match e:
case Plus(0,e) | Plus(e,®): return e

return fixpoint(z,e)

If you didn’t anticipate that structure, the z convention helps you avoid, again, lots of
error-prone renaming and makes the refactoring trivial.

It can also be that what needs to be called recursively is a multi-argument function, and the
structural recursion is only done on one of them. For instance, in Sec. 45251): “A smidgen
of Computer Algebra” again, you need to evaluate an expression e for a certain value val of
a variable var with a function eval (e,var,val).

The matching only happens on e, while the other arguments remain the same, always. A
nice z = lambda e: eval(e,var,val)) removes quite a lot of clutter.

29  Iterables, iterators, and generators

Let us now look at how iteration works under the hood.

An iterable is any object that can be iterated upon; by that I mean, you can write code of the
form for x in object.

Being iterable entails some other consequences: for instance the in operator is automatically
defined, with the default operation “iterate until you find the element”.

In collections with more efficient ways of testing membership, this default behaviour is
overridden via the __contains__ special method.

There are many such patterns in Python, whereby implementing some functionality auto-
matically and implicitly provides default implementations of other, related functionalities.

The classical way of being an iterable is by implementing the __iter__ method, called by
the iter builtin function, returning an iterator — more on that shortly. However, that is
not strictly necessary, as any indexable object supporting indexes starting at 0 implicitly
becomes iterable, thanks to an implicit iteration over its indexes.

class X:
def __getitem__(s,0): # s[o]
if o in (0,1): return ’a’
else: raise IndexError
x=XQ)
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>>> ’a’ in x
True
>>> 'b’ in x
False

>>> 1list(x)

[’a’, ’a’]

>>> for c in x: print (c)
a

a

Regardless of how an object became an iterable, the iter function returns an iterator from
it. Each time an iterable is iterated over, an iterator is built from it, as it is what powers an
iteration.

Iterators are objects that implement the __next__ method, called by the next function. It
must return a value on each call, and, optionally, at some point, it may raise StopIteration,
in which case it must continue raising StopIteration on every subsequent calls. Failing
that, the implementation is deemed broken.

Note that iterators produce each value on demand, and have no memory of their previously
generated values, nor memory reserved for their future values. They are iterated upon once,
and once only, and each call of next irreversibly alters their state @

They are merely an object, potentially with a few attributes, waiting for the next call of a
specific method — which may alter their state.

They are thus very memory efficient compared to generating all the values and storing them
in memory in a list or a tuple. They can even describe infinite collections, simply by never
raising StopIteration, and that will not become a problem unless someone actively tries to
loop over all values. This is an instance of lazy, or call-by-need programming, where values
are evaluated only when actually required; this opens up techniques for elegant and greatly
efficient code. However, Python does not have the full power of lazy evaluation, as this
works best in purely functional languages, where every value is immutable. Haskell is
probably the best example of a purely functional, lazy by default language.

Iterators are iterables as well, and must implement __iter__ so that they return themselves.

29.1  Explicit class implementation

There are cleaner ways to define iterators than by manually implementing those methods —
yield, and generator expressions — so let us take a running example. Let us implement an
inclusive range function: r(i, j) = [i,j], as an iterator.

class r:

(@)l _ and will do so for all finite iterators. The only iterators whose state is unaltered by next are those that
return the same value on every call, indefinitely. Those that are reversibly altered are infinite and cyclic.
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def __init__(s,i,j):
s.i, s.j =1,]j
s.k = i

def __iter__(s): return s

def __next__(s):
if s.k <= s.j:
s.k += 1
return s.k - 1
else: raise StoplIteration

We have:

>>> list(r(2,7))
[2, 3, 4, 5, 6, 7]

>>> r(2,7) # different iterator objects each time
<__main__.r object at 0x7fd85ffae860>

>>> r(2,7)

<__main__.r object at 0x7fd85ffb8eb8>

>>> it = r(2,7)
>>> next(it) # each call alters state

>>> next(it)

>>> list(it)
[4, 5, 6, 7]
>>> list(it)
[]

This is not quite the behaviour of the usual range object, which can be iterated over any
number of times. To achieve that, we have two different classes: a reusable iterable and the
iterators it produces. Let us rename our previous version of r to r_iterator and define a
new class

class r:
def __init__(s,i,j):
s.i, s.j = 1,]
s.k = i

def __iter__(s):
return r_iterator(s.i,s.j)

We have:

>>> it = r(2,7)

>>> list(it)
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[2, 3, 4, 5, 6, 7]
>>> list(it)
[2! 31 4’ 5! 6! 7]

>>> iterator = iter(it)
>>> list(iterator)
[2, 3, 4, 5, 6, 7]
>>> list(iterator)

[]

This time, it works as usual.

29.2 yield and yield from

While neither version of the above is very difficult to write, it is still arguably a lot of code
and boilerplate given how trivial the logic of what we are implementing is.

Fundamentally, what we want to do is loop over indexes from i to j, returning each one in
turn. Of course, we cannot do that with a functions return statement, because that returns
just one value and immediately terminates the function and discards any and all of its local
variables.

If only we had a keyword much like return, but that does not terminate the function after
“returning” a value, but instead “freezes” it, with all its local variables and execution state,
so that we can later thaw it, continue looping where we left off, and thus return value after
value, on demand, until the end of the loop. As it happens, that is exactly what the yield
keyword does:

def r(i,j):
while i <= j:
yield i
i+=1

Any function whose body contains yield actually returns an iterator, or more specifically a

generator, which is simply what we call iterators obtained in such a manner:

>>> r
<function r at 0x7f81332aed90>

>>> r(2,7)
<generator object r at 0x7£f81332b44c0>

Put another way, r has become the constructor for generators. We call it a generator function,
though by an abuse of language that I shall avoid in this section the function itself is also
often called a generator.

The produced generators behave in all manners exactly as the iterators we defined previously.
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>>> r(2,7) # different objects each time
<generator object r at 0x7£f81332b4468>
>>> r((2,7)

<generator object r at 0x7£f81332b4410>

>>> it = r(2,7)
>>> next(it) # each call alters state
>>> next(it)

>>> list(it)
[4, 5, 6, 7]
>>> list(it)
[]

return can appear in a generator function — and in fact, a return or, equivalently,
return None is implicitly present at the end of all functions — and simply forces the
end of the iteration, similarly to a raise StopIteration.

Up to Python 3.6 return <value> s is equivalent to raise StopIteration(<value>). This
behaviour changes in Python 3.7: you must now use return to end the iteration in a
generator function.

Suppose now that you want, in a generator function, to yield values from another iterator.
For instance, let us write a generator function loop (i, j,n) that repeats the range [i,j] n
times. Our first instinct would be to write something like:

def loop(i,j,n):
for _ in range(n):
yield r(i,j)

but that would be wrong, because then we yield a generator each time, and not the values
produced by it:

>>> list(loop(l,3,3))

[<generator object r at 0x7fa5bc6cd410>,
<generator object r at 0x7fa5bc6cd3b8>,
<generator object r at 0x7fa5bc6cd468>]

We cannot use return either, as that would break the loop. The first approach would be to
iterate over r (i, j) and yield its values:

def loop(i,j,n):
for _ in range(n):
for x in r(i,j):
yield x
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>>> 1list( loop(l1l,3,3) )
(L, 2, 3, 1, 2, 3, 1, 2, 3]

It would be much more elegant, and probably more efficient, to have a means of saying
“delegate value generation to r(i, j)”.

For this, Python provides another keyword: yield from, which delegates the control flow
to a subiterator:

def loop(i,j,n):
for in range(n):

yield from r(i,j)

>>> list(loop(l,3,3))

[, 2, 3, 1, 2, 3, 1, 2, 3]

>>> g = loop(l,3,3) # still an iterator
>>> next(g)

>>> next(g)

2

>>> 1list(g)

[3, 1, 2, 3, 1, 2, 3]

While the existence of yield fromis always convenient, it shines particularly in advanced
uses of generators, such as coroutines, which we shall not discuss here.

29.3  Generator expressions

You can now return to Sec. 24.5.1153: “Comprehensions for every type; first contact
with generators” and Sec. 24.5.2,160: “Loop nesting in comprehensions” to gain a full
understanding of what a generator expression is.

29.4  Understanding deeply lazy computations
Data processing, when boiled down to its essentials, tends to take the following form:

data® # our data source

datal
data2

fl1(data®)
f2(datal)

dataN = fN(dataNml)
Some initial data, be it from a file, a database, or whatever else, goes through a number of

transformations until it is ready. Traditionally, when you write code of this form, or even of
the form
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dataN = fN(fNml1(... fl(data®)...))

each step must be completed before the next one begins, and each result is integrally stored
In memory.

But perhaps you do not really need all of the resulting dataN, though you may not know in
advance how much of it you might need. In that case, instead of the traditional “left-to-right,
line-by-line” approach, you may prefer a more “vertical” mode of computation, whereby
you compute just a bit of data®, and then out of it, whatever you can of datal, and so on,
and finally look at the little bit of dataN that you obtain, and decide whether you have what
you need, or want to repeat the process to get more.

That seems like a good idea on the surface, and the need for this is obvious; when any of the
dataK are very large and you are looking for something in the fully transformed data, itis a
terrible waste to fully compute any step or store it in memory.

But implementing this seems like it would require a lot of bookkeeping to keep track of
where you are on each level of data processing, and how do you even know how much of
data® you should process to get enough new data to progress in datal’s computation, and
get enough to progress in data2’s etc?

Each level of data processing may have its own unique requirements of the previous level
in order to progress in its own computation. Perhaps f1 needs 1 byte of data® in order to
produce 1 byte of datal; perhaps £2 needs 3 bytes of datal in order to produce 1 byte of
dataz2, except when it encounters a certain rare pattern, say, OPEN in which case in needs to
process an arbitrary amount of data, looking for another pattern, say CLOSE, and produces
10 bytes; perhaps £3...

Keeping track of a multi-layered computation in that way, so as to determine how much of
data® should be produced to obtain, say, 20 new bytes of dataN seems, if not impossible, as
least very difficult, programmatically.

Let us change our viewpoint a bit. Each level of computation is now naturally lazy. It knows
what it needs to do, but doesn’t actually do any of it unless actually prompted. When it
is asked to produce something, it asks the level below it for stuff, until it has enough and
is ready to produce something; it then returns it, and goes back to sleep until somebody
bothers it again, asking for more. Spoiler alert: this is exactly how iterators behave.

In this model, if you need 20 bytes of dataN, you just wake up £N, ask for 20 bytes, and then
it is no longer your problem. You need not know or keep track of the needs of each layer.
You know your needs, 20 bytes in that case, and each layer knows its own needs, and will
prod the layer below it for what it needs, and no more.

fN will take what it needs from fNml, give you the result and go back to sleep, and during
that process £Nm1 will do the same with £Nm2, and so on, all the way down to data®.
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Let us illustrate that with some code. To simplify and help visualise the vertical aspect of
the computation, each level produces one value for one value of the previous level. The
value produced is simply the computation depth, starting at O for the data source.

def data(m):
for i in range(m):
print(f"Data yields 0; has {m-i-1} left")
yield 0
print("Data is exhausted")

def chaingens(g,lvl):
while True:

print(£f"1vl {1vl} gen asks")
d = next(g, None)
if d is None: break
res =d + 1
print(£f"1vl {1lvl} gen obtains {d}, yields {res}")
yield res

def genchain(n,m):
if n ==
return data(m)
else:
return chaingens(genchain(n-1,m),n)

g = genchain(3,3)

for v in g:
print(f"Final computation depth: {v}\n")
lvl 3 gen asks
1lvl 2 gen asks
1vl 1 gen asks
Data yields 0; has 2 left
lvl 1 gen obtains 0, yields
1lvl 2 gen obtains 1, yields 2
1lvl 3 gen obtains 2, yields 3
Final computation depth: 3

lvl 3 gen asks

1lvl 2 gen asks

lvl 1 gen asks

Data yields 0; has 1 left

lvl 1 gen obtains 0, yields
1vl 2 gen obtains 1, yields 2
lvl 3 gen obtains 2, yields 3
Final computation depth: 3

lvl 3 gen asks

lvl 2 gen asks
lvl 1 gen asks
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Data yields 0; has 0 left

1vl 1 gen obtains 0, yields 1
lvl 2 gen obtains 1, yields 2
1vl 3 gen obtains 2, yields 3
Final computation depth: 3

lvl 3 gen asks
lvl 2 gen asks
lvl 1 gen asks
Data is exhausted

Play with this code until you fully understand what is going on.

Sec. 46p301: “Conway sequence: generating fun” proposes an exercise that relies heavily on
layering lazy computations — in the form of generators — to achieve immense performance
improvements. In that exercise, each level of computation requires an unpredictable amount
of data from the previous one.

29.5  Iterator patterns, tools, and tricks

29.5.1 Itertools module

The itertools module implements a number of very convenient tools acting on iterators.
Read the documentation for yourself.

In the next section, we discuss some common patterns, independently of their implementation
in itertools.

29.5.2 A generator for N and other infinite collections
See itertools. count.

While N is an infinite set, it is countable, which means that its elements can be enumerated.
Thus, we can easily make a generator function for it:

def NO:
i=20
while True:
yield i
i+=1

>>> [ next(g) for in range(5) 1]

[6, 1, 2, 3, 4]

Could we make a generator for N?? For Z? For N™, for arbitrary n € N? For R? Why?
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29.5.3  Getting (up to) the n-th element

See itertools.islice.

29.5.3.1 Keep the previous elements

Iterators are generally not indexable. Is there a convenient way to get the n-th element of an
iterator? Not if you care about the previous elements — in that case, convert the elements
you need into a sequence type:

>>> g = r(1,1000)

>>> 1 = [ next(g) for _ in range(5) ]
>>> 1

[1, 2, 3, 4, 5]

>>> next(g)

6

The above code is interesting, because, until Python 3.7, it highlighted the one instance
where it was not actually entirely true that 1ist (<generator expression>) is the same as
[<generator expression>]:

>>> g = r(1,3)

>>> [ next(g) for _ in range(5) ]
StopIteration

>>> g = r(1,3)
>>> list( next(g) for _ in range(5) )
[1, 2, 3] # in 3.6; StopIteration in 3.7+

In the context of a “free” generator expression, StopIteration is captured to... stop the
iteration, whereas it bubbles up in any other context. This behaviour was changed in PEP
479, so that now the exception bubbles up in every context.

From 3.7 onward, to get the same behaviour as 3.6’s ( next(g) for _ in range(i) ),
returning up to i elements without raising an exception even if the generator is exhausted
early, you would need to write something like

def upto(g,i): #3.7
for k,e in enumerate(g):
if k >= i: return
yield e

To my knowledge, it is not possible to get the same behaviour in a lone comprehension
expression anymore.

29.5.3.2  Discard the previous elements

If you don’t care about previous elements, then you can use something like that:
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>> g = r(1,1000)

>>> next(x for k,x in enumerate(g) if k == 5) # or k >= 5
6

>>> next(g)

7

Why does it work?

x for k,x in enumerate(g) if k ==

is itself a generator expression, and you ask it to produce a value. enumerate, which we
met before in the context of lists and strings, actually produces an iterator, returning a tuple
(index,element) for every element of the input iterable, on demand:

>>> g = r(1,3)

>>> ge = enumerate(g)
>>> next(ge)

0,

>>> next(ge)

(1, 2)

>>> next(g)

3

>>> next(ge)
StopIteration

The generator expression will loop without producing any value until the if condition is
satisfied. Then, when k == 5, for the first time, it will yield a value, which is returned by
next. The generator expression is then discarded, since there is no binding to it.

This example shows, again, how multiple iterators can be layered, each only soliciting a
value from the layer below when it is itself solicited.

29.5.4  Length of an iterator

Sometimes, one may wish to know how many elements are generated by an iterator.
Unfortunately, len(..) is not defined on iterators:

>>> g = r(l1,10)

>>> len(g)
TypeError: object of type ’generator’ has no len()

Itis, however, very easy to compute the length using sum(. .), but note that this will consume
the iterator:

>>> sum( 1 for _ in g )
10
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>>> next(g)
StopIteration

As usual with iterators, there is no way to get any information on future values, including
how many there are, without exhausting the iterator.

Also note that trying that on infinite iterators will of course mire you in an infinite loop.
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30  Static typing

31  Parallelism and concurrency

We start by defining a few terms. Going into details is not at all the aim of this course — nor
would I be competent to teach them. You will undoubtedly go much further in the Systems
Programming and Network classes.

For the purposes of the final exam, you will not need to go farther than the contents of this
section. For the project, however, you may need to dig a little deeper in some aspects.

31.1 Concurrency and parallelism

Multitasking is essential, in particular for GUI programming: if you do everything in a
single thread, your GUI will become unresponsive until whatever computation the program
is performing terminates. This is a problem, especially if you would like to use the GUI to
cancel the operation. . .

Executing several tasks, several execution flows, simultaneously is called concurrency. This
simultaneity may be only apparent; that is, those tasks may not actually be executed at the
same time, but give the illusion thereof by having their executions interleaved, in very short
intervals. This is the role of the part of the operating system called the scheduler. Thus, you
can have effective multitasking on a single CPU core.

If tasks actually execute simultaneously over different cores, then we speak of parallelism.

31.2  Threads and processes

Generally speaking, a thread of execution, or thread, is simply a sequential flow of instructions
that runs on a processor. The term is a bit overloaded.

There are two traditional main kinds of “execution flows”, called processes (“heavy weight”
threads) and light weight threads, or just threads. Processes are full-fledged executing programs
with their own dedicated memory. Threads exist inside a process, and share its memory
with every other thread inside it.

Intermediate notions of “context of execution”, sharing specific parts of the memory —
rather than all or nothing — are supported by some OS kernels, such as Linux, but the above
are the standards. @9 Keep in mind that those definitions are not universal, and some sources
you might read may speak of “threads” without implying “lightweight”.

@http://1kml.iu.edu/hypermail/linux/kernel/9608/0191.html
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Using the terminology defined above, threads are much faster to create and to switch
between than processes. They are executed concurrently “inside” a process. Which does not
mean that they are necessarily being executed on the same CPU core as their parent process;
only that they share its memory. In general, this raises problems of memory integrity. To
avoid those, Python has a Global Interpreter Lock (GIL). The GIL ensures that the reference
counting that is at the center of the runtime’s garbage-collection is done safely and efficiently.
It has a global lock on all resources shared between threads, and ensures that at most one
thread modifies them at any given time. This is a simple, efficient, deadlock-free solution,
with the drawback of hamstringing Python ability to parallelise tasks: with this restriction,
your treads might as well all run on the same CPU core.

Processes are much heavier than threads, but since they are independent, with their own
copies of all the essential context of execution, they can be spread over CPU cores. Therefore,
multiprocessing can be used to achieve parallelism, whereas multithreading cannot. They
both have their uses, however.

31.3 Python and concurrency: the three ways
There are three main ways to implement concurrency in Python:
¢ Multithreading,.
Accessible trough multithreading and concurrent.futures.ThreadPoolExecutor.

Distribute tasks over light-weight threads. The multitasking is said to be pre-emptive,
because the scheduler can interrupt a task at any time, including right in a middle of
incrementing a variable, and give the CPU to another.

This is most useful with several I/O-bound tasks. That is to say, if you have several
tasks that spend most of their time waiting on the memory, the SSD or hard-drive,
user-driven events, or the network, rather than doing long stretches of complex
computations, then using multithreading can considerably speed things up. While a
task is busy waiting, the scheduler executes another.

Though they are “lightweight”, there is an overhead to multithreading, as we shall
see shortly in our small experiments. It is a very bad idea to use multithreading on
CPU-bound tasks — that is to say tasks that perform heavy computations, with little if
any time spent waiting upon I/O. Since threads are not parallelised — because of the
GIL — adding the overhead of task scheduling and context switching on top of things
does not improve things at all. You still get one CPU core’s worth of horsepower,
minus the overhead.

For CPU-heavy tasks, you will want to use multiprocessing instead.
¢ Asynchronous I/O.

Accessible through the asyncio module and the async/await syntax.
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asyncio implements cooperative, or non-preemptive multitasking. Everything is runin a
single thread — and thus a single CPU — and each task voluntarily cedes control to
the scheduler whenever it makes sense for it to do so, using the await keyword. The
scheduler is not otherwise at liberty to take control.

Provided the code is well thought-out, this can easily be the most elegant and highest
performing approach, with very minimal overhead when compared to multi-threading.

Like multithreading, it is highly suitable for wrangling I/O-bound tasks, and worse
than useless for CPU-bound ones.

Within the scope of this course, we can forget about asyncio.
Multiprocessing.
Accessible through multiprocessing and concurrent. futures.ProcessPoolExecutor.

Distribute tasks over multiple CPU. There is quite a bit of overhead there, as as the
program, complete with the Python interpreter, must essentially be duplicated, and
complex communication must be put into place to share objects between processes.

Essentially, data must be serialised — that is to say, converted into a bit stream — for
the sake of the transfer, and deserialised by the target process. The pickle module
is used internally for this task. But not everything is cleanly serialisable by pickle.
Anonymous lambda functions, for instance, are not.

These limitations mean that getting multiprocessing to work can be much trickier,
ceteris paribus, than the equivalent multithreading.

Also keep in mind that, while multiprocessing is the only way to get more performance
in CPU-bound tasks, the large overhead means that N times the cores does not quite
translate into N times the performance, and multiprocessing is overkill on I/O bound
tasks.

Examples and performance tests

Note: The tests below were run on an Intel Core i7-7700K CPU @ 4.20GHz, with 8 logical and 4
physical cores. It should go without saying that you may get very different results depending on your
hardware.

Note 2: Do not use Idle for those tests; it mishandles the standard output of threads, and does not
display that of processes at all. I suppose that behind the scenes, Idle interacts with the interpreter
process, and knows nothing of other processes it may spawn. The same might be the case in other
editors. Use the console.

Let us try all this out on simple examples, where tasks are independent. We shall use the
high-level interface provided by concurrent. futures.
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Since we shall need to do some performance testing, let us begin by defining a nice decorator
(cf. Sec. 25.2p175): “Function decorators”) for that purpose:

from time import sleep

import time

import concurrent.futures as cf
import os

def display_time(£f):

def F(*a,**k):
X = time.perf_counter ()
res = f(*a, **k)
y = time.perf_counter ()
print (£f"TIME ELAPSED: {f.__name__}{a,k}: {y-x:.3f}s")
return res

return F

It is not very precise, as it can be influenced by many factors including the machine’s global
load, and does not attempt to mitigate those fluctuations like timeit does, but it is more
suitable for complex code, and we only need a rough idea for our purposes. As you will see,
the performance differences are quite stark.

Now, let us simulate an I/O bound task, and a CPU-bound one.

@display_time

def io(id):
print (£"I0-bound operation {id} START {os.getpid()}", flush=True)
sleep (1)
print (£"I0-bound operation {id} STOP {os.getpid()}", flush=True)
return f"{id}x"

@display_time
def cpu(id):
print (£f"CPU-bound operation {id} START {os.getpid()}", flush=True)
for i in range(1000):
X = 2%¥%10%*6
print (£"CPU-bound operation {id} STOP {os.getpid()}", flush=True)
return f"{id}y"

The id argument is just an arbitrary task identifier so we can differentiate the different
“instances” of this task when they run. Running them, we see they both take some time to
execute:

>>> i0(0)

I0-bound operation ® START 61699
I0-bound operation ® STOP 61699
TIME ELAPSED: io((0,), {}): 1.028s
" 0X’

>>> cpu(0)
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CPU-bound operation ® START 61699
CPU-bound operation ® STOP 61699
TIME ELAPSED: cpu((®,), {}): 2.559s
l@Y’

Note that they have the same Process ID. This is normal, as everything is running in the
main — and so far, only — Python thread.

You may want to comment out the @display_time decorators on those two functions; we
have seen what we need, and we shall have more than enough output to deal with without
them.

Now let us see how to deal with a large number of independent tasks — let us say ten. There
are three ways we can organise the work. First, we can perform the tasks sequentially; for
this, we define:

@display_time

def normalmap(*args): return list(map(*args))

Why do we use a map function? The idea is to associate, to each ID or input, the corresponding
output by the task.

For I/O-bound tasks, imagine that we have a number of URL from which to extract
information, stored in a list. Then we expect as output the list of the extracted data.

For CPU-bound tasks, we could have a list of numbers as input, and do primality testing on
then, yielding a list of Booleans.

Here, we input tasks IDs, and get just enough output to know the task ID and the type of
operation (IO vs CPU). But the architecture is the same for any kind of task — so long as all
instances are independent.

Anyway, what we have here is the sequential strategy: execute all tasks in full, one after the
other. Let us test how we do on I/O-bound tasks:

>>> normalmap(io, range(10))

I0O-bound operation O START 49672
I0O-bound operation ® STOP 49672
I0-bound operation 1 START 49672
I0-bound operation 1 STOP 49672

I0O-bound operation 9 STOP 49672
TIME ELAPSED: normalmap ((<function io at ..>, range(0, 10)), {}): 10.011s
[’ex’, ’1X’, ’'2X’, ’3X’, ’4X’, ’5X’, ’6X’, ’7X’, ’'8X’, ’'9X’]

Predictably, ten one-second tasks, one after the other, amounts to ten seconds. Now let us

use multithreading. It is actually quite simple to implement; let us replace normalmap by a
multithreaded version of map:
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@display_time
def iomap(*args):
with cf.ThreadPoolExecutor() as e: return list(e.map(*args))

The idea is that the Executor will handle a pool of worker threads — the number of which
it determines as a function of the number of CPU cores — and distribute the tasks among
them. It will collect the results, and free all resources when exiting the with .. as context.

Let us see how this performs:

>>> iomap(io, range(10))
I0O-bound operation ® START 49672

I0O-bound operation

9 START 49672
I0O-bound operation ® STOP 49672
I0-bound operation 2 STOP 49672
I0O-bound operation 1 STOP 49672

I0O-bound operation 8 STOP 49672
TIME ELAPSED: iomap((<function io at ..>, range(®, 10)), {}): 1.013s
[’ex’, ’1Xx’, ’'2X’, ’3X’, ’4X’, ’5X’, ’'6X’, ’7X’, ’'8X’, ’'9X’]

Note that the order in which the tasks start and stop is a bit random; it depends on which
worker happens to be available, or to finish first. Depending on system load, tasks may well
start in order, and if they do they are a bit more likely to finish in the same order. Whatever
happens in each test, the idea is that the order cannot be relied on in general.

The Process ID is still the same for everything, because all the threads are owned by the
same, main, Python interpreter process.

Performance-wise, we are pretty much in the optimal case: we execute ten tasks in the time
needed to complete just one. This scales pretty well; see on a hundred tasks:

TIME ELAPSED: iomap(..., range(®, 100)), {}): 9.017s

Now let us do the same thing with multiprocessing;:

@display_time
def cpumap(*args):
with cf.ProcessPoolExecutor() as e: return list(e.map(*args))

No surprises in this implementation; the Executor abstract class is the same for processes
as for threads — that’s the whole point of having an abstract class in the first place. So
uses of ThreadPoolExecutor and ProcessPoolExecutor are interchangeable. . . or are they?
Restore the @display_time decorator on io, and try

>>> cpumap (io, range(10))
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AttributeError: Can’t pickle local object ’display_time.<locals>.F’

Recall what I said earlier about serialisation. Because of pickle’s limitations some code that
multithreads just fine straight up won’t run with multiprocessing,

In our case, fix that by commenting out the decorator again, and let us do it for real this time:
>>> cpumap (io, range(10))

I0O-bound operation ® START 49735

I0-bound operation

7 START 49744
I0O-bound operation ® STOP 49735
I0O-bound operation 8 START 49735
I0O-bound operation 1 STOP 49738
I0O-bound operation 9 START 49738
I0-bound operation 2 STOP 49739

I0O-bound operation 9 STOP 49738
TIME ELAPSED: cpumap((<function io at ..>, range(®, 10)), {}): 2.057s
[’ex’, ’1Xx’, ’'2X’, ’3X’, ’4X’, ’'5X’, ’'6X’, ’'7X’, ’'8X’, ’'9X’]

Observe the different Process IDs, as expected for multiprocessing: one per worker process.
If you keep track of the appearing PIDs for a large enough number of tasks, you will see
there are — by default — as many worker processes as you have CPU cores.

Looking at the performance, things are not foo bad, but it takes twice as long as multitreading.
The overhead is amortised for larger numbers of tasks. ..

TIME ELAPSED: cpumap((<function io at 0x7f9f0e8d95a0>, range(0, 100)), {}):
13.065s

... but it is still a 44% time increase compared to multithreading. This reinforces the earlier
point: don’t use multithreading for I/O-bound tasks. It works, but it’s just not the right tool
for the job.

Now let us move on to CPU-bound tasks. Sequential execution yields predictable results:
>>> normalmap (cpu, range(10))

CPU-bound operation ® START 49672

ééﬁ—bound operation 9 STOP 49672

TIME ELAPSED: normalmap ((<function cpu at ..>, range(®, 10)), {}): 24.339s
[’ey’, ’iy’, ’2y’, ’3y’, ’4y’, ’s5y’, ’e6Yy’, ’7Y’, ’'8Y’, ’'9Y’]

Let us see how multithreading fares in that situation:

>>> iomap(cpu, range(10))
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CPU-bound operation O START 49672

CPU-bound operation 7 STOP 49672
TIME ELAPSED: iomap((<function cpu at ..>, range(®, 10)), {}): 40.133s
[’@Y’, 11Y1, ’ZY’, ,3Y’, 14Y1’ !SY” 16Y,’ ’7Y1’ 18Y!’ ’9Y1]

Oh boy! We managed to take nearly twice as long as sequential execution! The extra
16 seconds are basically the time you spent managing your threads instead of doing the
computations. The threads themselves brought nothing at all to the table, since you can only
compute on one CPU core at a time, because of the GIL. The computer spent all its time
trying to do the work while being forced to run like a headless chicken from thread to thread.
Don’t do this to your poor computer. For CPU-bound tasks, do this instead:

>>> cpumap (cpu, range(10))
CPU-bound operation ® START 50000
CPU-bound operation 9 STOP 50008

TIME ELAPSED: cpumap((<function cpu at ..>, range(®, 10)), {}): 7.011s
[’ey’, ’iy’, ’2y’, ’°3y’, ’4y’, ’5y’, ’ey’, ’7Y’, ’'8Y’, ’'9Y’]

Not too bad; let us see how that scales:

TIME ELAPSED: cpumap((<..cpu..>, range(®, 4)), {}): 2.438s
TIME ELAPSED: cpumap((<..cpu..>, range(®, 5)), {}): 3.586s
TIME ELAPSED: cpumap((<..cpu..>, range(®, 6)), {}): 3.642s
TIME ELAPSED: cpumap((<..cpu..>, range(®, 8)), {}): 4.689s
TIME ELAPSED: cpumap((<..cpu..>, range(®, 9)), {}): 6.855s
TIME ELAPSED: cpumap((<..cpu..>, range(®, 40)), {}): 22.917s

You might hear your computer’s fans rev up for the last one, as we are maxing out all the
processor’s cores.

We see a significant jump between four and five tasks, and almost none between five and six.
Recall that my CPU has four physical cores: that’s why. Intel’s “HyperThreading” lets the
CPU pretend to have eight — and ProcessPoolExecutor will use eight workers by default
— and that makes for more efficient context switching in some circumstances, but there is
only so much it can do.

Let us limit ourselves to four workers instead:
def cpumap(*args):

with cf.ProcessPoolExecutor(max_workers=4) as e: return list(e.map(*args))

We obtain:

TIME ELAPSED: cpumap((<..cpu..>, range(0®, 4)), {}): 2.451s
TIME ELAPSED: cpumap((<..cpu..>, range(®, 5)), {}): 4.876s
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TIME ELAPSED: cpumap((<..cpu..>, range(®, 6)), {}): 4.822s
TIME ELAPSED: cpumap((<..cpu..>, range(®, 8)), {}): 4.861s
TIME ELAPSED: cpumap((<..cpu..>, range(®, 9)), {}): 7.224s
TIME ELAPSED: cpumap((<..cpu..>, range(®, 40)), {}): 24.451s

Note that the cutoffs are much clearer here, with the times being multiples of the 2.4 seconds
it takes to do a parallel batch of four tasks.

But. . . let’s also note that the times are systematically worse than with 8 workers. I did not
predict that result. I — being a perfect innocent in matters of CPU design — would have
expected hyperthreading to be irrelevant at best for a purely CPU-bound job maxing all
physical cores.

How can we understand those results? How can you perform five 2.4s jobs on four cores in
only 3.5 seconds? I don’t know, so I asked Dr. Bobelin, who apparently talks about such
things in fifth year (4AS and 2SU options) in his “Architecture Security for the Cloud” class.
Here is the analogy he gave: suppose you have three steaks to cook, and only two grills,
each only large enough for a single steak. A steak must be cooked one minute for each side,
for a total of two minutes, to be done. How much time does it take to cook all steaks?

The naive approach is to fully cook two steaks first, fully occupying the grills for two
minutes, then fully cook the last one, occupying a grill for an additional two minutes. Thus,
everything is cooked in four minutes. Schematically, this is the strategy:

Minutes: m; m; mz My

Grill 1: 1 1 3 3

Grill2: 2 2
Waiting: 3 3
Done: 1,2 12 123

But there is another strategy: switch a steak after one minute:

Minutes: m; My M3

Grill 1: 1 1 2
Grill2: 2 3 3
Waiting: 3 2
Done: 1 1,2,3

Everything is cooked in three minutes. So the performance gains observed with eight
workers are more a matter of giving the scheduler more opportunities to spread the load
evenly than a reflection on physical versus virtual cores, specifically.

There are many more considerations that apply to performance gains while multithread-
ing/processing, involving keywords such as “ALU”, “FPU”, “L1 cache”, and more. Dr.
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Bobelin said “predicting performance gains from multithreading/multiprocessing is very
difficult”.

Unless you are a specialist in those things, I suggest you don’t blindly tinker withmax_workers.
If you feel the need to, perform experiments.

31.5 The dangers of multithreading: race conditions and deadlocks

Even though you should not need to deal with such problems directly for this course or the
Python project, you need to be minimally aware of the kind of difficulties that arise with
multithreading.

The most common is race conditions, where the outcome is dependent upon the timing of
different threads. Imagine that we have a shared resource. Each threads reads it, computes,
then modifies that resources.

Let us consider threads Alice and Bob; Alice reads the resource first; while she computes,
Bob reads it as well. They both have read the same value, as Alice hasn’t modified the
resource yet. She finishes her computation, and writes the resource. Then Bob finishes, and
writes as well. The problem is, Bob never read Alice’s work; he just overwrote the result of
her work with his.

Let us illustrate that:

shared = 0

def increment_shared(id):
global shared
for _ in range(10): # each threads does shared += 10
x = shared # read resource
time.sleep(0.0001) # computation
shared = x+1 # write to resource

def mciomap(*args): # lots of worker threads
with cf.ThreadPoolExecutor (max_workers=1000) as e:
return list(e.map(*args))

from collections import Counter
c = Counter()

for _ in range(100): # repeat experiment
shared = 0
mciomap (increment_shared, range(10))
c[shared] += 1 # ten threads; shared should == 100

print(sorted(c.items()))

[ci3, 6y, (14, 275, (15, 39), (16, 175, (17, 6), (18, 1),
(19, 1, (21, 25, (22, 1]
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Morally, we should have seen shared take the value 100, every time. In practice, in a
hundred repetitions of this experiment, we saw values between 13 and 22. Roughly 85% of
all attempted incrementations were overwritten by another thread.

This is a bit of an artificial example, because we invoke sleep, which strongly encourages
the scheduler to move to another thread, but still, in theory, preemption may occur at any
time.

You may think that it cannot happen in the middle of a simple instruction such as x += 1,
but it absolutely can. Let us take a look at the bytecode for that:

>>> from dis import dis # disassembler
>>> dis(’'x += 17)

1 0 LOAD_NAME 0 (x)
2 LOAD_CONST 0 (D
4 INPLACE_ADD
6 STORE_NAME 0 (x)
8 LOAD_CONST 1 (None)
10 RETURN_VALUE

This “simple instruction” is actually quite complex for the interpreter; it may stop between
any of these lines. And going further, each of these bytecode instructions may well translate
into several processor steps.

You just cannot trust, in a threading scenario, that your code will not be preempted at an
inconvenient point. The worst thing is, most of the times, it won’t. Replace the sleep by a
small computation, and you will probably get a perfect [(100, 100)] score. Observing race
conditions is really, really rare, in most code that contains them.

I said this was the worst thing about this. If you find yourself thinking “surely bugs being
rare is a good thing?”, give yourself a sharp rap on the knuckles, this is a terrible way of
thinking. Recall the philosophy of assertions.

We want incorrect programs to fail; we want them to fail obviously and we want them to fail
fast. A student trying to get a passing grade for shoddy work may be thankful that the bugs
stayed under the rug during the demonstration; but subtle bugs like that are the bane of a
developer.

Anundiagnosed race condition may cause crashes, or data loss, or more generally inconsistent
behaviour, obvious or subtle, weeks or months after the software is widely deployed, and
can be almost impossible to trigger on purpose unless you already know exactly where the
problem is. There is some weird problem somewhere in our 100 000 lines codebase; sometimes
our radiation therapy machines spit out lethal doses of radiation, and kill the patients. Oops.
Go debug that.

Here I am referring to the Therac-25 case (1985-87). This, and other cases concerning critical
systems, are the motivation for the use of formal methods to obtain proofs of correctness for
concurrent systems. This is the object of next year’s Formal verification class. You can freely
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join the class and read my lecture notes on the topic if you're interested; if not, I shall see
you next year. End of sponsor’s message.

Back to race conditions. They can be prevented by using locks (or “mutexes” @), or
“semaphores @”). Those are objects whose possession gives you the right to access the
resource. A thread can acquire the lock, then release it. When acquiring the lock, you have
to wait until whoever owns it releases it. The lock itself is implemented in such a way that
its fundamental operations are atomic (i.e. non-preemptable) so that at most one thread may
hold the lock at any time. This enforces mutual exclusion: only one thread may access the
resource at any given time.

So thanks to the magic of locks, problem solved, right? Right? Sure, if you are careful, and
use locks every time a shared resource is involved, you won’t have race conditions. Yipee.
You have traded the “race condition” class of annoying, subtle, perverse problems for the
class of annoying, subtle, and only slightly less perverse problems known as “deadlocks”.

So you have ten threads sharing the Lock A. What happens if one of them decides not to
give it back? Deadlock; nobody else can do anything. Why would a thread decide not to
give a lock back? Is it evil? Well, maybe it has an intrinsic bug, yes. But it need not have.
Imagine that it needs to acquire locks A and B, before doing its thing and releasing both. B
is currently in the hands of another thread, which wants to acquire B, then A, do its thing,
and release.

The first has A, waits on B. The second has B, and waits on A. There are enough resources
for everyone, and everyone is willing to release what they have, nobody is doing anything
intrinsically wrong, yet we find ourselves in a situation where nobody can do anything
anymore. The program grinds to a screeching halt. Deadlock.

Making sure nothing like that ever happens is not easy. By not easy, I mean undecidable in
the general case, and “people who can’t afford to have that happen to their critical systems
spend millions of € on testing and formal methods to ensure that doesn’t happen”. And it’s
not always enough. For more on that, see you next year in the Formal Verification class.

In the meanwhile, just avoid having to deal with any of that if at all possible. Race conditions
are icky, so global variables + threads = Nope. Locks are tricky, so preferably, have someone
else worry about them.

During the project, if you use a GUI framework, or pygame, or .. ., it will probably hand you
an event queue or something to that effect. This is good, because that means it falls on the
framework to make sure that the various processes and threads involved do not step on
each other’s toes when leaving messages.

Then you can set camp in the main event loop, read the messages, and keep your eyes down.
If you do need to share things with other threads, be careful, and be afraid, be very afraid.

(@®)MUTual EXclusion
(@MSemaphores are a bit more general, but this is not important at that point.
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For projects that involve a global “world state” and several actors/threads — which is often
the case — it may be a good idea to have the world state modified exclusively through
messages sent to the main even queue, rather than having to wrangle a lock on your world
state. Or maybe not. You will have to figure that out.

32  TODO list

slice assignment
cartesian iterable

for elem, ekey in ((e, key(e)) for e in iterable):

gene ngram + timeit compare

eval()

better timeit details

global nonlocal

cProfile snakeviz

GUI

next(,default) object() pattern as in zip() code
profiling

python3 -m cProfile -o profile.prof ./tests.py

snakeviz profile.prof

I raged so much because of this, vs OCaml semantics: https://stackoverflow.com/
questions/2295290/what-do-1lambda-function-closures-capture

imports:

if __name__ == ’__main__"’:

image pythontutor shallow copy with transparent background instead of white.
Usage of assertion vs exception: recovery possible ?

if __debug__

calendar: proleptic
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@contextmanager

def cd(dir):
currdir = os.getcwd()
os.chdir(os.path.expanduser(dir))
try: yield
finally: os.chdir(currdir)

pattern: singleton binding:

return sum( f(x)*(h-1) for (1,h) in partition(a,b,n) for mid in [mid(1l,h)] )

For debugging :

assert all(factorial(X:=n) == forig(n) for n in range(10)), X

section on how to replace bash scripts by Python; os, Path libs etc.
Strange handling of exceptions in comprenhensions:

for a,b,c in range(-5,5):
print(a,b,c)

Traceback (most recent call last):
File "<pyshell#2>", line 1, in <module>
for a,b,c in range(-5,5):
TypeError: cannot unpack non-iterable int object
bool( True for a,b,c in range(-5,5))

True
bool( prinnt(a,b,c) for a,b,c in range(-5,5))
True
bool( print(a,b,c) for a,b,c in range(-5,5))
True

bool ( assert False for a,b,c in range(-5,5))
SyntaxError: invalid syntax
bool( 1/0 for a,b,c in range(-5,5))
True
bool( 1/0 for a,b,c in range(-5,1/0))
Traceback (most recent call last):

File "<pyshell#8>", line 1, in <module>

bool( 1/0 for a,b,c in range(-5,1/0))

ZeroDivisionError: division by zero

"REGEXP’: r’/(?!/)A\\/I\\\\I[A/1)*?/[%s]*’ % _RE_FLAGS,

random hash salting of sets
http://dabeaz.com/coroutines/https://stackoverflow.com/questions/9708902/in-practice-

https://discuss.python.org/t/structural-pattern-matching-should-permit-regex-string-n
22700/9 Personalised str patterns (regexp, prefix, etc) MCre, MCpref, ...
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Python versions history

1 =["abc","ABC"]
zip(*zip(1)) == 1

False
list(zip(*zip(1))) == 1
False
list(zip(*zip(1)))
[(’abc’, ’ABC’)]

Theorem ? cti
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33 Foreword

The sections that follow are your first exercises, and your entry point into this Python class.
Alternate between answering the questions below and reading the lecture notes in Part Il p4g).

Whenever I direct you to a specific section, make sure to read it carefully, and to seek out, in
the lecture notes, whatever information you may be missing to understand those sections.

Note that you will be expected to have read and more or less understood all of Part Il |4
by the end of the semester. Points that are a bit beyond the scope of this class and will not
be tested in the exam are indicated as such in the notes; you still need to read those parts,
though.

We have eleven lab classes (three of which are in autonomy) and two lectures, roughly at
the ] and £ marks.

During the lectures, I shall discuss the solution to as many exercises as time allows, and take
your questions.

The new key insights and core competencies targeted by each question or
158 exercise are written in this format. They should become clear after having 28
solved the questions and having discussed them with me.

33.1 An open letter to Python Gods
A note to those who already know Python. Or think they do.

You may skip this diatribe if you don’t think that.

Even if you are already well practised in Python, please do not rush through the exercises at
all speed; do not skip them to get to something more “interesting” more quickly. It is quite
unlikely that you already know everything in Part II,4s), and there is a difference between (1)
having enough tools to be able to cobble together a purported solution to a problem, and (2)
using the right tools to quickly produce short, efficient, reliable, and well-tested code that
tully satisfies its specification. Those exercises, no matter how trivial some may seem to you,
are opportunities for me to engage with you on those topics, check for bad habits you may
have acquired, etc; do not neglect them.

Also note that, during the exams, I often ask questions testing your knowledge of specific
Python idioms and structures, such as comprehension expressions, the limitations of sets
and dictionaries, the specificity of Python’s int type compared to that of other languages,
etcetera. I had some cases in previous years of students entering the class fully confident that
they already knew Python, because they had successfully completed some project in it. Thus,
they paid no attention and did not put any effort into this class, and learned nothing new.
They were then positively outraged to receive a failing grade in the final exam; dismayed
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that writing Java or C roughly translated into Python’s syntax did not satisfy. Do not be
them.

33.2 Al Chatbots are expressly and entirely forbidden

34  Basic data types, expressions, and functions

34.1 Celsius < Fahrenheit Conversion

j8 ' def <function>; return <expression>; assert for defensive programming ‘28

The conversion formula between those two units being given as

9
F=-C+32,
5
write and briefly document @ the two unit conversion fonctions (Sec. 21.5.45): “Defining
functions; predicates and procedures”) F_to_C and C_to_F.

What are the preconditions of those functions? As a reminder, the absolute zero is —459.67°F
and —273.15°C.

You will use assertions (cf. Sec. 22.6.6(5105): “Assertions: cheap unit testing and preconditions
enforcing”) as a defensive programming mechanism to enforce those preconditions.

Please read that section very carefully. In particular, do not burden your assertions with redundant
error messages.

Note that, while the types of input arguments are morally part of the preconditions for any
function, I do not ask you to test it programmatically. As mentioned in Sec. 22,7: “Basic
data types” and developed in Sec. 22.6.7|,111): “Defensive typing considered harmful”, in
Python, it is not idiomatic to test the type of parameters explicitly. While it is true that
testing whether a, b, c are numerical values would be pertinent, let’s not do that.

Do not use input (! Ever. That is what the function’s arguments (and Python’s interactive
mode and interpreted workflow) are for. If I ever want user interaction, I shall ask for it
explicitly. Use prints and, whenever possible, asserts in your code to test the functions on
different values.

Do not confuse return and print: whenever I ask for a function, it must return something,
so that I can use the function in later computation, not print it.

@)Very briefly; the aim is just to become aware of the existence of docstrings, not to spend valuable TD
time writing literature. Only write documentation / comments during TDs if you find it helpful for the
immediate purpose of solving the problems / understanding what you're doing. Of course, in the real world,
documentation is essential.
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34.2  Floating-point comparison: almost there

&

Let us check that our two conversion functions are coherent with one another, by testing
that their absolute zeros match.

float has finite precision; bool/predicates are very simple; )8
assert for cheap unit tests

However, we cannot simply test equality between floating point numbers, for reasons
discussed in Sec. 22.2,50: “Floating-point numbers: float”: there may be a loss of precision:

>>> F_to_C(-459.67) == -273.15
False

>>> F_to_C(-459.67)
-273.15000000000003

Although you may or may not observe it depending on the exact way you performed the
computation:

Note: copy-and-pasting code blocks from the PDF will likely not work well, for technical (ETEX
vs Unicode) reasons, and retyping by hand is time-consuming and error-prone. You'll find on Celene
a text file containing all the Python code appearing in code blocks in this document. Copy from
there.

>>> [ (a,b)
for F in range(20)
for a,b in [[5/9%(F-32), 5%(F-32)/9]]
if al=b ]

[(-15.555555555555557, -15.555555555555555),
(-12.222222222222223, -12.222222222222221),
(-11.666666666666668, -11.666666666666666),
C -7.777777777777779, -7.777777777777778)]

Instead of running that risk, we shall test whether the two values are very, very close.

(21) Define a predicate isalmost(n,m,d=1e-13) that tests whether n and m are at a distance
at most d @,

The following assertions must hold (copy-paste them, and keep them):

assert all( isalmost(*(err := a)) for a in
[(1,1), (1,1.1,.11)] +
[(n,n-1e-14) for n in range(1,100)]

), err

@Such a basic tool to manipulate floating-point numbers is of course provided in the standard library. This
function is a simpler re-implementation of math.isclose.
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assert not any( isalmost(*(err := a)) for a in
[(1,2), (1,1.1), (5, 5.00008)] +
[(n,n-1e-12) for n in range(1,100)]

), err

(22) Now we have the tools to write the tests for our conversion functions. The following
assertions must be satisfied:

assert isalmost ( F_to_C(-459.67) , -273.15 )

assert isalmost ( C_to_F(-273.15) , -459.67 )

assert all( isalmost( efc:=F_to_C(C_to_F(c)), ec:=c )
and isalmost( efc:=C_to_F(F_to_C(c)), c )
for ¢ in range(-273, 200) ), (ec, efc)

(Almost) always leave your assertions in your code, to prevent future regressions.

34.3 Taking root

34.3.1 Greatest root

p

Ecrire et documenter une fonction greatest_root telle que greatest_root(a,b, c) retourne
la plus grande racine réelle du polyndome de second degré ax? + bx + c si elle existe, et None
sinon. See Sec. 22.5(,99): “Nihilism: NoneType: expression versus statement”.

reading a specification and enforcing valid inputs with assert; None as null ‘l@

Quelles sont les conditions d’utilisation (ou préconditions) de cette fonction ?
Indication: do all tuples (a, b, c) € R® describe a valid polynomial of the second degree?

Note: as mentioned in Sec. 22|,75: “Basic data types”, in Python, it is not idiomatic to test
the type of parameters explicitly. While it is true that testing whether a, b, ¢ are numerical
values would be pertinent, let’s not do that.

Once you have worked out what the preconditions are, make sure to enforce them through
an assert.

Quick reminder from high school: the roots of ax? + bx + ¢ are given by

—b+ VA
2a !

where A = b? — 4ac is called the discriminant. They are real if A > 0.

The following assertions must be satisfied:

assert greatest_root(l,1,1) == None
assert greatest_root(l,-2,1) == 1
assert greatest_root(4,-4,-24) == 3

# we can do direct comparison because we know the results are exact,
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at least in this case, and we only want to prevent regressions
This is overspecification, and might refuse correct versions of
the function. However, we can deal with those problems, using
isalmost, as they arise.

H W W W

Feel free to add some more.

34.3.2 Real roots

carefully reading and respecting the specification
).8 virtues of homogeneous return types and containers }8
unit tests on ranges of value to enforce consistency of implementations

Write a function roots(a,b,c) returning a tuple containing the real roots of the second-

degree polynomial ax? 4+ bx + ¢, in no particular order.

Note how this specification is formulated: you must always return a tuple. Do not return a
tuple sometimes and None some other times.

The following assertions must be satisfied:

assert roots(l,1,1) == ()

assert roots(1l,-2,1) in [ (1,1), (1,) ]
# I didn’t specify whether single roots should be repeated,
# so both versions are valid

assert set(roots(4,-4,-24)) == {-2, 3}
# I did not specify the order of roots, hence the set test

Write an assertion testing, for all valid values of a,b,c € [-5,5], that the outputs of
greatest_root and roots are coherent.

This can be done in one or two logical lines if you can have read Sec. 24.5p157): “Comprehen-
sion expressions” and Sec. 23.2,11): “Conditional expression: .. if .. else .. ternary
operator”, but I do not require that at this point.

35 Dungeons and magic methods

Object Oriented Programming (OOP)
jg implementing classes 4;8
understanding magic/dunder methods

You will want to have taken at least a cursory look at Sec. 21.2y,63: “A few words about Object
Oriented Programming (OOP)” and Sec. 27 ,185): “Object Oriented Programming in Python”.
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Let us implement dice rolls, in the style of Dungeons & Dragons @)

Dice rolls are described with expressions such as “3d4+3,” which means “roll
three four-sided dice and add 3” (resulting in a number between 6 and 15). The
first number tells you how many dice to roll (adding the results together). The
number immediately after the “d” tells you the type of die to use. Any number
after that indicates a quantity that is added or subtracted from the result.

You will need to use the random.randint function.

Our goal in this exercise is to implement a “function” d such that we can define a dice, and
then roll it as many times as needed, as follows:

>>> d20, d6 = d(20), d(6) # let d20 be a 20-sided die, and d6 a 6-sided one
>>> d20

d20: 14

>>> d20

d20: 4

>>> d20

d20: 7

Of course the values displayed must be uniformly random integer values between 1 and 20,
inclusive, not necessarily 14,4,7, .. ..

What's going on here is that each time d20 is converted into a string for the purpose of
representing its value (which is what happens when you put a value in the prompt >>>), the
dice is rolled and the value displayed.

Then we will extend this behaviour to support addition and multiplication.

(23) Justify (i.e. write a sentence explaining) that d cannot possibly be a classical function of
the form

def d(n): return random.randint(...)

(24) Implement a class d(N), representing an N-sided die.
For instance, you can declare:

>>> d20, d6 = d(20), d(6) # let d20 be a 20-sided die, and d6 a 6-sided one

Note: see Sec. 21.5.2(,¢5): “Parallel variable assignment” if that syntax confuses you.
d will have an attribute N, giving the number of faces of the dice:

>>> d20.N, d6.N
(20, 6)

@nttps://www.d20srd.org/srd/theBasics.htm#dice
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(25)

(26)

To do this, you will need to understand the rough ideas under then notions of class, object,
instance, and attribute, as well as the __init__ method. Sec. 27 4p101): “Constructors:
beware of mutable structures” can serve as a good reference point for the latter —
though, again, you will need to understand at least some of what comes before.

Implement for d a method .roll() returning the value of a roll (uniformly random on

[1,NJ.

You will use randint for this. Throughout this exercise, no other method may call
randint.

You should observe something like:

>>> d20.roll ()
13
>>> d20.ro0ll ()
8
>>> d20.roll ()
1

>>> type(d20)
<class ’__main__.d’ >

>>> type (d20.roll())
<class ’int’>
Now let’s implement the behaviour presented in the introduction:

>>> d20
d20: 14

As well as things like

>>> f"I roll {d20}"
T roll d20: 11’

(This is a string conversion in an fstring; see Sec. 22.4.10.4,9¢;: “The good stuff:
formatted string literals” if you don’t understand this expression; it’s not central to
this immediate exercise.)

In other words, we want that, each time d20 is converted into a string for the purpose
of representing its value, the dice is rolled and the value displayed.

For now out the output looks like:

>>> d20
<__main__.d object at 0x7447d25af680>
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(27)

(28)

(29)

To implement what we want, you will need to read and understand Sec. 27.7 ;195;:
“String representations str and repr”.

Rather than having to call .rol11() explicitly in all circumstances where we want to
use the roll value in a computation, we would like to have dice that can be converted
into integers:

>>> int (d20)
15
>>> int (d20)
16

You well need to read Sec. 27.10,501): “Special, magic, dunder methods” and implement
__int__. Thisisalong and difficult section, so for now be efficient in skimming through
it to get the relevant information for the problem at hand. Read in more detail during
your personal study time.

Now, we would like to be able to perform arithmetic on rolls

>>> d20+100

106

>>> d20+100

101

>>> type (d20+100)
<class ’int’>

Currently, if we try that, we get

TypeError: unsupported operand type(s) for +: ’'int’ and ’d’

Just because we can convert to int does not mean that the conversion is done
automatically. . .

Implement the __add__ method to make it work as expected.
So far, so good, but wait, if we try

>>> d20+100
108

>>> 100+d20
TypeError: unsupported operand type(s) for +: ’'int’ and ’d’
Isn’t addition commutative? What’s going on?

Take some time to understand the problem, which is explained in great detail in
Sec. 27.10p201): “Special, magic, dunder methods” — but do not spend the whole lab
class on this! — then implement the __radd__ method so that things work as expected:
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(30)

(31)

>>> 100+d20
111
>>> 100+d20
120

Now let’s do multiplication:

>>> 10%d6
29
>>> 10%d6
34

Which magic method do you need to implement?

Also note that the semantics of 10*d6 is not “roll a d6 once, and multiply the roll value
by 10”7, but “roll a single d6 10 times, and add the roll values”, or equivalently “roll 10
individual d6s, and sum their rolls”.

You can tell because neither 29 nor 34 are multiples of 10 :-)

You will implement the relevant method in one line, using sum. See Sec. 24.5.3.4 ;1631
“Reductions” for examples of how to use sum. You do not need to fully understand
how that syntax works at this point — but you will later, believe that!

Now, this should work:

>>> -100 + 10%d20 + 40
72
>>> -100 + 10%d20 + 40
62

Test the following code, which performs a large number of 3d6 rolls and plots the
values obtained:

from collections import Counter

N =100000
for v, c in (1 :=sorted(Counter( 3*d6 for _ in range(N) ).items())):
print(£"{v:2} {’="*(c//500)}")

print("\navg", sum(c*v for v,c in 1)/N,
"\nexpected avg", 3/6*sum(range(l,6+1)), "=", 3*(6+1)/2)
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(32)

9
10
11
12
13
14
15 =========

17 ==
18

avg 10.48865
expected avg 10.5 =10.5

You can have very minor numerical variations in the observed average avg, but it
should be very close to 10.5, which is the mathematical expectancy of 3d6, and the curve
obtained should approximate the form of a nice normal distribution.

Reminder: In case you where wondering, the mathematical expectancy of dN — that
is to say a random variable with outcomes [1,N] with uniform probability & — is
given by

N
1 1 11
EAN] = 3 —k = o) k = osN(N+T) =

k=1 k=1

(N+1).

N —

Thus the expected average for 3d6 is

E[3d6] = 3E[dg] = 3x% - 3><§ ~ 105.

Now let’s implement another type of multiplication, so that the semantics of d6*10 (as
opposed to 10%d6) is indeed “roll a d6 once, and multiply the roll value by 10”.

Replacing 3*d6 by d6*3 in the previous code, you should get something like this:

avg 10.50894

Now 3*d6 and d6*3 are both valid rolls. The expected average is the same, but the
resulting distribution is very different. . .

Moral: it’s up to you what the operators of the types you define mean. Just because
it’s * doesn’t mean it absolutely has to be commutative. Certainly there is nothing in
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(33)

(34)

Python to enforce that. Pick semantics that make intuitive sense, and document them
properly.

Oftentimes, the functions implemented by operators correspond to clearly and explicitly
named methods which can be used as less compact but more legible alternatives. For

instance, we could have chosen to write things like 3*d6 as d6. sum_multiple_rolls(3)
instead, or in addition.

Again, it’s up to you to define operators as you like, but don’t go overboard with it.
Sometimes the right move is to just use explicitly-named methods and leave all the
weird symbols alone.

Compare the distributions of 3*d6+0 and 3*(d6+0). What’s going on?

Note: while d6 represents a random variable, we chose to implement + so that d6+0
becomes an integer. This choice has consequences, and one of them is that d6 and d6+0
are very different objects.

That is fine in this context — we just want to write expressions like 10*d6 + 3 to
roll the dice and play the game — but if we wanted to implement random variables
more seriously we would need d6+n, where n € N, to be of type “random variable”.
Developing this is much more complicated than what we did, and beyond the scope of
this exercise.

Note that later on, for instance in question (42)s9) and others, we will be using
mathplotlib to generate graphs and write magic things like

X = np.linspace(-2,2,100) # x varies in [-2,2], 100 uniform samples

and expressions such as 2 * x**2, and magically plot the curves.

What will be going on behind the scenes is the same kind of trickery we just employed,
whereby things that look like simple arithmetical expressions actually hide something
more abstract, here random variables / samplings.

I hope you get the idea, and would be capable of supporting subtraction, division, etc,
without further guidance. . .

36

We all float down here!

It is nice that we can solve the zeroes of a second-degree polynomial. Now let us do the
same thing for the zeroes of any continuous function f. We shall use approximate numerical
methods.

Keep in mind that floating point numbers are dangerous; don’t turn your back on them. Be
sure to read Sec. 22.2,50: “Floating-point numbers: float” in that regard.
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36.1 The Zero Dichotomy

thinking recursively
functions are first-class citizens
less trivial effects of float precision loss
/W beware false simplicity of int 4{%)
hide recursion from user with recursive subfunctions
why inclusive/exclusive ranges [a, b[ are cool
asymptotic complexity vs. small instances

Recall the classical theorem of intermediate values:

Theorem 1 (Intermediate Values). If a function f : R — R is defined and continuous on a real
interval 1, then its image f(1) is also an interval.

It has an important corollary:

Corollary 2 (Bolzano’s theorem — BT).Va,b € 1, if f(a)f(b) < 0, then Iz € [a, b] : f(z) = 0.

Proof. f(la,b]) is an interval; it contains f(a) and f(b). Therefore it contains [f(a), f(b)] (or
[f(b), f(a)]). We have f(a)f(b) < 0, which means that if either f(a) or f(b) is positive, then
the other must be negative, and vice versa. Thus we have 0 € [f(b), f(a)] C f([a, b]).

In short: f changes sign between a and b, so its curve must cross the abscissa. |

We are going to use Bolzano’s theorem to implement a dichotomic search — or more
precisely a binary search; also known as the bisection method — for a zero; that is to say, a
value z such that f(z) = 0. What is a dichotomic search, you ask? That is what you do when
you search for a word in the dictionary — I mean a paper dictionary, not an online one. (If
you are not old enough to have manipulated one of those, use your imagination).

The principle is simple: you open the dictionary at some place, roughly down the middle
(maybe you have better guesses if the word begins by A or Z, but it matters little in the
end), and you determine, using the alphabetical order, whether the word you are looking
for is to the left, or to the right, or your current position. Therein lies the “dichotomy”, the
“bisection”: you have two mutually exclusive options: left and right. If you cut exactly in
the middle each time, it’s a binary search.

Then you repeat that process, with either the left or right part of the dictionary, which is of
course much smaller, again and again until you are close enough to your target.

This is a very efficient process: O(log, N) where N is the size of the dictionary — or more
generally of any sorted list. Not convinced of the logarithm? if the dictionary is twice as big,
you open it at the middle, and choose left or right, and you're back to the original size. One
more step to handle twice the size.

Let us do that to search for zeroes: start with a and b such that f changes sign between them,
cut down the middle of [a, b], and then there must be a zero either left or right; choose by
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testing on which side there is a sign change, and repeat until you're close enough to your
taste. That is to say, until |a — bl is smaller than your desired precision.

(35) TODO VH: Separate into two questions: normal precision and max, with assertions
for each.

Write a function di (f,a,b,d=1e-16), where f : [a,b] — R is continuous and changes
sign on [a, b], that returns an approximation of a zero z, ideally within a precision d.

In practice R will be approximated by float. You are not required to test whether the
inputs satisfy the assumptions — how would one even test continuity of f?.

By “approximation of a zero z, ideally within a precision d”, I mean any z’ such that
|z — z'| < d, if floating-point precision is sufficient to achieve that, or the best z’ you can
realistically get if not. Note that f is completely irrelevant to this notion of precision.

Tip: there are two ways to write a dichotomy: recursively, and with a while loop. Write it
recursively first, it’s simpler. You'll write it with a while in the next question.

Tip2: Sec. 21.5.5,69): “Functions are first-class citizens”.

As an example of how it must behave, let us approximate /2 as the positive root of
X2 —2:

from math import sqrt
def g(x): return x**2 - 2

>>> res = di(g,1,2)
1.414213562373095

>>> sqrt(2)
1.4142135623730951
>>> sqrt(2)-res
2.220446049250313e-16

Printing each step of the process with print(a,m,b, b-a), where mis the middle, we
have:

11.521

1 1.25 1.5 0.5

1.25 1.375 1.5 0.25
1.375 1.4375 1.5 0.125

1.414213562373095 1.4142135623730951 1.4142135623730954
4.440892098500626e-16

1.414213562373095 1.414213562373095 1.4142135623730951
2.220446049250313e-16

This also illustrate why I said ideally within a precision d. Observe that our precision
objective is not actually met in the example. Indeed I could run with d=1e-160 and get
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(37)

the very same result.

This is because we are dealing with floating-point numbers, and thus loss of precision.
It may well be that the middle becomes impossible to distinguish from a or b —because
of loss of precision — before |a — b| becomes quite small enough. In that case we run
the risk of entering an infinite loop, so we must return the result we have now. That is
precisely what happened here: a and m are the same in the last line, so our current
approximation is the best we can do.

Keep that in mind, and be sure your function doesn’t enter infinite loops. Also keep
in mind that you may write a function that is correct, but does not have the same
precision errors as mine because you have not written the computations in the exact
same way, and thus will behave slightly differently on the same examples. Such are
the joys of working with floating point numbers. . .

At the end of the day, the following assertion must hold:

from math import nextafter as na, inf
def neigh(f): return na(f,inf), na(f,-inf)
assert all( abs(n**.5 - (r:=di(lambda x:x**2-n, 0,99,d)) ) <=d
or r in neigh(n**.5) # result is closest float
# for di in [di, di_while]
for n in range(20) for d in [le-7, le-16, 1e-32] ), r

It ensures that either the required precision is achieved, or we are in a case where
there is no representable floating-point value strictly between a and b, like in the
case a=1.414213562373095, b=1.4142135623730951, and so we lack information to
choose between the two.

Now write a function di_while, as in the previous questions, but implemented using
awhile loop.

For assertions, simply uncomment the line

for di in [di, di_while]

in the previous question’s assertion.

So we have made a big deal of float’s precision problems in the last question. Is the
grass greener with int?

Write a function find(x,1) that returns an index of x in the sorted list 1, if it exists,
and None if x does not appear in 1.

The fact that 1 is sorted must immediately suggest to you to use a dichotomic search!
Why write a linear algorithm when you can write a logarithmic one?

If an element appears twice, any suitable index may be returned; it need not be the
first or last or anything specific.
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The function must implement a dichotomic search and satisfy the following assertions:

assert find(3,[3]) == 0

assert all( (fe:=find(ie:=i,ir:=r)) == (i 1f 0<=i<N else None)
for N in range(9) for r in [range(N)]
for i in list(xr)+[-1,N] ), (ir, ie, fe)

assert all( 1[fe:=find(ie:=i,il:=1)] == i
for N in range(5) for R in [2,3]
for 1 in [[ e for e in range(N) for
for i in range(N)), (il, ie, fe)

in range(R) 1]

You will code the dichotomic search recursively.

Warning: while it is tempting to use list slices (e.g. 1[:m], 1[m:]) in the implementation,
this would be very stupid. Here is an implementation using slices that is correct (in the
sense that it returns the right results and it is a dichotomy) but very stupid:

def find(x,1,i=0):

match 1:
case []: return None
case [a]: return i if a==x else None
case

if x < 1[m := len(l) // 2]: return find(x,1[:m], i)
return find(x, 1[m:], i+m)

It is stupid, in the sense that there is absolutely no point to doing a dichotomic search,
whose selling point is O(logn) complexity, when on the first call you compute a new
list 1[:m], of length 3, therefore getting a complexity in O(3n) = O(n). This search
will actually be less efficient than a naive loop on the whole list.

A non-stupid implementation needs to work with the original list, without creating
any new one, and reason on bounds a, b for a lower- and upper-bound on the indices
of the search space, same as in the previous question.

Since the bounds a, b are not parameters of the function, you will need to hide them
from the user. A good approach taken by Python’s library @ is to pass them as optional
arguments, but this has two drawbacks as a general solution for that type of need: (1)
each recursive call will need to pass the same x, 1 again, which is tolerable here but
lacks legibility when there are more arguments to repeat, and (2) sometimes it makes
no sense to let the user see and modify the parameters you recurse upon. What you
will do instead is use a recursive subfunction, here called z. Your function will thus be
of the form:

def find(x,1):

@https://docs.python.org/3/library/bisect.html
I'have used the same technique for i in my stupid implementation of £ind, above.
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def z(a,b):

return z(...)

Now, on to the algorithm itself. If you code the search naively, you will probably use
a,b as inclusive bounds, and you are very likely to run into infinite loop problems
because. . . what is the integral middle of [0, 1]? Whether you use floor or ceiling, you
run into the same “the middle is confused with a bound” problem as in the previous
question, except this time, you cannot stop immediately on grounds that maximum
possible precision has been achieved.

It is quite possible to write a correct search that way, but it takes a lot of strategically
placed +1 and -1 to make it correct, and it is not immediately obvious when reading
the code that it is correct. So let’s do things a bit differently, so that correctness is more
obvious.

We shall take a leaf from the “modern” way of representing integer ranges, using [a, b[
instead of [a, b]; that is to say, the lower bound is inclusive, but the upper bound
is exclusive. Note that this is the convention adopted by Python’s range and slice
notation, and used in many other languages as well. It has many good properties that
make working with ranges easier:

o b — ais the length of the range, notb —a +1,

¢ 0 and the length of the collection are the starting bounds, not 0 and length —1,

¢ cutting a range does not require +1 or —1 anywhere either: [a, b[ = [a, m[+[m, b][.
We will take advantage of that here. We shall write the computation of the middle as

m=a + (b-a) // 2

that is to say, we keep our starting point, but divide the length b-a of the search space
by 2. We test for length 0 and 1 for our stopping conditions, and otherwise, we know
that the remaining range, being of length at least 2, will split nicely. Note that it does
not actually matter whether we use // or floor or ceil in the computation of 25¢.

Last constraint, do not test equality at every loop. Just one inequality will do, until
you only have one element left.

The moral of the story is that, despite having no precision loss problems or even integer
overflows (in Python!), int is not necessarily simpler to handle than float. Some
thought is required to handle bounds correctly, and the inclusive/exclusive convention
makes it much easier.

Let us test the performance of our function: the code below compares the performance
of find and that of the default 1ist.index method, which performs a linear traversal
of the list, as does the x in 1 construct.
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36.2

def time_test():

from timeit import timeit

print(f"len\tindex\tdicho\tratio")

for N in [10**n for n in range(9)]:
1 = list(range(N))
i = [i*N//10 for i in range(10)]+[N-1]
ti = sum( timeit(lambda: 1.index(k), number=1) for k in i )
td = sum( timeit(lambda: find(k,1l), number=1) for k in i )
print (£"{N}\t{ti}\t{td}I\t{ti/td}")

The generated text isn’t pretty but can be pasted into your preferred spreadsheet
software.

However you visualise it, you should get something like that:

len index dicho ratio i/d
1 4.92E-06 9.13E-06 0.5388829451

10 6.00E-06 1.71E-05 0.3514938517

100 7.39E-06 1.79E-05 0.4123655766

1000 3.60E-05 2.29E-05 1.57186566
10000 4.36E-04 3.26E-05 13.38771158
100000 0.004439856 4.32E-05 102.6793683
1000000 0.030203839 4.33E-05 698.1933006
10000000 0.272337098 6.73E-05 4046.012322
100000000 2.78551715 8.81E-05 3.16E+04

From this, the following conclusions can be drawn: index is slightly more efficient
than dicho for small lists. Somewhere between lists of size 100 and 1 000, (from more
testing, the inflection point seems to be around 625) this changes, and dicho becomes
orders of magnitude more efficient for large lists. This is exactly what you expect when
comparing a simple linear algorithm to a more sophisticated logarithmic one. The
latter is more expensive to set up, which does not necessarily pay on small instances,
because there is little time there to gain anyway, but crushes the simple algorithm on
large instances, where the cost of the increased sophistication is dwarfed by the time
gains.

Of course, this discussion elides the question of the cost of making sure the input list is
ordered in the first place. ..

If you run time_test and your version of find does not exhibit the same asymptotic
behaviour, you have not correctly implemented the dichotomic search; try again!

This is all very derivative. ..
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functions are nice objects, easy to pass and return
j8 handling optional arguments
difference between symbolic math function and python function object
mathplotlib for interactive visualisation of data

Let’s get back to our search for zeroes in continuous functions. A binary search is quite
efficient, as we have seen, but we can do better. We could use the slope of the tangent line of
the curve at a given point to guide the way, much more efficiently, towards the zero. But
before we can do that, we must be capable of computing — an approximation of — that
slope.

That is to say, we want to numerically approximate f’(a), the derivative of f at point a. It is
defined by the classical formula

fla) = }lllg}) fla+ h}i— f(a)

4

and can thus be approximated by

fla+h)—f(a)
h 7

f'(a) (36.1)
for small values of h. (36.1) is called the forward difference formula. There are others that

can be used to the same effect:

f(a) — f(a—h)

f'(a) =

is the backward difference formula. And one can average the two and get

1 (f(a—l—h) —f(a) n f(a) —f(a—h)) _ fla+h)—f(a—h)

/ ~
la) = h h 2h I

: (36.2)

which is the central difference formula. We shall use mostly (36.1), because it is the most
straightforward, and (36.2), because it is numerically better than the other two, as we shall
see.

Let us use as running example the functions
def f(x): return 2*x

def g(x): return x**2 - 2

Notice that f(x) = g’(x).

(38) Write a function deriv(f, x, h=.01) that returns the value f’(x), as approximated
through (36.1)258), using the provided value of h.

The following assertion must hold:

assert all( abs(deriv(g,x)-f(x)) <= 0.02 for x in range(100) )
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(39)

(40)

(41)

(42)

Write a function fderiv(£f, h=.01), that returns the derivative function f’, as approxi-
mated by deriv (with h potentially overridden).

See Sec. 21.5.51p49): “Functions are first-class citizens” and Sec. 21.5.6(p79): “Anonymous
functions: lambda”.

The following assertion must hold:

assert all( fderiv(lambda x:x**2)(x) == deriv(lambda x:x**2, x)
for x in range(160) )

Define G = fderiv(g), and let us test how well our approximation performs: we
should have G(x) ~ f(x). Write a procedure test_deriv() whose invocation yields
this:

X f(x) Gx) f(x)-G(x)

-2.0 -4.00 -3.99 -0.01000000000001755
-1.9 -3.80 -3.79 -0.009999999999995346

1.9 3.80 3.81 -0.009999999999999343
2.0 4.00 4.01 -0.009999999999888765

You may want to read Sec. 22.4.10p94: “Formatting strings” to format the output
properly.

Note: you can’t use floating-point numbers in range. To understand why, please
study Sec. 48,311): “Fear the floating-point ranges” (on your own time).

You can see that we have a precision of about 0.01, give or take. You can play with the
values of h, going to 0.001, 0.0001, . .. to see how it affects the precision. Does adding
more zeroes always increase the precision? Why?

Now go back to the original values of h and modify deriv to use the central difference
formula (36.2)(p255) instead of (36.1)(255. What do you observe? Does adding more
zeroes to h still increase the precision, even if just at first?

For your information: There are good reasons for the central difference formula to outperform
the others. It can be shown that there are constants K, K’, and K", such that

‘f(a+h) —f(a) _ @l <nk and ‘f(a) —f(a—h) — ()| <hK',
h h

while
‘f(a—f—h) —f(a—"h) _#(a)| < h2K"

2h
Of course, for h small, that means a much better precision in general for the central difference. . .

To make this more fun, let’s visualise the curves using matplotlib. First, you need to
install the relevant packages, for your OS and for Python (via apt, pacman, or pip3).
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Visualise Exact and Approximated Derivatives

4—f
— G
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Figure 3: matplotlib visualisation

Your best bet is to install the package using your package manager. It should be

sudo apt install python3-matplotlib

under Debian / Ubuntu and

sudo pacman -S python-matplotlib

under Arch.

If you're not administrator on your machine or that fails for whatever reasons, run the
following command:

pip3 install matplotlib

If all installs well, good. If not, you may need some libraries for your OS, which again,
requires admin access. Under a Kubuntu 21.04 I installed the packages below — you
may or may not need to do something equivalent. Pay attention to what pip3 tells you.
sudo apt install libtiff5-dev libjpeg8-dev libopenjp2-7-dev zliblg-dev \

libfreetype6-dev liblcms2-dev libwebp-dev tcl8.6-dev tk8.6-dev \
python3-tk libharfbuzz-dev libfribidi-dev libxcbl-dev

When all is installed properly we can start to play. Copy the following code after the
function definitions:

260



import numpy as np, matplotlib.pyplot as plt
X = np.linspace(-2,2,100) # x varies in [-2,2], 100 uniform samples
npf = £(x) ; npg = g(x) ; npG = G(x) # our functions, with special object x

plt.figure(figsize=(12,12))
plt.rcParams.update({"font.size": 18 }) # I need glasses, OK?

plt.plot(x,npf,"b" ,label="f", linewidth=4)
plt.plot(x,npG,"r" ,label="G", linewidth=1)
plt.plot(x,npg,"black" ,label="g", linewidth=3)

plt.title("Visualise Exact and Approximated Derivatives'")
plt.legend(loc="best")
plt.axvline(0®); plt.axhline(®) # draw abscissa and ordinate axes

# plt.savefig("../derivapprox.pdf", transparent=True)
plt.show()

When executing that, you should get an interactive version of Figure 3,0. The
commented plt.savefig line is of course what I used to generate the figure — plus a
run of pdfcrop.

Observe, by zooming on the blue line, that our central approximation, in red inside the
thicker blue line, is indistinguishable from the real thing.

You may amuse yourself by trying more complicated functions.

36.3 The Newton-Raphson method

Let us come back to our problem of zeroes of f. How can we use our newfound derivation
powers to get even more efficient approximations than with a binary search?

The idea is to start with a guess x,, then to refine that guess by computing the tangent to f at
Xo, then following that tangent to where it intersects with the abscissa, and wherever that is,
this is our new and improved guess x;.

After all, a tangent is simply a linear approximation of f at that point. Instead of finding the
zero of f directly, we find that of an approximation.

What happens if f'(xo) = 0? Well, we are stuck, since the tangent is parallel to the abscissa.
Unlike the binary search, this method is not guaranteed to converge; however, when it does,
it does so very fast, as we shall see.

Let us take it from the top. We have a differentiable real function f, and an initial guess x,.
The tangent line of f at x, is given by the equation

tx) = f'(xo)(x —xo) + flx0) ,
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and crosses the abscissa at x1, solution of t(x;) = 0:

0 = f'(x0)(x1—%0)+ f(xo0)

o = xe— f(xo)
f/(xo)
Following the same reasoning, at each step we obtain the next guess by computing
Xny1l = Xn — f(xn) .
£/ (xn)

When do we stop that process? Unlike before, we lack a well-defined search interval, so we
cannot know how close we are to the solution. We do know, however, how close f(x.,) gets
to zero, and we shall use that as a criterion.

(43) Write a function newton(f,x,eps=1e-15) that computes, if possible, a zero of a
differentiable function f : R — R using the Newton-Raphson method. The function
shall trigger an assertion if it runs into a null derivative, and a guess x,, shall be
considered good enough to return if [f(x,, )| < €. Optionally, for debugging purposes,
you can have it print each of its guesses.

Tip: this function is doable in three lines — at least in its recursive version.

With it, let us compute /2 again, with initial guess 1:

>>> res = newton(g,l) # here with optional printing of guesses

.4999999999999996
.4166666666666667
.4142156862745099
.4142135623746899
.4142135623730951
>>> sqrt(2)
1.4142135623730951
>>> sqrt(2)-res

0.0

I
\Y%
e

Note how fast it is, compared to the binary search!

j8 Dichotomy is a general approach; specific problems may allow for more 28
even more efficient specific approaches

37 Comprehension expressions

Read Sec. 24.5(,157): “Comprehension expressions” with great attention. Do not neglect the examples
in Sec. 24.5.3y1611: “Common comprehension patterns”.

For nearly each question, you will use a comprehension expression. For instance, if I ask for
the set of all even numbers strictly less than n, then I expect to see
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{ i for i in range(n) if i%2==0 }

If I ask you for a function returning the set of all even numbers strictly less than n, I expect

def evens(n):
return { i for i in range(n) if i%2==0 }

Where a comprehension expression is possible, an answer based on usual constructions by
iteration will not be suitable for the purpose of this exercise.

5

comprehension expressions are compact, legible, and easy to write. 4;8
you love comprehension expressions

371 Warm-up

(44) Write a function cart_prod(A,B) returning the Cartesian product of sets A and B. For
instance:

>>> cart_prod({’a’, 'b’}, {1,2,3})
{Ca’, D, Ca’, 2), (Ca’, 3), (b’, 1), Cb’, 2>, (’b’, 3)}

Note that, since the result is a set, the order in which its elements are displayed is
unpredictable; see Sec. 24.31,145): “Sets: class set”. If you want to display the elements
in a legible order, you can use sorted(.)

The following assertions should hold:

assert cart_prod(range(3), []) == set()
assert type(cart_prod([1],[2])) is set
assert cart_prod(range(2), range(10, 12)) == {(0,10), (0,11), (1,10), (1,11)}

(45) ...now compute

>>> cart_prod("ab", {1,2,3})

instead of

>>> cart_prod({’a’, 'b’}, {1,2,3})

What happens, and why? Is it a bad thing?

If in doubt, read Sec. 23.4,115: “for .. in .. rangeloop” again, especially the part where
the keywords iterable and collection appear.

j8 ' what works for an iterable type usually should work for another ‘28
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(46) Write a function squares(n) returning the list of all square numbers (i.e. integers that
are the square of another integer) in [0, n].

We deal with integers; make sure to avoid floating point computations; for instance
you must not write sqrt (i) or i**0.5 either. No square root or floating point number
of any kind.

The following assertion must hold:

assert squares(100) == [0, 1, 4, 9, 16, 25, 36, 49, 64, 81, 100]

18 conditionals in comprehension expressions }8
comprehension expressions and boolean operators

(47) Write a predicate isprime(n) (N — bool) testing whether a natural integer is prime,
that is to say, whether it is strictly greater than 1 and divisible only by 1 and n.

Asusualin this exercise, the body must be written in one line of the form return <expr>.
Read Sec. 24.5.3.4,163): “Reductions”, especially the part about any and all.
The following assertion must hold:

assert [ i for i in range(30) if isprime(i) 1 \
== [2, 3, 5, 7, 11, 13, 17, 19, 23, 29]

j8 ' combine comprehensions with boolean operators ‘K@

37.2 Palindromes and other one-liners

All of the following functions must be written in one line: that is to say, their body must be
of the form return <expr>.

You may write a first version of them using normal loops as a draft if it helps you, but the
tinal product must be of this form. Of course the solution will often be a comprehension
expression, but sometimes it can be another simple expression.

p

(48) Write a predicate palindrome(s) testing whether the sequence s is a palindrome.

any, all, and sum reductions

sequence index manipulation ‘ x¢8

Read Sec. 22.4.61,85): “Slicing and dicing, concatenation, repetition”, especially about negative
indexes. Read Sec. 24.5.3.4,163): “Reductions”, especially about any and all.

A palindrome is a sequence that can be read either left-to-right or right-to-left: ABCBA is
an example.
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(49)

(50)

(51)

(52)

You will use a comprehension expression of the form all(...), testing explicitly that
all elements are equal to their mirror: the first to the last, the second to the penultimate,
and so on.

You will absolutely not use a [::-1] slice, a reversed(), or any other way to compute
the inverse of a collection (we’ll do that in the next question)

The following assertions must hold:

assert palindrome(’abba’)
assert palindrome(’abcbha’)
assert palindrome(’’)
assert palindrome(’a’)
assert not palindrome(’ab’)

Write a function inverse(s) returning the list of the elements of the sequence s,
in reverse order. For the purpose of this exercise, you will use a comprehension
expression, not a [: :-1] slice, a reversed(), or anything else of that nature.

The following assertions must hold:

assert inverse(’abc’) == [’c’, ’b’, ’a’]

assert inverse(’’) == []

Write a predicate palinv(s) equivalent to palindrome(s), but using inverse.
The following assertions must hold:

assert palinv(’abba’)
assert palinv(’abcbha’)
assert palinv(’’)
assert palinv(’a’)
assert not palinv(’ab’)

jg' for elem in collection versus for i in range ‘)8

Write a function rmfrom(s,bad) returning the list of the elements of the collection s
that do not appear in the collection bad. The order of elements must be preserved if s
is a sequence.

The following assertion must hold:

assert rmfrom(’esope reste ici et se repose’, ’aeiouy ') ==\
[’S’, ’p!’ !rl’ ’S!’ ’t’, ’C” ’t’, ’s” !r!’ !p” !S!]
)8 laziness is a virtue: reuse previous functions ‘)8

Write a function rmspaces(s) returning a list of the elements of the sequence s, in the
original order, from which spaces have been removed.
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(53)

(54)

The following assertion must hold:

assert rmspaces(’esope reste ici et se repose’) ==\
[ Ye!’ !S!, !01, !p!’ !eY, !r!’ !el’ !S!’ !t!’
Yel’ li!’ YCY, !i!’ !ei, !tl’ ,S', !el’ !rl’
!e!’ ’p,’ !01’ ’S,, !e!]
)8 ' are you virtuous yet? )8

Write a predicate palindrome_sentence(s) testing whether the sentence described by
the sequence s is palindrome. A sentence is palindrome is the sequence of its letters is
palindrome — whitespace is abstracted away.

The following assertions must hold:

assert palindrome_sentence(’esope reste ici et se repose’)
assert not palindrome_sentence(’esope reste ici et se reposes’)

28 ' a lot of maths can be translated in Python almost directly ‘K@
Write a function fsum(f, i, j) such that

j
fsum(£,i,1) = ) f(k).
k=1

The following assertions must hold:

assert fsum (lambda i:i, 0,10) == 55
assert fsum (lambda i:i//2, 0,21) == 110
assert fsum (lambda i:i**2, 0,10) == 385

38

(55)

Our generators have character

You will need Sec. 22.4.7,91): “Python strings use Unicode”.

Write a function crange(a,b) that returns a generator for all characters from a to b,
in Unicode point order. This can (and must) be done in one line, using a generator
expression.

It must satisfy the following assertion:

assert "".join(crange(’A’,’Z’)) == ’ABCDEFGHIJKLMNOPQRSTUVWXYZ’
assert next(crange("a","b")) == "a"
)‘8 ' generator expressions ‘ ‘58

variadic functions
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Read Sec. 24.5.11y155: “Comprehensions for every type; first contact with generators”.

(56) This question requires the yield or yield from keywords from Sec. 291,y12: “Iterables,
iterators, and generators”, as well as Sec. 25.1,174: “Variadic function definition”. It is advised
to use Sec. 24.61y165): “Packing and unpacking” as well.

Write a variadic function charrange(ay, by, ..., a,, by) returning a generator for all
characters of the successive ranges ay, by, as defined in the previous question. It need
not be written in one line.

It must satisfy the following assertions:

assert "".join(charrange(’A’,’Z’,’a’,’z’,’0°,’9’)) ==
"ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopgrstuvwxyz®123456789’

assert next(charrange("a","b")) == "a
assert "".join(charrange()) == "’

j8 ' yield and yield from, and the difference between them ‘j{«}

39 And then there were Nones...

j8 ' side effects; order of evaluation ‘4;8

Read Sec. 22.5,99): “Nihilism: NoneType: expression versus statement”.

Mentally execute the script below, and write down the output which you expect Python to
produce.

2+2

print (2+2)

print (print (2+2),print(2+2))

1= [ 1+i for i in range(3) 1]

pl = [ print(1+i) for i in range(3) ]
print(1l,pl)

Execute the code. Compare what was actually produced to what you thought would be. If
they do not match exactly, take the time to understand why.

40  Sets, dictionaries and slices training

If you have not already done so, read Sec. 22.4.6,35): “Slicing and dicing, concatenation, repetition”,
Sec. 24.3(p145): “Sets: class set”, and Sec. 24.4p145): “Dictionaries: class dict”.
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5

sets are hash tables — no mutable values
sets are unordered = not indexable

sequence slicing syntax (on indexable stuff only!)

False == 0, so problems in sets, dicts

comprehensions are loops behind the scenes, so side effects work as usual

/5

Mentally execute the following blocs of code, and write down on a piece of paper what you
think Python will display.

In cases where Python’s output is not entirely predictable, be sure to note that on your
answer, and explain the cause and extent of this unpredictability.

Then execute the code and confront your answer to reality.

(57) print(set(’totto’))

(58) print({’totto’})

(59) print({{’toto’}, {’tata’}})

(60) print(’abcde’[-1])

(61) print({’abcde’}[0]1[1])

(62) print(’abcdefg’[2:5])

(63) print((list(’abcdefg’)*3)[2:5])

(64) print((list(’abcdefg’)*3)[19:22])

(65) print(’abcdefg’[-5:-2])

(66) print( list(range(12))[13:5:-2] )

(67) print({0:1, None:2, False:5})

(68)

s = { print(i) for i in range(1,3) }

ss = { (i,print(i)) for i in range(1,3) }
sss = { (i,i,print(i)) for i in range(1,3) }
print(s,ss,sss,sep="\n’)

41  What the what!?

Some days, in my profession, you come across code that you just have to share with the

world. As therapy.

In this exercise, I share with you very special code that I have seen written sincerely, candidly,
by my own students, in answer to questions in this very document, whether in class or
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during an exam @™,

The trick is, I don’t tell you whether it works, or what question it is supposed to answer. It is
up to you to figure out what it does — or purports to do.

Then you must correct it where necessary, and simplify it.

This section is small for now, as I only recently had this idea to systematically weaponise
students’. .. creativity into exercises, but, with the upcoming exams, I have every confidence
that it will grow fast :-)

(69)

(70)

Courtesy of a student from 3A STI Apprentissage, 2020-2021, who wishes to remain
anonymous:

def spicy_function(X, Y):

E = set()

{ E.add( (x,y) ) for x in X for y in Y }
return E

This works, and not quite accidentally either, but it’s interesting to understand why,
and to understand what the value of

{ E.add( (x,y) ) for x in X for y in Y }

is, and what happens to it.
)8 side effects # the value denoted by the comprehension 1$8

3A STI, 2019-2020. This one was written all in one line. Given the limitations of the
PDF / paper format, I had to wrap it.

This is sad, as some of the poetry is lost.

True if len(p) == 0 else not False in {True if p[j] ==

pllen(p)-j-1] else False for j in range (len(p)//2)}

28 (C==True)==True is not better in an expression-if )8
“there has to be a better way to write this”

42

&

Encapsulating the sparse matrices

encapsulation: hide implementation details behind an interface
tailor your implementation to your needs (@
test your assumptions regarding performance

@m)t’s less funny during an exam; no points are awarded for being facepalm-worthy.
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A sparsely populated matrix (or sparse matrix for short) is a matrix in which the vast majority of
the values are 0, null, None, or whatever other value signifies “nothing to see here!” in the
context at hand.

For instance, when implementing a game operating on a map of size 100 x 100, if you have
only a couple hundreds of characters on the map, the matrix representing the situation
would qualify as sparse. Sparseness, and its opposite, density, have strong implications
regarding the performance of various implementations of matrices.

In this exercise we shall write two different implementations of matrices, hiding the dirty
details of the implementation from the user behind an interface. This extremely common
technique is referred to as encapsulation® in Object-Oriented Programming (OOP). You will
need to read and understand the basics of Sec. 27;155: “Object Oriented Programming in
Python”.

Then, we shall compare the performance of those two interchangeable implementations.

To keep things simple, we are not going to implement matrices in all generality, but only
square matrices My of size N x N, N € N, of the form

0 0:ovveenn 0
My = 9._1 SR
-0
[\ 0 N-—1

which is to say, diagonal matrices defined as

i ifi=j
0 otherwise

Mnli; = {

Furthermore, we shall only implement one operation on those matrices: the computation of
the sum )} My of their elements:

D My = ) Mny -

)
Though we shall not implement that, we shall allow for the possibility of the matrices being
modified by the user; thus our representations and the implementation of our methods shall
remain fully general, and will not take advantage of the extremely specific form of My. It

just happens that we initialise our matrices to My, that’s all, and every bit of code you write
should work equally well if we decided to initialise to random values instead.

While this still appears very restrictive, to go back to the “game” application, this is
sufficient to simulate populating sparse matrices and executing an operation that needs to
take everything on the grid into account. With this, we shall have more than enough to draw
pretty clear conclusions with regards to performance; you'll see.

@https://en.wikipedia.org/wiki/Encapsulation_(computer_programming).
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Our implementations of matrices shall follow the following interface: the class constructor
will take as single argument the dimension N, of default value 100, and the matrix object
shall offer:

o the attribute N, storing the dimension,

o the attribute m, storing the internal representation of the matrix, which the user is not
really supposed to interact with directly,

¢ the method sum, taking no argument, returning the sum of the elements of the matrix,

¢ and support a string representation (via repr, cf. Sec. 27.7,195): “String representations
str and repr”), for which I'll provide most of the code.

(71) Let us implement a class matrix providing a naive “list of list” implementation of My.

You might want to refresh your reading of Sec. 24.2.2.2,137): “Case study: nested lists/
matrices” on the initialisation of matrices.

Complete the following code to initialise the matrix to My:

class matrix():
def __init__(s, N=100):
s.N =N
s.m=[ [... for ...] for ... ]

def __repr__(s): return f"matrix({repr(s.m)})"

Yes, as the code indicates, populating the internal representation should be done in one
(logical) line. Remember that Sec. 23.2(5114): “Conditional expression: .. if .. else ..
ternary operator” exists.

You should obtain

>>> matrix(3)

matrix([[®, O, O], [0, 1, O], [0, O, 2]])
and the following assertion should hold:

assert matrix(3).m == [[®, O, 0], [0, 1, O], [0, O, 2]]

Aside on repr: Note that our repr does not exactly follow Python convention, in that
it does not return the Python code that would produce the object:

>>> matrix([[®, O, 0], [0, 1, O], [0, O, 2]1)
TypeError: ’list’ object cannot be interpreted as an integer

Morally, we should have returned the string "matrix(3)", but we are anticipating a

more general version of matrix, where we can initialise a matrix with whatever we
want, and modify it.
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(72) Now, implement the matrix.sum method, by completing the following code:

def sum(s):
return sum(...)

There again, the implementation should be in one line, following the structure of the
code I provide, and the following assertion should hold:

assert all( matrix(N).sum() == N*(N-1)//2 for N in range(10) )

We’'re all done with our first implementation.
(73) Intermission:

Pop quiz on something completely different: in the assertion above, how do I know
that N*(N-1)//2 will be evaluated as (N*(N-1)) // 2, which works because maths
guarantee that N*(N-1) is even @) for all N, and not N * ((N-1)//2) which introduces
a rounding error if N-1 is odd?

>>> [ (a,b) for N in range(10) if (a:= N*(N-1)//2) != (b:= N*((N-1)//2)) 1]
[(1, 0), (6, 4), (15, 12), (28, 24)]

Tip: Figure 1p115).

)8 always think of precedence and associativity )‘8
when in doubt, don’t write useless parentheses: check, and learn

(74) Now let’s go back to our matrices, and provide another implementation, called smatrix,
with a completely different internal representation. Spoiler alert, it is called smatrix
because it is optimised for sparse matrices.

Instead of a natural “list of lists” representation, we’ll use a “mapping” representation,
whereby we store a mapping from coordinates of non-zero cells to their value. Any
cell not appearing in the mapping is assumed to contain 0.

For instance,

o o

M; =

o
o = O
N © O

is represented as
{(,1)—=1,(2,2)—2}.
You will implement this mapping using a dictionary. More specifically, you will use

a defaultdict, so that any coordinate not in the dictionary is associated with 0. See
Sec. 24.4.1.2154: “defaultdict, from collections”.

(@)The product of an even integer with any other integer is even. Of two consecutive numbers, one is even.
Therefore. . .
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You will complete the following code:

class smatrix():
def __init__(s, N=100):

s.N =N
s.m = defaultdict(..., { ... for ... })

def __repr__(s): return f"smatrix({repr(s.m)})"

You should get something like

>>> smatrix(3)
smatrix (defaultdict(<function smatrix.__init__.<locals>.
<lambda> at 0x7£f54f0748220>, {(1, 1): 1, (2, 2): 2}))

which is not pretty to look at — we’ll fix that later — and the following assertions must
hold:

assert type(smatrix(3).m) is defaultdict
assert smatrix(3).m == { (1, 1): 1, (2, 2): 2 }
assert smatrix(3).m[(999, 999)] ==

(75) Now, implement the smatrix.sum method, by completing the following code:
def sum(s):

return sum(...)

As usual, in one line.

For this first implementation, I add the constraint that it must be a pretty naive
implementation of }_; ;[Mn]ij, following the structure of matrix. sum, explicitly asking
the internal representation for the values of all the cells in the matrix.

If you see a much better way of doing this, don’t worry, we'll get there in a couple of
questions. If you don’t, and wonder what I'm talking about, don’t worry, your first
instinct will probably be the naive implementation I'm asking for, so all is well :-)

assert all( smatrix(N).sum() == N*(N-1)//2 for N in range(10) )
(76) Write a method smatrix.full_matrix() that returns the “list of lists” representation

of the matrix.

You should have

>>> smatrix(3).full_matrix()
[[6, 6, 0], [0, 1, O], [0, O, 2]1]

and the following assertion must hold:

assert all( smatrix(N).full_matrix() == matrix(N).m for N in range(10) )
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j8 ' translate from one representation to another ‘ﬁ

(77) Now let us fix our repr so it doesn’t look too ugly. Change what needs to be changed

(78)

so that we see

>>> smatrix(3)

smatrix([[06, ®, 0], [0, 1, O], [0, O, 2]1)
instead of

>>> smatrix(3)
smatrix (defaultdict (<function smatrix.__init__.<locals>.
<lambda> at Ox7f54f0748220>, {(1, 1): 1, (2, 2): 2}))

The following assertion should hold:

assert all( repr(smatrix(N)) == "s"+repr(matrix(N)) for N in range(10) )
28 ' hide dirty internal structure from the user ‘28
It’s time for some performance testing.

Here is some code for performance testing;:

def test():
from timeit import timeit
for desc,f in [

("matrix init", lambda: matrix()),
("matrix init+sum", lambda: matrix().sum()),
("sparse matrix init", lambda: smatrix()),

("sparse matrix init+sum", lambda: smatrix().sum()),
]:
print (f"{desc:<25}{timeit (£, number=1000):.3f}")

Execute it, and you should see numbers telling a story similar to this:

matrix init 0.183
matrix init+sum 0.446
sparse matrix init 0.005

sparse matrix init+sum 1.208

At the risk of stating the obvious, these are performance numbers and will vary from
machine to machine; they should lead to the same conclusion, however.

And what is that conclusion? We see that smatrix initialises massively faster than
matrix. This is not surprising, as the former allocated all cells into memory, even if
zero, and almost all of them are zero, whereas the latter only allocates memory for
non-zero cells. All good.
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(79)

(80)

However, we are disappointed to see that sum performance is actually worse for smatrix.
How come?

&

If you had a better idea for implementing smatrix.sum, now is your time to shine. If
not, now is your time to think one up.

good structure + bad algo = bad performance ‘)8

Tip: just sum over the non-zero values of the internal representation. See Sec. 24.4;14g):
“Dictionaries: class dict” to find a useful method of dict, beginning by v, that you
might want to use. ..

With the new implementation, the performance profile should match

matrix init 0.185
matrix init+sum 0.467
sparse matrix init 0.005

sparse matrix init+sum 0.006

In other words, smatrix is now massively more efficient than matrix for all supported
operations.

I hope you appreciated in passing how convenient it is that we can just completely
change the implementation of a method at the drop of a hat, and still trust in the
correctness of the code because we have unit-test assertions in place. Isn’t it nice? (You
do have assertions in place, right? Right?)

5

What performance profile would you expect from those two implementations on dense
matrices, that is, matrices in which most values are non-zero?

&

good structure + good algo = good performance ‘4;8

error 404: universal perfect structure not found ‘28

43

Power to the sets!

We recall the notion of powerset of a set S, denoted by p(S), 25, P(S), P(S), etcetera.

sep(S) < sCS or 9(S)={s|scS}.

In other words, the powerset of S is the set of all (non-strict) subsets of S. For instance:

p{0,1}) = {o, {0} {1}, {0,1}}
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Further recall the property |(S)| = 25/, which is one of the reasons for the use of the notation
25: we have [2%] = 25/; the other reason is of course the bijection between the powerset and
the set of functions {0, 1 }® — both reasons boil down to the same thing, in the end.

It is interesting to see a proof of that property:

Theorem 3 (Cardinality of Powerset). Let S be a set; then |p(S)| = 2/5I.

Proof sketch. By induction on [S|.

If S| =0, then S = @, and |p(@)| = {2} =1 = 2°.

Let S = {e} UT, with |T| = n, and assume |p(T)| = 2™. Let s C S; then eithere € sore ¢ s,
and in either case s — {e} € p(T). So we have in total 2™ powersets containing e, and 2™ not
containing e, so S| = 2" = 2I81, O
Note that the proof suggests a recursive definition of the powerset. . .

(81) Define a function powerlist (1) returning the list of the positional sublists of the list
(or any other iterable) 1, in no particular order.

By “positional sublist”, I mean a list containing some elements of 1, based on their
positions, not on their values. Thus, if values are repeated in the list 1, they are still
treated as distinct.

The following assertions must hold:

assert powerlist([]) == [[]]
assert sorted(powerlist([1,2,3]), key=lambda x:(len(x), x)) ==
tt1, rw1, 21, 31, [, 21, [1, 31, [2, 31, [1, 2, 3]]
assert sorted(powerlist([1,1,1]), key=len) ==
ct1, ra1, (11, C211, C1, 11, (1, 171, [1, 17, [1, 1, 1]]
assert all( len(powerlist(range(n))) == 2**n for n in range(5) )

You will implement this recursively and take care to avoid repeating redundant
recursive calls.

This can easily be done in three lines (excluding function declaration).
The cardinality proof above hints at the recursion you need to apply.

You may — no, you most definitely will — want to apply some pattern-matching or
packing/unpacking, here: see Sec. 23.6[p12;): “Pattern matching: match. .case” and
Sec. 24.6(p168): “Packing and unpacking”. Hint: what does e,*1 = 1or *1,e = 1do?

28 ' using packing/unpacking for recursion on lists “58

(82) Now write powerlist2, another version of powerlist, implemented non-recursively.

There again, this can easily be done in three lines (excluding function declaration).
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(83)

(84)

(85)

It must satisfy the same assertions as powerlist; you can have the assertions apply to
both functions like so:

for powerlist in (powerlist, powerlist2):
assert powerlist([]) == [[]1]
assert sorted(powerlist([1,2,3]), key=lambda x:(len(x), x)) ==
cc1, ri1, r21, €31, [, 21, 1, 31, [2, 31, [1, 2, 311

assert sorted(powerlist([1,1,1]), key=len) == \
cc1, ca1, (11, (11, C1, 11, (1, 17, [1, 17, [1, 1, 1]]
assert all( len(powerlist(range(n))) == 2**n for n in range(5) )

&

Can you implement a function powerset (s) in Python that naively matches p(-) and
returns a set of sets? Why?

a recursive definition can also suggest an easy loop implementation ‘)8

Tip: Sec. 24.3p145: “Sets: class set”, Sec. 24.3.1p147): “Frozen sets: class frozenset”.

Implement a function powerset(s) corresponding to g(-), and returning a set of
frozensets. The parameter s may be of any iterable type, and must not be altered by
the call.

Reminder: packing/unpacking works on sets, and set.pop exists as well.
The following assertion must hold:

assert all( powerset(r:=range(n)) == { frozenset(s) for s in powerlist(r) }
for n in range(5) )

18 ' sets of sets are common in maths; need thought in Python ‘)8

Write a generator function powergen(s), where s is again any iterable, than generates
all subsets of s.

The following assertions must hold:

assert type(powergen([])) is type(_ for _ in [])

assert all( type(s) is set for s in powergen(range(5)) )

assert all( set(map(frozenset, powergen(r:=range(n))))
== { frozenset(s) for s in powerlist(r) }
for n in range(5) )

You can use yield from if you want, but in that instance it is simpler not to.

28 ' recursion in generator functions ‘28
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44  Let’s get primitive!

In Sec. 36.2p57): “This is all very derivative. ..”, we computed numerical approximations of
derivatives. Let us now do the same thing for integral calculus and primitives.

p

Our goal is to compute a numerical approximation of a primitive (or antiderivative) of any
given continuous function of type R — R. That is to say, given a function f, we want to
obtain a function F such that F' ~ f.

apply comprehension expressions to x<-‘8
solve a seemingly nontrivial problem in a few lines

Because constants disappear during derivation, every function f has infinitely many primi-
tives, differing only up to an additive constant. Each can be written F or [ f(x) dx.

Primitives and definite integrals, which represent the area beneath the curve of the function,
are related by the following equation:

Jb f(x) dx = F(b)—F(a).

a

Thus, if we can compute a definite integral, we can obtain a suitable primitive via

F(x) = Jf(x)dx = rf(t) dt .

0

Our first objective will therefore be to implement definite integrals. The simplest way to do
that is to use Riemann integrals.

The general idea is to approximate the area under the curve by partitioning the abscissa into
many smaller intervals, and approximate the area under the curve on each smaller interval
by a rectangle. Then you can sum all rectangles. The smaller each small interval, the better
the approximation.

There are different possible choices regarding the selection of the smaller intervals, and of
the value used for the height of each rectangle, but they all give the same result when the
intervals get infinitesimally small. This is illustrated visually in Figure 4 p279).

Definition 4 (Riemann integral). Let f : [a, b] — R and
P = [(x0,%1), (X1,%2)y++ o (Xn—1,%n)] ,

a partition of [a, b]. That is to say, we have
A=%Xp <X <X < +<xXp=Db

The Riemann sum of f on P is
Z f(x}) Axy ,
i=1
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a=Xo Xi—1 X4 b

Xn X

Figure 4: General idea of Riemann integration

where Ax; = x; —xi—1 and x{ € [xi_1,Xx4].

The Riemann integral is the limit of the Riemann sum as the maximal size of partitions
|Ax|| = max; Ax; goes to 0:

rf(x)d = lim Zf ) Axi.

@ ||AX||~>O

The choice of x} can produce different sums, but does not matter at the limit, for the integral.

For our purposes, we shall take uniform partitions, that is to say all Ax; are equal, and select
x; as the middle of its interval:
Xt Xig

e e Y
this is called a middle Riemann sum.

(86) Write a function partition(a,b,n) that, given two floating point values a and b, and
n € N, returns the partition of the interval [a, b] into n equal parts.

Specifically, you must return a list of couples [ (al, bl), ..., (an, bn) ] such
that a; = a, b, = b, and all intervals [a;, b;] are of the same size.

It should be written in one or two lines using a comprehension expression, and it must
satisfy the following assertions:

assert partition(-1, 1, 1) == [(-1.0, 1.0)]
assert partition(0,30,3) == [(0.0, 10.0), (10.0, 20.0), (20.0, 30.0)]
assert partition(30,0,3) == [(30.0, 20.0), (20.0, 10.0), (10.0, 0.0)]
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(87)

(88)

(89)

(90)

assert partition(-1, 1, 4) == [(-1.0, -0.5), (-0.5, 0.0),
(0.0, 0.5), (0.5, 1.0)]

28 ' Applying for a,b in 1: multiple assignment in iteration ‘28

Write a function riemann(£f, a, b, n=100) that returns an approximation of

Jb f(x)dx,

a

the definite integral of f on the interval [a, b], performed by middle Riemann sum,
with a partition of [a, b] in n equal parts.

This function can and should be written in one line, of the form return sum ( ... ),
and should satisfy the following assertions:

assert abs(riemann(lambda x:x, 0,1) - 0.5) < le-9
assert abs(riemann(sqrt, 0,1) - 2/3) < le-4
Write a function primitive(f, x, n=100) returning the value
X
F(x) = J f(t) dt,
0
as approximated by a middle Riemann sum on a uniform partition in n equal parts.
The following assertion must hold:
assert all( abs( primitive(lambda x:x, x) - (x*x / 2)) < le-9

for x in [-32, 0, 1, 2, 8, 64] )

Write a function fprimitive(f, n=100) returning F, the approximated primitive
function of f, as per the previous question.

The following assertion must hold:

assert all( fprimitive(sqrt)(x) == primitive(sqrt, x) for x in range(100) )

Let us visualise this. Using the same example functions f and g as in Sec. 36.2p257;:
“This is all very derivative. .. ”, graph the functions g, g + 2, and F = [ f(x) dx, as given
by F = fprimitive(f).

You should obtain something similar to the nearby figure. You should, as for derivatives,
see that the error due to the numerical approximation is imperceptible.

We shall come back to derivation in Sec. 45(,81): “A smidgen of Computer Algebra”,
using symbolic methods instead of numerical ones. Note that computing primitives
symbolically is a vastly more difficult problem than computing derivatives symbolically.
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Visualise Exact and Approximated Primitives

— 9
—_ g2
-2 F

-20 -15 -1.0 -05 0.0 0.5 1.0 15 2.0

Figure 5: matplotlib visualisation of primitive

Many primitives of rather simple functions do not even have a closed form! For
instance,

Je"z dx, Jx" dx, J'L dx, Jsin x? dx, J S x dx,...
Inx X

Thus, we shall not come back to integration from a symbolic standpoint.

45 A smidgen of Computer Algebra

This exercise requires a good understanding of Sec. 23.61,127): “Pattern matching: match. . case”,
Sec. 27.51192): “matching attributes”, and Sec. 28,505): “Advanced structural pattern matching”.
For the second section, Sec. 27,185): “Object Oriented Programming in Python” is also required.

p

In Sec. 36.2p257): “This is all very derivative. ..”, we used numerical methods to approximate
the values of derivatives at any point, which is all well and good but. .. didn’t you wish we
could get exact answers? For instance

apply advanced pattern matching to a rather complex problem “{9‘8

d

a(XZ—Z) = ZX,
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or
4x
x2 — 1

(1420 1)) =

or

dx
How do we get that kind of answers out of the computer? Well, one way is to fork out the
money for Computer Algebra Systems (CAS) such as Maple, Mathematica, or MATLAB, or
install free and open-source alternatives such as SageMath @p)  Axiom, or Maxima, or even
just look up the solution on https://www.wolframalpha.com/ ... but where is the fun in
not reinventing the wheel?

i(lnx(sxz +1)) = 3x+ j—( +6xInx .

Instead, we shall implement our own rudimentary CAS. We will need to manipulate
mathematical expressions symbolically to compute derivative functions.
First step, what is the formal grammar of those expressions? We shall limit ourselves to

e = x | et+e | e—e | exe | exe | f(e) | e | —e | v,

where v € Ris a constant value, x is a variable name and f a function name. In practice we
shall support only In.

45.1 A perfect match

(91) j&’

Define a class system in the style of Sec. 28(,505): “Advanced structural pattern matching”
for the type of mathematical expressions.

implementing an inductive type definition in Python ‘28

Note that every construct is binary, even function calls and exponentiation that are not
typically thought of as “operators”. Thus I suggest defining a larger type BinExpr to
handle all of theses, and only defining +, —, X, <+ as proper BinOp. This will enable the
factorisation of some rules. Thus I propose that you copy this

@dataclass

class BinExpr:
a: object
b: object

class BinOp (BinExpr): pass
@dataclass

class UnOp:
a: object

@P)If we had a serious Python project involving symbolic computation, the sane thing would be to use Sage
and SymPy. SymPy is a Python library for symbolic computation, and Sage, which includes SymPy, is partly
implemented in Python, and interoperates with it.
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and define each operator by inheritance of those types. Variable and function names
shall be strings.

For instance, you should be able to write

>>> x = "x" # our main variable name

>>> f1 Plus(1l, Mul(2,Call("1n",Minus(Pow(x,2),1))))

>>> f1

Plus(a=1, b=Mul(a=2, b=Call(a=’1n’, b=Minus(a=Pow(a=’x’, b=2), b=1))))

>>> f2
>>> £2
Mul (a=Call(Ca=’1n’, b=’x"), b=Plus(a=Mul (a=3, b=Pow(a='x’, b=2)), b=1))

Mul (Call("1ln",x), Plus(Mul(3,Pow(x,2)), 1))

Make sure to define f1, £2, and x in your source file, we shall use them as running
examples.

(92) j8 ' implementing recursive functions on inductive types ‘K@

Ok, we have formulae, but they are ugly to look at. Write a function estr such that
TODO ADD ASSERTIONS THROUGHOUT EXERCISE

>>> estr(fl)
(1 + (2 * (In(x*2 - 1))’

>>> estr(£2)
"((In x) * ((3 * xA2) + 1))’

Recall the trick from Sec. 28206 “Advanced structural pattern matching” to use an
attribute symb to associate a symbol to each operator.

There are still a lot of parentheses, but analysing operator precedence to get rid of some
of them would be a more difficult exercise. This is good enough for our purposes.

©3) jg ' embedding semantics in inductive type definitions ‘ 28

catching specific exceptions
We have symbolic expressions, which is nice. But at some point we want numerical
results as well, if only to be able to graph them. Write a function ®? eval (e,var,val)
that produces the numerical value of the evaluation of the expression e when the
variable var is affected the value val.

For instance, you should obtain:

>>> eval (£2, x, 0)
inf

(@dNote that a function named eval is already defined in Python, but it does something quite different — it
evaluates a string containing Python code. There is no harm in masking its definition, as we do not use it.
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>>> eval (f2, x, 0.1)
-2.371662645783867

>>> eval (£2, x, 1)
0.0

>>> eval (£2, x, 2)
9.010913347279288

>>> eval(f2, x, 1.4)
2.3149289879539445

>>> eval(f2, "y", 1)
an error of some sort

For graphing purposes, in case of division by zero or domain error — for instance In is
not defined everywhere — you will return the value float(’inf’), which is to say oo.
For this, you will need to use try/except. Note that you should be precise in which
exceptions you catch:

>>> log(0)
ValueError: math domain error

>>> 1/0
ZeroDivisionError: division by zero

We specifically want tointerceptmath domain error,notallValueErrors. ValueErrors
can arise in many other cases, in fact it is probably a ValueError which we want to

raise if we evaluate an improper expression. To avoid catching unwanted exceptions,

use something like

except ValueError as e:

if str(e) =="math domain error":
return float(’inf’)
raise e

Thus, we do not interfere with our ability to raise ValueError when faced with an
expression which we cannot evaluate:

>>> eval([],x,1)

ValueError: []

Note that it is possible to use the same trick as for string conversion to handle all
BinExpr in one line. Just as we have an attribute symb that contains the symbol of a
construct, we can have an attribute sem that contains its semantics.

For instance I have

class Plus (BinOp):
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(94)

symb = "+"
sem = lambda x,y:x+y
You can do the same thing not only for all operators, but also for Call and Pow.

There is a niggling little difficulty to it, though. In Sec. 28201 “Advanced structural
pattern matching”, we could write directly

match e:
case BinOp(l,r): return f"({fstr(1)} {e.symb} {fstr(r)})"

Since sem is a function, and not a constant like symb, when BinOp (or BinExpr) is
instantiated it becomes a bound method, and thus takes self as a first argument.
Recall that e.sem(a,b) is a notational shortcut for BinExpr.sem(e,a,b), if e is of type
BinExpr.

To avoid this, you need to get the attribute sem not from the instance e, but from the
type BinExpr. Thus you will write something like type(e).sem(a,b).

If you run into the error

TypeError: Call.<lambda>() takes 2 positional arguments but 3 were given

That is probably the origin of the problem.

Another potential difficulty is the handling of Call. We restrict ourselves to things
like Call("1n", e), where the left-hand side is a constant function name — and we
have only need of In, specifically, but would like to be able to extend to sin, cos, etc.
You need to write a semantics attribute of the form Af, e : [f](e), where, for instance,
[-] :"1In"+ In. Think carefully about how to do that.

Or, you could just write one line per operator and not have to think about any of that,
but that’s just no fun at all.

Recall as well the trick of using z = lambda e: eval(e,var,val) for the recursive
calls, explained at the end of Sec. 28.1211): “An overlong aside on naming conventions”.

Now that eval is all set, let us graph our functions. This time we do not get to cheat
with numpy to define the functions — recall the magical x in question (42)p259):

X = np.linspace(-2,2,100) # x varies in [-2,2], 100 uniform samples
npf = f(x)

— we do it the hard way instead, by generating sequences of couples (x,£(x)), and
graphing that.

import matplotlib.pyplot as plt

plt. figure(figsize=(12,8))
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plt.rcParams.update({"font.size": 18 })

X = [-2 + i/100 for i in range(500) ]

Yfl = [eval(fl,x,X) for X in X]

Y£2 [eval (f2,x,X) for X in X]

plt.ylim([-5, 10]) # limit the y axis
plt.plot(X,Yf1l,"b",label=estr(fl1), linewidth=2)
plt.plot(X,Yf2,"r",label=estr(f2), linewidth=2)

plt.legend(loc="best")
plt.axvline(®); plt.axhline(0)

##plt.savefig("../excasflf2.pdf", transparent=True)
plt.show()

You should obtain this:

10 T
— (1 4+ (2*(In(x~2-1)))
— ((In x) * ((3*x72) + 1))

-2 -1 0 1 2 3
(95) Now we can move on to the very heart of the matter: symbolically computing the
derivative. Your goal is to write a function D(e, x), where e is an expression and x a

variable name — in practice "x" — that returns an expression for -Le, the derivative of
e with respect to x.

For instance, we should get

print("f2:", estr(£f2), "\n\t->")
print(estr(D(£f2,x)))
f2: ((In x) * (3 * x422) + 1))
->
(CCr / x> * (3 * x42) + 1)) + ((In x) * (C(O * xA2)
+ (3 % (2 * xA1))) + 0)))
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For now we shall not make any attempt at simplifying the expressions thereby obtained
— e.g. multiplications and additions by 0 — that will be the goal of the next question.

To achieve the computation of the derivation, recall (some of) the rules of derivation.
We have:

%c = 0 ceR
ix" = nx™!

dx B

—Inx = l

dx X

- d .
as well as, using f' as short for J-f(x):

(cf) = cf’ CER
(f+9) = f'+¢’
(f-g) = f'—¢

(fg)' — f'g—i—fg/

Those rules should be enough to handle £2. For £1, you will also need to support the
chain rule, or composition rule:

(gof)(x) =g'(f(x)f'(x) .

Don’t do that for now, we shall come back to it later, once we have a complete chain
for £1...

(96) We can now compute derivatives, and they are correct, but there are many obvious
simplifications left on the table. We want to define a function simp(e) to simplify the
expressions e we obtain.

Simplifying mathematics equations is actually a very difficult topic in all generality,
where most questions become undecidable. Indeed there are so many ways to manip-
ulate the expressions, and no clear criterion of when the expression is “fully simplified
”. Think of all the possibilities when applying associativity and commutativity rules to
all operators, and so on. That way lies madness.

We shall instead only pick up on the most obvious simplifications involving the
constants 0 and 1. For instance, we want to obtain:

print (estr(D(£f1,x)))
print(estr(Dfl := simp(D(£f1,x))))
(CCL / x) * (3 * x22) + 1)) + ((In x) * (C(O * xA2)
+ (3 % (2 * x21))) + 0)))
(CCL / x) * (3 * x22) + 1)) + ((In x) * (6 * X)))
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(97)

Even this is not fully straightforward to code. Consider the expression
O0xx*)+(3xe),

where e is some sub-expression. When doing your recursive descent into the structure,

you only see something of the form

Plus( Mul(..), Mul(..) )

you don’t know yet that the left-hand side is zero, so you cannot simplify. You will
need to come back later, from the top, and do another pass. The alternative would be
to write deep patterns, like

Plus( Mul(®, e)), Mul(..) )
Plus( Mul(e, 0)), Mul(..) )

but the number of rules explodes exponentially with the number of simplifications
you want to detect as well as the depth of detected patterns. This is not sustainable.

So, you are not going to write simp immediately. First, write a function fixpoint (f,e)
that applies a function f on e repeatedly, until a fixed point e* is reached: that is, until
f(e) = f**1(e) = e*. It then returns e*.

In other words, f is applied on e until it can find nothing left to change.

Now that we have fixpoint, we can code simp. The idea is that we shall have the
architecture suggested at the end of Sec. 28.111;: “An overlong aside on naming
conventions”:

def simp(e):
def z(e):
match e:
case Plus(0®,e) | Plus(e,®): return e

return fixpoint(z,e)

The sub-function z does only one pass, but it is applied repeatedly until all simplifi-
cations are exhausted. For the patterns themselves, start with the simplest identity
function you can write, then add the special patterns — P1lus (0, e) etc — on top. Make
it so.

We obtain
(CCr / x> * (3 * x42) + 1)) + ((In x) * (6 * x)))
for the derivative of £2, which matches
d 2 1
—(Inx(3x* +1)) = 3x+—+6xlnx.
dx X
288



(98) Using our eval, simp, and D functions, produce a plot of £2 and its derivative:
10

— f2=((Inx) *((3*x72) + 1))
—41 — f2'=(((1/x) * ((3*x72) + 1)) + ((In x) * (6 * x)))

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
(99) Now let us deal with £1. Recall that g o f(x) = g(f(x)) and that we need the chain rule
(gof)(x) =g (f(x))f'(x),
which we are going to write more compactly as
(gof) =(g'of)f".

How does that apply here? We have In(x* —1); g = Inand f = Ax : x> — 1. Let us
simplify that view and consider any expression as a function — by default, a function
of x.

Under that view, we have two expressions g = Inx and f = x> — 1. We already have
the machinery necessary to derive either expression. There remains to implement the
composition o.

It is actually very simple: g o f it is the substitution of all instances of x in g by the
expression of f. In our example:

gof = (Inx)x+ fl = (Inx)[x + x? — 1] = In(x>—1).
Likewise we can compute

(g'of)f = (Inx))[x x*—1]-(x*—1)’

- (J—C)[xexz—ﬂ-ZX

1

- X2_1~2x
B 2x
Cox2—17
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and indeed

2x

d
—ln(xz—U = XZ——] .

dx

That means we have already all the tools we need except for a substitution function.
Let us remedy that.

Write a function sub(e, x, f) that returns the expression obtained by substituting in e
every instance of x by the expression f. For instance, we should have

>>> estr( sub(Minus(Mul(2,x),x), x, Plus(l, Pow(x,3))) )
(2 * (1 + xA3)) - (1 + x73))°

This is not a difficult function to write: it is the identity function, with just one more
rule.

(100) Now you can extend the differentiation function D to support the chain rule. All you
need is a single new case line.

You should obtain

print("f1:", estr(£f1), "\n\t->")
print(estr(D(£f1,x)))

print (estr(Dfl := simp(D(£f1,x))))

f1: (1 + (2 * (In(x*2 - 1))))
->
@ + (0 * (In(x*2 - 1))) + (2 * ((1 / (x*2 - 1))

<2 * xr) - 0)))))
2 * (1 / (x*2 - 1)) * (2 * x)))

which is as expected:

d

4x
ol

x2—1"

2In(x* —1)) =

(z01) Now that all is said and done, plot f1 and its derivative:
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10

I
— fl=(1+ (2*(In(x"~2-1))))
| — fI'=(2*((1/(x72-1)) * (2 *x)))

45.2 Tobject!

Reading Sec. 27 ,185: “Object Oriented Programming in Python” is required for this part of the
exercise.

£

Let us make our CAS more user-friendly by setting up a layer of object-oriented syntactic
sugar around it. The goal is to set up a wrapper class F — for Formula — around our
expression type, so that the user can employ the usual syntax to define symbolic expressions.
For instance, we should be able to write

OO wrappers around procedural/functional implementations “58

X
In

F('x’) # declare a symbolic variable
lambda x: F(Call("ln",x.£f)) # declare a symbolic function

F1 = F(£f1); F2 = F(£f2)
FF1 = 1 + 2*In(X**2 - 1)

>>> FF1
(1 + (2 * (In(x22 - 1))))

>>> F1(X,2)
3.1972245773362196

>>> FF1.D(X)
(2 * (1 / (x*2 - 1)) * (2 * x)))

(102) Begin by creating a class F that acts as a wrapper for string conversion. We should be
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(103)

(104)

(105)

(106)

(107)

able to do

>>> f1
Plus(a=1, b=Mul(a=2, b=Call(a=’1n’, b=Minus(a=Pow(a=’x’, b=2), b=1))))

>>> F1

(1 + (2 * (In(x*2 - 1))))

>>> F1.f # the expression is stored internally as attribute f
Plus(a=1, b=Mul(a=2, b=Call(a=’1n’, b=Minus(a=Pow(a=’x’, b=2), b=1))))

>>> repr(F1)
(1 + (2 * (In(x*2 - 1))’

>>> str(F1)
(1 + (2 * (In(x*2 - 1))’

Extend the class to support

>>> F1 + F1
(1 + (2 * (In(x*2 - 1)))) + (1 + (2 * (In(x*2 - 1)))))

Extend the class to support

>>> F1 + 10
(1 + (2 * (In(x*2 - 1)))) + 10)

Extend the class to support

>>> 10 + F1
(10 + (1 + (2 * (In(x*2 - 1))

At this point imagine what the code is going to look like once you support every
operator. There is some factorisation to do. Write a “dispatch” function disp(op, s, 0)
and a function rdisp(op,s,0) so that your implementation of + support looks like

class F:

def __add__(s,0): return disp(Plus,s,o0)
def __radd__(s,0): return rdisp(Plus,s,o0)

Using this, quickly add support for *, **, -, so that we can handle
X = F(Cx7") # declare a symbolic variable
In = lambda x: F(Call("ln",x.£f)) # declare a symbolic function

FF1 = 1 + 2*1In(X**2 - 1)
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>>> FF1
(1 + (2 * (In(x22 - 1))))

(108) Extend the class so that we can write
>>> FF1.D(X)
(2 * (1 / (x*2 - 1)) * (2 * x)))
(109) Extend the class so that we can write
>>> F1(X,2)
3.1972245773362196
instead of
>>> eval(fl,x,2)

3.1972245773362196

You should be getting the idea by now. . . Using these techniques, we can completely
hide our underlying datatype from the end user.

(110) (Perspectives) The exercise stops there, but there is no end to the interesting things we
could do to improve and extend our CAS. Extensive automatic simplification, handling
of integration, an interactive mode where the user chooses which rules to apply to
their system, IXTEX output and display, and so on, and so forth.

If you are interested in this, that can be the object of an “Application Projet" at the end
of the year — one week full-time projects done in groups of four. Ask me about it if
that kind of thing is your cup of tea.

46  Conway sequence: generating fun

Completing this exercise requires a good understanding of Sec. 291,y12: “Iterables, iterators, and
generators”, in particular Sec. 29.41,517: “Understanding deeply lazy computations”.

j8 lazy evaluation = performance (often) 28
implementing lazy evaluation in a complex problem

In this section, we shall play with Conway sequences @, also called look-and-say sequences.
Mostly, we shall focus on the Conway sequence with seed Cyo = 1. Here are the first few

@) Following Stigler’s law of eponymy, Conway sequences are actually due to. .. errrr, ok, Conway really did
invent that. The exception to the rule, I guess. Never mind, then. Carry on.
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elements of this sequence:

Co =1

G =11

C, = 21

Cs; = 1211
Cy = 111221
Cs = 312211

Cs = 13112221

C; = 1113213211

Cs = 31131211131221

Co = 13211311123113112211

Cio = 11131221133112132113212221

Cyr = 3113112221232112111312211312113211

How is it defined? C,,; is defined recursively from C,, as the sequence of numbers obtained
by reading the digits of C,, out loud, organised by groups of identical digits, announcing
tirst the number of digits, then the digit in each group.

For instance:
o lisread as “one1”: 11.
o 11isread as “two 1s” : 21.
¢ 21 isread as “one 2, followed by one 17 : 1211.
o 1211 is read as “one 1, one 2, and two 1s” : 111221.
o 111221 is read as “three 1s, two 2s, and one 1”7 : 312211.
¢ and so on. ..

We want not only to generate this sequence, but to do so efficiently, getting only the first few
digits of each number up to a high rank, even though the length of C,, grows exponentially
with respect to n. Itis clear that the last digits of, say, C;, are not involved in the computation
of the first digits of Cy1, so if that’s what we really need, why compute C;, all the way?

Of course, we shall also write a more traditional, sequential implementation as well, for
comparison purposes.

You may not use anything from itertools, asIask to to reimplement some of its functionality.

(111) j8

mixing yield and return in a generator function )8
using enumerate
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(112)

(113)

(114)

Write a function upto(g, i), returning a generator for the first i elements generated by
g.

Note: prior to version 3.7, this could and should have been done in one line. This is no longer
the case due to changes in the semantics of generator expressions.

The following assertions must hold:

assert next(upto(range(3),8)) ==
assert list(upto((x for x in range(3)),8)) == [0, 1, 2]

assert list(upto((n*n for n in range(100)),7)) ==

[6, 1, 4, 9, 16, 25, 36]
For fun, write a function nth(g,n), returning the n-th element of an iterator g.
This can and should be done in one line.

The following assertion must hold:

assert all( nth(g,i) == i*i
for i in range(7)
for g in [(n*n for n in range(7))] )

Write a function powers (£, s), where f is a unary function, that returns a generator for
the successive powers s, f(s), f*(s), f3(s),..., where

Ox) = Axx (identity function)
f'(x) = fof™!' n>0

The following assertion must hold:

assert next(powers(lambda x:2*x,1)) == 1

assert list(upto(powers(lambda x:2*x,1),7)) ==\
[1, 2, 4, 8, 16, 32, 64]

Write a function group (1), with 1 being an iterable, that returns a generator for the
groups of successive identical elements appearing in 1. Each group shall be returned
as a list.

The following assertions must hold:

assert next(group(’a’)) == [’a’]
assert list(group(’’)) == []
assert list(group(’a’)) == [[’a’]]
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(115)

(116)

(117)

(118)

assert list(group(’aaba’)) == [[’a’, ’a’]l, ['b’], [’a’]l]
assert list(group(’aabbbcdaaaa’)) == \

[[!a!’ ’a’]’ [!b!, ’b!’ !b!]’ [!C!]’ [!d’]’ [!al’ ’a” !a!’ ’a’]]
This is a simpler version of itertools.groupby.

For our purposes, it is probably more efficient to generate the groups as cou-
ples (length,element) rather than as lists of identical elements. Write a function
groupn (1), similar to group (1), but generating said couples.

The following assertions must hold:

assert next(groupn(’a’)) == (1, ’a’)

assert list(groupn(’aabbbcdaaaa’)) ==
[(2’ ,a’)! (3’ ,b’)! (1’ ,C,)! (11 ,d,)! (41 ,a,)]

For fun, bridge the gap between groupn and group by writing a function groupl that
takes as input the output of groupn, and converts it into the output of group.
This can and should be done in one line.

The following assertions must hold:

assert next(groupl (groupn(’aa’))) == ['a’, ’a’]
assert all ( tuple(group(s)) == tuple(groupl (groupn(s)))
for s in (’’,’a’,’aaba’, ’aabbbcdaaaa’) )

Using groupn — since it is the most efficient — write a function say (s) that transforms
any string s into its “look-and-say” version. That is to say, a function that transforms a
string representing C,, into a string representing C,, 1.

This can and should be done in one line.
The following assertion must hold:

assert list(upto(powers(say,’'1’),7)) ==
(2, ’11’, ’21’, ’1211’, ’111221°’, ’312211’, ’13112221°]

assert list(upto(powers(say,’22’),7)) ==

[1221’ ’221’ 1221, ’221’ !22’, 1221’ ,22’]

Write a procedure conway (seed="1" ,maxrnk=100,maxlen=30) that displays the Con-
way sequence of seed seed, up to and including rank maxrnk.

As elements of the sequence grow exponentially in size, we truncate their display to
the first maxlen digits.
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(119)

(120)

The output of a call of conway () should look like this:

0 1

1 11

2 21

3 1211

4 111221

5 312211

6 13112221

7 1113213211

8 31131211131221

9 13211311123113112211

10 11131221133112132113212221
11 311311222123211211131221131211...

60 132113213221133112132123123112...
61 111312211312111322212321121113...

Spoiler alert: the display should begin to slow down around rank 50, and slow down
to a crawl around rank 60, making it impractical to go much farther.

To understand why, recall that our implementation of say needs the whole of C,, to
begin computing C,,;1. Cso has 1166 642 digits; C¢o has 16530 884. Keeping up with
this quickly becomes impractical.

Yet, we only need a few digits from the beginning of each element, and it is clear, from
the way the sequence is constructed, that those depend only on the first few digits of
the previous ranks. Thus we only actually make use of an infinitesimal fraction of the
digits we compute.

To exploit that fact, we shall overhaul our computation to make sure that there are
generators every step of the way.

Write a function sayg(s) playing the same role as say, except that instead of taking
and returning strings, it takes an iterable and returns a generator.

This can and should be done in one line.

The following assertion must hold:

assert list(sayg(’’)) == []
assert list(sayg(’1’)) == ["1", "17]
assert list(sayg(’12117°)) == [’1", "1’, "1’, ’27, ’2°, '1’]

Write a function nthpowerg(£f,n,s), where f is a unary function, n an integer, and s a
seed value, that returns

o a single-value generator for sif n =0
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¢ an iterator for f™(s) otherwise, assuming f is an iterator function.
This can be done either iteratively or recursively.
The following assertion must hold:

assert "".join( upto(nthpowerg(sayg,6,’1’),8) ) == ’13112221°

(121) Write a procedure conwayg, equivalent to conway, but using generators exclusively
to achieve the same result. This time, performance should not be an issue. A call to
conwayg () should look like this:

0 1

1 11

2 21

3 1211

4 111221

5 312211

6 13112221

7 1113213211

8 31131211131221

9 13211311123113112211
10 11131221133112132113212221
11 311311222123211211131221131211...
12 132113213211121312211231131122...

60 132113213221133112132123123112...
61 111312211312111322212321121113...

99 132113213221133112132123123112...
100 111312211312111322212321121113...

and take no time at all.

Note that we have achieved this considerable speedup without in any way lessening the
generality of our code, or increasing its complexity — excepting the fact the generators
require somewhat more abstraction from the programmer.

Conventional programming could possibly achieve a similar speedup by simply
computing the first digits in a fixed-length (maxlen) array. This should work, because
the sequence visibly “inflates” with each step, so that the maxlen first digits of each
rank can be computed with at most maxlen digits of the previous one.

However, we would need to prove that mathematically to have confidence in such
code. Moreover, we would need to do so for all possible seeds. Furthermore, we shall
see later on that this would be futile because you cannot prove that: experimentally,
we quickly find values of maxlen for which the hypothetical property stated above is
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(122)

simply false. Perhaps we could show that maxlen plus some constant would work?
Perhaps it holds for all values of maxlen greater than some constant M? I don’t know.

And still, even if it worked, which it doesn’t, it would be inefficient when asking for a
large amount of digits from high ranked values, as we would compute many unneeded
digits.

And of course, while such an approach might plausibly have worked — or could maybe
be tweaked into working — for Conway sequences, it would flat out fail with any
sequence deprived of anything resembling this supposed inflation property, whereas,
using generators, we simply don’t have to care about the behaviour of the sequence. We
know our code is correct, in the sense that we know we are going to compute what we
need, and hopefully no more.

There is a cost, of course: a little more thinking is required to manipulate generators
correctly, and there is an overhead computational cost to having all those objects
messaging each other saying “hey! wake up! I need a value!”. If you need all the
values all the time anyway, there is no point in using this; but if not, it is usually a very
good investment to make your code as generator-friendly as possible.

Let us quantify the gains from using generators. More specifically, supposing we want
to get the first j digits of Cg, the questions are:

¢ How many digits need I compute, manually, to obtain that, globally and for each
previous rank k < R?

¢ How many digits are actually computed by the generator-based method?
¢ How many digits are computed by the non-generator method?
¢ What is the ratio between those quantities?

First, as an example, let us see manually what is strictly needed to get the first digit of

Cs:
Co =1
G =1
G =21
Cz; = 1211
Cys = 111221
Cs = 312211

To compute Cs’s 3, we need four digits from C4, as we cannot conclude as to the
number of ones until we see a different digit. @

(@) Actually, we could show mathematically that no repetition longer than three can occur, and conclude upon
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To compute C4’s 1112, we need 121 from Cj; indeed, without the final one from Cs,
we don’t know whether C,4 begins with 1112 or 1122 or 1132, etc. And so on, you get
the idea.

Back to the generators. Write a procedure perf (R, j) evaluating the performance of
generator-based versus classical approach on the computation of the first j digits of Cg.
The output must look like this:

>>> perf(5,1)
Performance analysis: rank 5, 1 digit.

First 1 digit of C_5 = ’3’
C_0 : 0 of O
C_1 : 2 of 2
c_2 2 of 2
c_3 3 of 4
C_4 : 4 of 6
C.5 : 1 of 6

Total: 12 of 20, or 60.0%

For instance the line C_4 : 4 of 6 means that generators computed four digits of Cy,
whereas the classical approach computed all 6 — the classical approach computes the
entirety of each rank. In total, generators computed 12 digits, whereas the classical
approach computed 20. The seed is ignored in both counts.

Note that the generator approach should exactly match the manual reasoning above!
On higher ranks, you should get:

>>> perf(55,30)

Performance analysis: rank 55, 30 digits.

First 30 digits of C_55 = ’111312211312111322212321121113"
C_0 : 0 of O

C_4 : 6 of 6

C_10 : 5 of 26

C_20 : 4 of 408

C_30 : 4 of 5808
C_40 : 5 of 82350
C_50 : 12 of 1166642
C_51 : 12 of 1520986
C_52 : 17 of 1982710

C_53 : 20 of 2584304
C_54 : 21 of 3369156

seeing the third one. However, we haven’t shown that, our say and sayg algorithms do not take that into
account, and thus for now we don’t know whether 1111 may occur, so we need to see the next digit.
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(123)

(124)

C_55 : 30 of 4391702
Total: 343 of 18858434, or 0.0018188148602370697%

Tips:
Implementing this is a bit tricky.

I advise creating lists to store the needed numbers of digits, one for generators and one
for the classical approach, and writing “hacked” versions of nthpowergp and saygp so
that the list concerned with generators is updated each time a digit is computed, as a
side-effect.

Note that these hacked versions of nthpowergp and saygp can and should be subfunc-
tions of perf.

Find a simple counterexample for our earlier hopeful assertion that perhaps

“The j first digits of each rank can be computed with at most j digits of each
of the previous ranks.”

Perspectives: for those of you interested in going (much) farther in your understanding
of lazy evaluation, I recommend implementing the Conway sequence in Haskell.
Haskell is a pure functional language with lazy evaluation.

An implementation of Conway every bit as powerful as our generator version can be
obtained completely transparently in just a few lines of code.

Of course, this is far outside the scope of this class; or of your curriculum, for that
matter. You will not be taught Haskell — or OCaml, or Scheme (Lisp), or indeed
any functional language — at INSA CVL. I would recommend studying this in your
own time if (and only if) you wish to acquire a larger understanding of programming
paradigms and techniques, and are not afraid of maths and abstraction.
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Part IV

Additional Python Exercises

The following are retired exercises; some are made redundant by new material, some are
interesting but not enough to spend the time in class, some are archives from various tests
and non-INSA training sessions. They are provided in no particular order.

They can provide additional fun to any student who may prematurely run out of stuff to do
during classes. .. Idle hands are the Devil’s playthings, after all.

Part Vpss3: “DIU EIL: Récursivité” contains even more additional exercises, specifically
geared around the concept of recursiveness, which you are encouraged to practice on.

47

48

49

50

51

52

53

54

55

Three Flavours of Fibonacci 304
47.1 Copy-and-Paste the Black Magic . . ... ... ... ... ............ 304
472 Funwith Fibonacci . . . ... ... ... ... .. . o o oo 305
Fear the floating-point ranges 311
Let’s decorate! 316
Rage against the virtual machine 317
The cheapest DBMS ever 323
Cryptanalyse amusante 326
52.1 Une grille de chiffrement . . . . . ... ... ... .. ... ... ... .. .. 326
52.2 Onautomatisetoutca . . . .. ... . ... ... 328
52.3 Cryptanalyse. Canerigoleplus . . . . ... .. ... ... .......... 328
524 n-gramanalysis . . . . .. ... L L 331
Be there or be square! 337
53.1 The easy way: isqrt_builtin. . . ... . ... ... ... ... ... ...... 337
53.2 Racine carrée entiere, the hard way! . . ... ... ... ... ... . ... .. 338
53.3 Racine carrée entiere, 20% cooler!! . . . . . .. ... Lo o . 338
53.4 Racine carrée entiere, par dichotomie . . . . . .. ... ... .. ... ...... 339
53.5 Empirisme forcené: Ultimate Showdown of Ultimate SQRT . ... ... ... 340
Prime numbers and sieve of Eratosthenes 341
For me it was a Tuesday. .. 342
55.1 Suisqjebissextile? . . . . . . ... L 342
552 Lemoislepluslong . . . .. ... .. ... .. ... ... 343
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55.3 Aide auxjoursinvalides . .. .. ... ... ... ... .. L L 343

55.4 Comptons les jours, approximativement . . . . ... .. .. ... ... ..... 344
55.5 days_between,exactversion . . . . . . . . . . . ... e 344
55.6 weekday,thehardway . ... .. ... ... ... ... . .. .. . ... 344
55.7 Impression calendrier. . . . . . .. ... . Lo Lo 345
55.8 Merci, Delambre ! . . . . . . . . ... . 345
55.9 Approximating the approximationerror . . . . .. ... .. ... ... ... .. 346
55.10Effects of approximations onweekday . . ... ... ... ... ... ... .. 347
56 Dichotomie 348
57 En sommes... 349
58 Enter the Matrix: find your paths! 350
59 Générateur de nombres premiers et autres 352
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47  Three Flavours of Fibonacci

ex_fibo_algo.tex WORK IN PROGRESS!
This exercise will serve as a talking point in the “Algorithmic and Complexity” course.

Questions marked with (ALGOCOMP) should be done during that module, not in Python
TD, unless you can answer it in 1 minute or less ;-)

We shall study different implementations of the well-known Fibonacci sequence
Fo=0, F =1, Fn=Fua+Fi2,n>1,

and think about its performance characteristics (time- and space-complexity).

47.1  Copy-and-Paste the Black Magic

In order to help you understand what’s going on (e.g. visualise the recursive calls done by
your code), I am giving you a big block of complicated code. You should consider it black
magic; that is to say, you are not expected to understand anything about how it works, and
I'll tell you exactly what to do when we need to use it.

Copy and paste (from the .py, not the PDF) the following block of code at the very
beginning of your fresh work file for this exercise. Or you can put everything in another file,
e.g. magic.py, and import that, if you want to reuse those tools in another exercise.

from functools import wraps
from contextlib import contextmanager

def trace(l=-1):
"""Show tree of recursive calls and results
1: ® = do not show results, N = show up to level N, -1l=show all"""
if 1 < 0: 1 = float(’inf’)
def tree(lvl, normal=1): return "| " * 1lvl + "|" + ("-" if normal else "=")
def trace(f):
vl = 0
@wraps (£)
def w(*a,**k):
nonlocal 1vl
print(f"{tree(lvl)} {f.__name__}({’, ’.join(map(repr,a))})")
vl += 1
res = f(*a, **k)
if 1vl <= 1: print(f"{tree(lvl-1,0)} {res}")

vl -= 1
return res
w.__hasTrace__ =1

return w

return trace

@contextmanager
def unwrap(f):
"""Temporarily un-decorate global function"""
if hasattr(f, "__wrapped__"):
globals()[f.__name__] = f.__wrapped__
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yield
globals(O[f.__name__] = £
else: yield

def memoize(f):
memo = {}

@wraps (f)

def w(*x):
if x in memo: return memo[x]
res = f(*x); memo[x] = res
return res

return w

def stress(f, timeout=1, S=10):
"""Stress test f: time how long it takes to compute increasingly high values.
Stops when the computations start taking too long.
S: nb of sample times to everage for each computation
timeout: number of seconds beyond which the test is stopped."""

if hasattr(f, "__hasTrace__"):
print(f"Stress-test aborted. Remove @trace when stressing {f.__name__}.")
return

from timeit import timeit
import resource, sys
resource.setrlimit(resource.RLIMIT_STACK, [10 ** 9, resource.RLIM_INFINITY])
sys.setrecursionlimit (10 ** 9)
N =20
while True:
t = timeit(lambda: f(N), number=S)
print(£"{f.__name__3}({N:3}) : {t/S:.1g}s™)
if t > timeout:
print ("Nobody got time for dat."); return
if N > 100000:
print("OK, we get the idea."); return
elif t > timeout/2: N = 1+int(N * 1.05)
elif t > timeout/100: N = 1+int(N * 1.1)
else: N = 1+int(N * 1.5)

47.2  Fun with Fibonacci

(125) Let’s begin with the obvious, naive version: complete the following code (don’t
uncomment the @ stuff for now!). Needless to say, the assertion below must hold!

# @trace()
# @memoize
def fib(n):
return ... if ... else

with unwrap(fib): # black magic: I don’t want @trace on in the unit test!
assert [fib(n) for n in range(10)] == [0, 1, 1, 2, 3, 5, 8, 13, 21, 34]

(126) Now, let’s visualise the recursive calls: uncomment the @trace(), and execute £ib(5)
anywhere in the code or the interactive mode. As a side effect of the computation, you
will obtain this a nice tree of all the recursive calls, with or without the values returned
by those calls, depending on the arguments of @trace.

@trace() @trace (1)

305



|- £fib(5) |- £fib(5)

| 1- fib(4) [ I- fib(4)

[ 1 - £ib(3) 1 I- £ib(3)
1 1 I- £ib(2) 1 I |- £ib(2)
1 1 1 |- £ib(1) 1 1 I- £ib(1)
1 1 1 I=1 1 1 1 1- fib(0®)
1 1 1 I- £ib(®) I | |- £fib(1)
1 1 1 1=20 [ | 1- £ib(2)
1 1 I=1 1 I |- £ib(1)
1 1 I- £fib(1) [ I | |- £fib(®)
1 1 I=1 | 1- £ib(3)

1 1= 2 [ | |- £ib(2)

[ 1 I- £ib(2) 1 I |- £ib(1)
1 1 |- £ib(1) 1 I |- £ib(8)
11 I=1 I 1 I- £ib(1)

[ 1 1- £fib(® |= 5

(I

1 I=1

| I=3

| 1- £fib(3)

[ I I- £ib(2)

[ 1 I- £fib(1)

1 1 I=1

1 1 I- £fib(®)

1 1 I=29

1 I=1

[ 1 I- £ib(1)

1 I=1

[ 1= 2

|=5

@trace is something magical called a decorator (cf. Sec. 25.2,175: “Function decora-
tors”). You don’t be asked to write decorators in this course. All you need to know is
that you can use them to modify the behaviour of a function or method.

The unwrap line is a bit of black magic (called a context manager) that I cobbled together
to negate the effect of @trace for the calls to fib in the assert unit test. Without it
you’d need to uncomment the tests when using @trace. Pay it no further mind.

Anyway, as you can see, that’s a lot of recursive calls. And very wasteful: £ib(2) is
recomputed three times!

(127) (ALGOCOMP) Give an inductive definition of the sequence C such that C,, is the total
number of function calls done when executing fib(n) — including fib(n) itself.

For instance, Co = C; = 1, because there are no recursive calls; C, = 3, because of the
call to 2, and the recursive calls to 1 and 0; C3z = 5, one call to 3, three calls in total for 2,
one for 1; and so on. You should find Cyo = 177, Cyo = 21 891.
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Show by induction that, foralln € N, C,, > F,,.
How does C,, behave, asymptotically?

(128) Our implementation of Fibonacci seems very unoptimised. Let’s see how far we can
p y P
go with it. Comment out the @trace() and run stress(£fib).

stress is one of my little tools; it will call a function with increasingly large values
and display the time taken by the computation until it takes too long (or the value gets
very large).

You should get something similar to that:

>>> stress(fib)
fib( 0) : 4e-07s
fib( 1) : 1le-07s
fib( 2) : 2e-07s
fib( 4) : 3e-07s
fib( 7) : 1le-06s
fib( 11) : 8e-06s
fib( 17) : 0.0001s
fib( 26) : 0.01s
fib( 29) : 0.04s
fib( 32) : 0.2s
Nobody got time for dat.

(129) We get stuck in the early 30s. Getting, say, £ib(100), is going to be extremely difficult. . .
Orisit?

Actually it’s going to be super-easy, barely an inconvenience!
Uncomment @memoize and run

>>> fib(100)

354224848179261915075

OK. That was fast.

>>> stress(fib)

fib(106254) : 0.004s
OK, we get the idea.
What is this sorcery??

@memoize is one of the “black magic” decorators I gave you above; it forces a function
to remember the values it computed in the past. @

@This is a general pattern called memoization or caching, and you have pre-implemented versions of it in
Python, as @functools.cache

307



Let’s reactivate @trace () and compute £ib(5); £fib(5) immediately after the definition
of fib, not after the tests!

You obtain:

|- £fib(5)

|- fib(4)

[ |- £ib(3)

| 1- £ib(2)

| 1- £ib(1)
I 1=1

[ 1- £fib(®)
| =0

=1

- fib (1)

[- £ib(2)

Il
w

- fib(3)
2

I
I
I
I
I
I
I
I
I
I
I
I
I
I
5

|- £ib(5)
=5

The first call does something non-trivial, but the second call returns 5 immediately,
because it remembers that the previous call has already computed this answer, and
regurgitates it instead of redoing the computation. This is why I asked you to do
fib(5); £fib(5) before the unit tests. Otherwise the £ib(5) would have been computed
during the tests, and both calls would have returned immediately.

On the first computation, we begin as before, but the second time we call £ib(2), we
get the value directly, no recursive calls; same thing for £ib(3), which cuts an even
larger subtree of calls.

(130) (ALGOCOMP) Analyse this behaviour in terms of time and space complexity.

(131) Instead of using a magic decorator, let’s write a memoized version of Fibonacci
ourselves: fibm. To store the previously computed values, we'll use a data structured
called a dictionary (cf. Sec. 24.4p145: “Dictionaries: class dict”).

You don’t need to understand the finer points of that structure for now. All you need
to know: m = {} is the empty dictionary, m[n] = v stores v at indexn, and n in m
tests whether there a value stored at index n.

Complete the following code:

m = {}
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(132)

(133)

# @trace()

def fibm(n):
if n <= 1:
if n not in m: m[n] = ...
return m[n]

with unwrap(fibm):
assert [fibm(2*%*n -1) for n in range(6)] == [0, 1, 2, 13, 610, 1346269]

You should get the same kind of performance as @memoize fib in the stress test:

fibm(98959) : 0.004s
fibm(106254) : 0.004s

You'll find the traces behave the same way as well.
This is not surprising: we just did by hand exactly what @memoize does automagically.
Try £fibm(1000). You get a juicy

[Previous line repeated 996 more times]
RecursionError: maximum recursion depth exceeded

Wait, what?? The stress test computed fibm(106254) without problem! Well, that’s
because I do strange, unnatural things in stress to raise the stack limit.

And that’s why, if you have not uncommented all calls to stress appearing before the
call to fibm, you'll get

>>> fibm(1000)
434665576869374564356885276750406258025646605173717804024817290895
365554179490518904038798400792551692959225930803226347752096896232
398733224711616429964409065331879382989696499285160037044761377951
66849228875

instead of a RecursionError. (That’s amazing! I've got the same combination on my
luggage.)

This is because I do not clean up after myself and reset the stack limit to its default of
1000.

Although one can raise the stack limit in a pinch, if (and only if) it becomes an issue at
all, it’s usually better to rewrite the function with a loop.

Let’s try an idea: let’s do what we’d probably do on paper: fill out a list / an array a, so
that a[n]= F,,. We fill the first two values and compute the next, using the previous
two, etc.

Complete this code:
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(134)

# @trace()

def fiba(n):
a = {0:0, 1:1}
for k in range(2,n+1): al[k] = ...
return ...

with unwrap(fiba):
assert [fiba(2**n -1) for n in range(6)] == [0, 1, 2, 13, 610, 1346269]

Let’s trace a call:

|- fiba(5)

|=5

Perfect. No recursive calls. No stack. Ever.

Now, using stress, you should get to something like fiba(66354) : 0.1s.

Well this is disappointing: it’s very good compared to the naive version, but fibm went
up to 106254. Why is this version somehow worse?

Take some time to think about it and find the answer by yourself.

Answer: Every call to fiba(n) recomputes Fy for all k < n, whereas fibm does not. In
the stress test, fibm(106254) : 0.004s does not mean you’d get that timing if you
tried that value from a cold start. It means it took 0.004s to get to 106254 from the
previously computed, and stored, value (which was 98959).

On a cold start, fiba and fibm should perform roughly equally well. @

Whether it’s fair or unfair to compare fibm and fiba in that way will depend en-
tirely how those functions are used and your time and memory constraints. While
fibm(106254) : 0.004s is nice to see, the cost is measured in the MB, if not GB of
memory used to store the values in the hope they’ll be useful again.

In the course of writing this exercise, I have filled my 32 GB of RAM repeatedly,
prompting the Linux kernel to kill my IDE. Time performance often comes at the cost
of memory.

Last one. Looking at fiba(n), we use n memory slots, yet we never reuse old values
beyond the last two. Let us not waste memory on what we don’t need.

Complete the following code; you'll need Sec. 21.5.23): “Parallel variable assignment”.

# @trace ()
def fibl(n):

(@wDefining “perform” is not trivial here; stress measures performance by averaging the times of several
computations, to account for variability due to machine load, etc. Should the start be cold on the first run or all
runs? Isn’t forcing cold starts antithetical to the very idea of memoisation? What is a “fair” testing protocol?
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if n <= 1:
a,b = 0,1
for k in range(2,n+1): a,b = ...
return ...

with unwrap(fibl):
assert [fibl(2**n -1) for n in range(6)] == [0, 1, 2, 13, 610, 1346269]

We should get some pretty good stress results:

fib1(98832) : 0.05s
fib1(103774) : 0.06s

(135) (ALGOCOMP) Meditate on the space/time complexities of all those implementations.

48  Fear the floating-point ranges

Many of you, while answering question (40) 259, wrote something like range (-2, 2, .1),
and were surprised to learn that range does not support floating-point steps:

>>> range(-2, 2, .1)

TypeError: ’float’ object cannot be interpreted as an integer

Some students’ reactions even implied that they deemed it quite lazy indeed of the Python
developers not to have bothered implementing that trivial use-case.

If you are among them, I regret to say that in spite of my best efforts so far, you have not yet
learned to fear floating-point numbers. Not properly. Not enough. Not yet. But you will,...
you will.

Since floating point-ranges are so easy, let’s implement them ourselves. . . what’s the worst
thing that could happen? =

(136) Write a generator function frange_inc(i, f, s) returning all the floating points num-
bers between the initial value i (inclusive) and the final value f (exclusive), by successive
increments of the step value s.

In other words, it should generate all numbers i <1i+ ks < f, for k € N.
This is basically the behaviour of range, but extending to floating-point numbers.

For instance, frange_inc(®, 1, 0.1) should be expected to yield 0, 0.1, 0.2,..., 0.9.
Note that 1.0 is not generated, as the upper bound is exclusive; just like for range.

At least that’s what we hope to obtain. . .
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(137)

This specific implementation will proceed in the most natural way, by incrementing
the current value by s at every step, hence the _inc in the name, and stopping when
the value exceeds f.

If you implement it correctly @), the following assumptions should hold:

assert list(frange_inc(0,0,1)) == []

assert next(frange_inc(0,1,1)) ==

assert list(frange_inc(-5,5,1.0)) == [-5, -4, -3, -2, -1, O, 1, 2, 3, 4]
assert list(frange_inc(.7,.8,.1)) == [0.7, 0.7999999999999999]

assert list(frange_inc(0,.8,.1)) == [0, 0.1, 0.2, 0.30000000000000004,

0.4, 0.5, 0.6, 0.7, 0.7999999999999999]

Looking at the assertions of the previous question, you may notice a slight problem:
not only are there approximation errors in several places (who could possibly have
seen this coming?), but some of them even change the number of values returned:

list(frange_inc(.7,.8,.1)) == [0.7, 0.7999999999999999]

where we expected [.7], as .8 is excluded. But we got a value slightly smaller than
.8, s0 it passed. This is not an error in the logic of the implementation of frange_inc,
mind you; the incrementation and test were correct, it is just a raw fact that, for instance

>>> .7 + .1
0.7999999999999999
>>> .7 + .1 < .8
True

>>> .2 + .1
0.30000000000000004

What are we to do about it? The obvious solution is to detect and correct such mistakes
by separately computing how many numbers are expected. The formula is fairly easy:

F‘ ﬂ . (48.1)

S

In case you don’t know, [-] is the ceiling function:
[x] = min{nezZ|n>x}.

8—.7
.1

So, for our problematic example, we expect, by this formula, | | =[] = 1 number,

which is coherent with our expected result of [.7].

All there remains to do is to implement (48.1) in frange_inc, and count how many
numbers have been returned. Problem solved!

If that sound good to you, YOU STILL DON'T FEAR FLOATING-POINT NUMBERS
ENOUGH, YOU SORRY FOOL!

Let’s test our brilliant idea in Python on our example:

@)or as correctly as possible given the constraints, see next question. . .
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>>> ceil ((.8-.7)/0.1)
2

Wait, what? (Please insert “record scratch” sound effect here) Is our formula wrong?
Does ceil not implement the ceiling function?

>>> (.8-.7)/0.1
1.0000000000000009

Nope, it’s just that our galaxy-brained, 300 IQ master plan had a tiny, niggling, piffling
little flaw: in order to bypass the inherent inability of a floating-point computation to
provide exact answers, we double-checked with another floating-point computation. Can
you spot the flaw yet? Do you fear float yet?

How do we solve this? Easy. We don’t. We just don’t. We do not solve this because it
is not solvable. Not without using computationally expensive computer algebra.

It is not possible to implement a floating point range function that behaves as range
does because loss of precision makes the very act of predicting and controlling the
number of returned elements unpredictable. Therefore, a range and a frange on the
same numbers have no guarantee to return the same number of values, let alone the
same values.

If that’s not big enough of a problem for you (who cares about consistency between
functions that do essentially the same thing!), try this on for size:

>>> list(frange_inc(10%*16, 10**16+2, 1.0))

I did not write a return value beneath, because there is none; you've got an infinite
loop. Use CTRL+C in the terminal or interactive mode to interrupt the computation:

KeyboardInterrupt

What now?

>>> g = frange_inc(10**16, 10**16+2, 1.0)
>>> next(g)

10000000000000000

>>> next(g)

le+16

>>> next(g)

le+16

It returns 10'® in a loop, as though it forgot to increment at all. .. How is this even
possible?!
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(138)

>>> 10**16 + 1.0

le+16

>>> 10**16 + 1.0 == 10%**16
True

Oh. Oh! Right! Precision problems! Did you see that coming? You should have. For
large enough numbers, the precision loss is so great that you can lose entire units. Or
more; wanna see a magic trick, kid? I'll make the number 10 disappear:

>>> le+18 + 10 == 1le+18
True

Poof! You like that? You want more? Let’s do 1000!

>>> le+19 + 1000 == le+19
True

POOF! Are you afraid of big bad float yet?

Let’s re-evaluate my earlier statement in light of this: never mind consistency, we don’t
have a frange function with the same behaviour as range because it would randomly
get into infinite loops, depending on the respective sizes of i, f, s. And that is why range
runs away screaming when you feed it a floating-point number.

By the way, did I ever mention that floating-point numbers are scary?

Lest you believe that I sabotaged us by enforcing a specific implementation based
on successive incrementations by s, let us write frange_mul (i, £, s), with the same
expected behaviour, but using multiplication instead to compute the i <1i+ ks < f, for
k € N. That is to say, you will literally compute i + ks in a loop.

If this is done correctly, you should obtain:

assert list(frange_mul(0,0,1)) == []

assert next(frange_mul(0,1,1)) ==

assert list(frange_mul(-5,5,1.0)) == [-5, -4, -3, -2, -1, O, 1, 2, 3, 4]
assert list(frange_mul(.7,.8,.1)) == [0.7, 0.7999999999999999]

assert list(frange_mul(0,.8,.1)) == [0, 0.1, 0.2, 0.30000000000000004,

0.4, 0.5, 0.6000000000000001, 0.7000000000000001]

Rejoice, for we have traded one set of approximation errors for a slightly different one,
and fixed. .. absolutely nothing.

Note that no implementation will solve the 1e+19 + 1000 == le+19 problem.

No implementation based on an indefinite loop (while) can work, because you can’t
know when or even whether to stop. No implementation based on a definite loop
(for) can work, because you can’t compute how many values you should return. No
implementation can work, full stop.
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(139)

Floating-point ranges based on a “step” are fundamentally flawed, regardless of
implementation.

Must we give up on floating-point ranges altogether? Of course not; we merely need
think about them differently. Instead of giving a “step”, we’ll just give the number of
values we expect.

Write a function frange(i, f,n) returning n floating point numbers uniformly spaced
(within approximation error) on the interval [i, f].

If n = 1 it shall return the middle of the interval.

assert list(frange(0,0,1)) == [0]

assert next(frange(0,1,1)) == 0.5

assert list(frange(0,1,1)) == [0.5]

assert list(frange(0,1,2)) == [0, 1]

assert list(frange(-5,4,10)) == [-5, -4, -3, -2, -1, O, 1, 2, 3, 4]
assert all( len(list(frange(®,1,n))) == n for n in range(100) )
assert list(frange(®,1,11)) == [0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6,

0.7, 0.8, 0.9, 1.0]

This looks much nicer.

That doesn’t mean we don't still have precision problems. You can rely on obtaining
however many numbers you asked for, but not on them being distinct:

>>> len(set(frange(10**15, 10**15+10, 10)))

10

>>> len(set(frange(10**16, 10**16+10, 10)))
6

>>> len(set(frange(10**17, 10**17+10, 10)))
2

>>> set(list(frange(10**17, 10**17+10, 10)))
{le+17, 1.0000000000000002e+17}

This is the best you can hope for when you only have 2°* floating point numbers
(they occupy 64 bits) to represent |R| = oo real numbers (and that’s a dense infinity:
Rl = X; > |N| = N @),

In other words, the above is the most sensible implementation of a floating-point range
you can get. At least, that I know of. Feel free to share your brilliant ideas.

Oh,... do you fear floating-point numbers yet? Just checking.

@https://en.wikipedia.org/wiki/Aleph_number
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49

Let’s decorate!

Be sure to read and understand Sec. 25.2,175: “Function decorators” before tackling this exercise.

(140) Sometimes, you might want to slow code down; either because you want the time

(141)

to read the messages, or because some function is hammering a resource too hard,
refreshing a web page 10 times a second, something like that.

To that effect, let us write a parametric decorator slow(n) that forces a function to wait
for n seconds every time it is called. It must work on recursive function calls:

For instance:

@slow (1)
def verbose(n=100):

if n <= 0: return

print(n, "I do stuff and I talk about it!")

verbose(n-1)

# wait a second

100 I do stuff and I talk about it! # wait a second
99 I do stuff and I talk about it! # wait a second

Following the same principle, write a parametric decorator slow_scroll(n) that
allows a function to be called n times without delay, but then stops everything, waiting
for the user to press ENTER. When he does, the function can again be called n times
before being stopped, and so on.

Applying @slow_scroll(3) on our verbose function, we have:

100 I do stuff and I talk about it!

99 I do stuff and I talk about it!

98 I do stuff and I talk about it!
# user presses ENTER

97 I do stuff and I talk about it!

96 I do stuff and I talk about it!

95 I do stuff and I talk about it!
# user presses ENTER

94 I do stuff and I talk about it!

2 I do stuff and I talk about it!

# user presses ENTER
1 I do stuff and I talk about it!
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50 Rage against the virtual machine

ex_vdisks.tex WORK IN PROGRESS! SKIP FOR NOW !

In this exercise, we will implement functionality inspired by virtual machine sparse disks
and snapshots.

Disclaimers: Note that I use VirtualBox and will stay close to its terminology, so some
details and terminology may differ in other software, but the ideas here are universal. I'll
also abstract away a lot of details, and my objective is not to write a reference document on
Virtual Box or any other implementation, so do not take it as such.

If you have use modern virtual machine software, you have noticed that they have some
pretty nifty functionalities. Among other things:

(142) Virtual disks can be much smaller on the host than on the guest (unless you select
“Fixed Size” when creating them as opposed to the default “Dynamically Allocated”,
which you probably shouldn’t, even for performance reasons.

(143) You can take snapshots of the current state of the machine (here we’ll focus on the main
disk) at any point, and restore them later. If at some point you decide to restore a
snapshot, you don’t even have to lose your current state: you can snapshot it as well,
and then restore the earlier snapshot.

Thus you can create “alternative timelines”. You can install linux, snapshot (let’s call
the state s), install Apache, snapshot (s’), restore s, install NGinx, snapshot (s”), and
now s’ and s” represent two diverging timelines, sharing the past up to state s, and no
further.

This would not be terribly impressive if the implementation just took full copies of
the disks each time, but in practice, taking snapshots is virtually instantaneous and
consumes very little disk space at first! However, deleting a snapshot takes some time,
and snapshots that “live” long take more and more space.

What'’s going on under the hood? I think most of you should have no difficulty imagining
an implementation for (1), especially if you've ever met the keyword sparse in Maths or
CompSci. The idea is obviously to only store data when it is actually written by the guest, as
opposed to preallocating everything. You just need a data structure of the form “sector X —
data, sector Y — data, ...”. @) The file starts empty and fills up as sectors are written in over
time. When reading, any sector not appearing in the file is considered empty. We’ll call that
structure a sparse disk.

Note that in practice, “sectors” might be 1MB pages, as for the VDI format @, or anything

@)You might notice a slight resemblance with a certain Python data structure. . .
@)https://forums.virtualbox.org/viewtopic.php?f=35&t=8046
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else. We’ll ignore that kind of gritty details.

Now, understanding what’s going on with snapshots in (2) takes a little bit more work, but
the fundamental idea is actually the same as (1): only write in that which changes.

When a snapshot is taken, the current disk file goes read-only, and a new, empty, differencing
disk is created, which takes all writes from that point on. That is to stay, it stores only the
changes compared to the original disk. It actually has the same structure as a sparse disk,
and we shall not concern ourselves with the distinction between the two any longer.

When reading, the machine first looks in the differencing disk, and if the sector it is looking
for is not there, it looks in the “older”, read-only disk — which we shall call its parent. Further
snapshots can be created and chained in this way.

Whereas taking a snapshot is instantaneous, because we merely create a new, empty
differencing disk, deleting one involves merging disks. At this point, things become non-
trivial and, if Virtual Box’s forums are anything to go by, there is a lot of confusion among
users as to what’s going on, the most common error being not understanding the distinction
between snapshots, which are merely points in time which we have interest in preserving,
and differencing disks. Snapshots are deleted, not merged. Disks are merged, and the effect of
that is deleting a snapshot.

To alleviate any confusion, we shall formalise things a bit.

We see a disk as an array (or Python list) of data. Let N € N be the size of our disk,
X = [0, N — 1] our sectors and Y some target data space. For instance, if N is the size in bits,
then Y ={0,1}. Adiskis a total function D : X — Y.

A differencing disk is a partial function A : X - Y. Differencing disks A; and A, can be chained,
which we shall write multiplicatively, with the following semantics:

AA, - X — Y

172710 5 Ay(i) if defined, else A; (i)
To translate the concept of sparse disk, all we need is to chain a differencing disk after the
empty disk, defined as

X — Y
el
i — 0

which returns 0 — or, frankly, any placeholder value, for every sector. We shall use "_" as
placeholder value in the implementation. Note that ¢ is just an abstraction, and we do not
imply that the implementation explicitly allocates and zeroes out every sector.

We'll speak of “global state” to mean not just the state of the disk at a given point in time,
but the whole chain of disks and snapshots for the machine. Our default global state, with
one sparse disk and no snapshot, is therefore of the form ¢Ay. In practice only A, actually
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occupies space on the disk, ¢ is just the concept of what happens when a sector is not defined
in Ao.

Note that this, and by extension any chain of the form €Ay ... A,, describes a disk, that is to
say a total function X — Y, because ¢ is total. If none of the Ay has data for a sector, then in
the end ¢ always does. By convention, when writing such chains we understand that each
Ay corresponds to one physical file on the host.

Taking a snapshot means that Ay goes read-only, and a new differencing disk is chained:
eAoA;. To denote snapshots, or other states of interest, like the current state, we’ll use the
letters s and c, respectively, and insert them in the chain. They do not change its semantics,
but help us to keep track of what’s going on. Thus, we would write the global state above
eAos1A ¢, with our snapshot named s;, and our current state c.

The act of taking a snapshot therefore translates into “substitute sAc for ¢”, with a fresh
differencing disk A.

We now have the requisite notations to explain snapshot deletion clearly. Suppose we are
in state eAps;Ajc and no longer need the snapshot: then we can combine ¢AyA;c into
e(AoAq)c, that is to say, merge the two differencing disks into one. Note that, in terms of
semantics, trivially eAoAjc = ¢(ApA)c, so we have not altered our current state, and in
terms of implementation, computing a disk representing AyA; is easy: it suffices to overwrite
all data of A, with A;. We say that we merge A; into its parent Ao.

The act of deleting a snapshot s therefore translates, in general, as replacing a pattern AsA’
in the chain by (AA’).

We will not deal with snapshot restauration or trees of snapshots in this exercise, because at
this point we have all the main mechanics and the rest is just a matter of careful bookkeeping
when moving the current state around. You are free to extend the exercise with this on your
own, if you like.

The preliminaries are done, let’s get to the implementation.

(144) We'll create a class disk for differencing disks (in fact, arrays or lists) with "_" as
placeholder value for undefined sectors.

The first and only mandatory argument of the class constructor should be the size of
the array. The class will use a Python dictionary as its internal data structure, and not
store all the array in memory.

Furthermore, we need to be able to print the state of the disk, displaying its contents in
extenso, what'’s really stored in the dictionary, and optionally a comment, all on one
line.

As the start of our running example, the following code

D = disk(10)
D.print("¢ A® c (untouched)")
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(145)

should yield:

__________ {} | ¢ A® ¢ (untouched)

That is to say, we create an empty disk of size 10, and see that internally it’s just an
empty dictionary, despite “containing” ten instances of "_"

There is quite a lot to do to get there. You'll need an __init__ method, of course, but
for the purposes of printing, you will need several things, besides obviously a print
method. First, you will need a way to query the disk for the value of a given sector.
You will use index notation for this, so that for instance

>>> D[10]

For this, you'll implement a __getitem__ method. No need to think about chaining
for now, we can take care of that later. You might want to add a defensive assertion to
ensure that the index is in X.

You’'ll implement __repr__ and __str__ such that

>>> repr (D)

’{}’

>>> str (D)

Each of the two can and should be implemented in one line.

Do not duplicate the reading logic in str! We’ll need to alter that logic later, and it’s
bad practice in general to duplicate logic. You have one method that does the reading,
and that’s __getitem__. Everything else should use it if they need to know what’s on
a disk sector.

Will all this, you can at last implement print.

Let’s implement write support. For instance we should have:

>>> D = disk(10)
>>> D[5] = ’A’

>>> print (D)

>>> D
{5: A’}

For this, you'll need to implement the __setitem__ method. The logic is trivial so
this should be a very short line, not counting the assertion about the index being in X,
which is probably good to have.
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Since any differencing disk that is being written to is the only one that can be written
to — the ancestors are read-only — the writing logic is complete, we won’t have to
come back to this method.

(146) For our convenience, let’s implement a method D.writeat(i, 1) that writes the
elements of 1 starting at index i of the disk. For instance,

>>> D = disk(10)
>>> D.writeat(2, "blah")

>>> print (D)
__blah

This should be done in one or two short lines.
Please do not duplicate the writing logic in this method: use D[..] = ...

(147) Let’s prepare the ground for chaining. Add an optional parameter parent=None to
__init__, which is to be stored as attribute.

While we’re at it, let’s also add an attribute children, initialised to []. It will be useful
later for the merging operation.

We’re now ready to implement snapshotting. . . Write a method D.diff() that takes a
snapshot of the current state.

That is to say, if our current global state is . .. Ac, it must become . .. AsA,eC.

Make sure that A, knows that its parent is A, and that A knows that A, is among
its children.

diff() must return the new differencing disk A,... Taking a snapshot will basically
be done by writing

D = D.diff(Q)

This method can easily be implemented in three short lines.

(148) We are very close now; all that remains is to implement the chaining logic in
__getitem__. Go and do so now. Any request the current disk can’t immediately
satisfy must be passed to its parent. If it has no parent, then the placeholder value "_"
is returned.

If everything is done right, the following instructions

= disk(10)

.print ("¢ A® c (untouched)")

.writeat(5, "AA")

.print("¢ A® c (written to)")

= D.diff(Q)

.print ("¢ A0 s1 Al c (snap just taken)")

O U oo oo
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(149)

(150)

D.writeat(4,"BB")

D.print("e¢ A® sl Al ¢ (written)")

D = D.diffQ)

D.print("e¢ A® s1 Al s2 A2 c (snap just taken)'")

D.writeat(5,"C")

D.print("e A® s1 Al s2 A2 c (written)")

should produce

__________ {} | € A® ¢ (untouched)

_____ AA___ {5: 'A’, 6: ’A’} | ¢ A® c (written to)

_____ AA___ {} | ¢ A® s1 Al c (snap just taken)
____BBA___ {4: 'B’, 5: ’'B’} | ¢ A® s1 Al ¢ (written)
____BBA___ {} | ¢ A® s1 Al s2 A2 c (snap just taken)
____BCcA___ {5: ’'C’} | ¢ A® s1 Al s2 A2 ¢ (written)

The method should be around three of four lines long at this point, discounting
assertions.

Before getting into merging, let’s give ourselves a way to check the global status of the
current chain. Write a method D.history() that returns the list of of its ancestors, in
chronological order.

That is to say, our current disk A, in the chain ¢AyA; A, should return the list
[Ao,A1,A;] for its history. For instance, after executing the instructions of the
previous question, we should have:

>>> D.history()

[{5: 'A’, 6: 'A’}, {4: 'B’, 5: 'B’}, {5: ’C’}]

Note that the elements you see here are the repr of each disk, which we set earlier to
that of its internal dictionary.

history should be written in two of three lines.

For a nicer visualisation of that history, write a method D.printhistory() printing,
still in the same context as above, the following:

AARRAARAAAAAHAAARAAS

_____ AA___ {5: 'A’, 6: A’}
____BBA___ {4: 'B’, 5: 'B’}
____BCA___ {5: 'C’}
AARRRARARAAAHAAARAAS

merging
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51 The cheapest DBMS ever

You will need to read Sec. 23.6,127): “Pattern matching: match. .case”. Sec. 22.4.10.4p95): “The
good stuff: formatted string literals” will come in handy as well.

So you need a Database Management System, but installing MariaDB or PostgreSQL is too
easy for you? You want to implement your own? Good news, you will get to do so in the
various Database courses at the end of the third year and during your fourth year.

Before those happy days come, let us ease into it by implementing an exceedingly barebones
DBMS accepting a few simple commands. The aim is more to practice a few simple
match/case statements than to think about databases. You will continue this exercise in the
DB courses.

Download our tiny toy database db. ods from Celene, and run the command

pip install pyexcel-ods3

To import the spreadsheet into Python, begin your program with this code:

#!/usr/bin/env python3

from pyexcel_ods3 import get_data
dbr = get_data("db.ods") # raw database

If all goes well, dbr now contains a dictionary of the form
table name (str) — table (list of list) .

The first line of each table contains the column names. We shall work with the data structure
as it is.

(151) Our system must have an interactive command-line interface, and implement a tiny
subset of SQL. Use the input function to implement a prompt, prefixed by db>. To
interpret the commands in the main loop, you will use str.split and a match/case.

If a command is unrecognised, the prompt simply shows the list of words that were
passed, separated by whitespace.

db> some arrant nonsense 10
? [’some’, ’arrant’, ’nonsense’, '10°’]

Unlike true SQL, our language need only accept lowercase versions of the keywords.
It is also case sensitive when it comes to table names, column names, etc.

(152) Let us implement the show tables command:
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(153)

(154)

db> show tables
students
“ origins

Now, implement a (non-SQL) view <table name> command, showing the contents of

a table:

db> view students
Name Age Python TL Origin

do—mm- - e Fommmm - D +
| Toto | 20 | 15 | 5 | L2M |
| Tata | 21 | 8 | 16 | DUTG |
| Titi | 20 | 15 | 18 | L3I |
| Bibi | 20 | 12 | 15 | L2M

| Baba | 18 | 15 | 11 | L2M |
to—mm - +----- R e S +

db> view origins

Origin OriginName Tutor
Fmmm o e e +
| L3I | Licence 3 Info | No |
| DUTG | DUT GEII | Yes |
| L2M | Licence 2 Maths | Maybe |
+o-m— - oo m e - e +

db> view InvalidTable
KeyError (’InvalidTable’)

Note that any exception raised during the execution of a command must be caught
and displayed by the prompt.

Also note that whatever procedure you use to pretty-print the tables will have to be
used for select queries as well.

Finally, let use implement a very restricted version of select <columns> from
<table> where <conditions>. We can of course use * to select all columns:

db> select * from students
Name Age Python TL Origin

fo-m-- +--—-- fommmm - e +
| Toto | 20 | 15 | 5 | L2M |
| Tata | 21 | 8 | 10 | DUTG |
| Titi | 20 | 15 | 18 | L3I |
| Bibi | 20 | 12 | 15 | L2M

| Baba | 18 | 15 | 11 | L2M |
+--m--- +---- fo-mm - Rt +

Otherwise, column names must be separated by commas, without any whitespace.
Note that this means our column names must not contain spaces either.
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The reason we do not allow spaces is that doing so would make parsing the select
command with a simple split + match/case impossible. The aim of the exercise
is not to implement an general parser for SQL, that would be in the scope of the
Languages Theory or the Compilation course, not this Python course. We can do quite
enough for our immediate purposes by keeping things simple.

For instance, we have:

db> select Name,Python from students
Name Python

hooooos osooooos +
| Toto | 15 [
| Tata | 8 |
| Titi | 15 |
| Bibi | 12 |
| Baba | 15 [
$-—— - fom - +

Finally, we mustimplement filtering conditions. A conditionis of the form <column name>=<value>
no spaces allowed, and there may be several of them, separated by commas, with,
again, no spaces allowed. For instance:

db> select Name,Origin from students where Python=15,Age=20

Name Origin
to—mm- - Fommm - +
| Toto | L2M |
| Titi | L3I |
to—mm - Fommm - +

(155) (optional, for DB course) Now we shall extend the power of select so that it supports
inner joins. We shall use a non-SQL syntax for this. Instead of a standard table name,
we can write <table namel>|<column name>|<table name2> to join two tables on a
common column.

For instance, we have:

*

db> select from students|Origin|origins

Name Age Python TL Origin OriginName Tutor
o N e et T e o +
| Toto | 20 | 15 | 5 | L2M | Licence 2 Maths | Maybe |
| Tata | 21 | 8 | 10 | DUTG | DUT GEII | Yes
| Titi | 20 | 15 | 18 | L3I | Licence 3 Info | No |
| Bibi | 20 | 12 | 15 | L2M | Licence 2 Maths | Maybe |
| Baba | 18 | 15 | 11 | L2M | Licence 2 Maths | Maybe |
o N - s T o o +

Of course we can combine this with filters and column selection:

db> select Name,Tutor from students|Origin|origins where Python=15,Age=20
Name Tutor
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+-————- +--————- +
| Toto | Maybe |
| Titi | No |
oo o= omoooma +

52  Cryptanalyse amusante

This exercise is not focused on any particular Python technique. Use what you have got, and what
makes sense.

In this exercise we implement and break the 1553 Vigenere cipher — actually due to Bellaso,
and misattributed to Vigenére, following Stigler’s law of eponymy.

This polyalphabetic substitution cipher maintained a strong reputation for unbreakability —
earning the nickname le chiffre indéchiffrable, “the unbreakable cipher” — from its inception
until 1863, when Kasisky — a Prussian infantry officer — published a general method to break
it.

Sir Charles Babbage — whose 1837 Analytical Engine pioneered the concept of a full,
programmable computer —had actually broken it, even in a stronger, autokey version of it,
nine years earlier, during the Crimean War, but did not publish his work, as the technique
was classified as a military secret.

Even a few decades after that, it was still thought of as unbreakable by many laymen and
non-specialist mathematicians — not too surprising, given that it endured for over three
centuries.

You should be able to break it in at most three TDs :-)

The Enigma machines that famously formed the core of German military communication
during the Second World War implemented a much stronger, but related, polyalphabetic
substitution cipher. With a lot of work and more than a fair bit of luck, the Allies were able
to crack it, turning the tide of the War.

52.1  Une grille de chiffrement
Ecrire une procédure pour afficher la grille suivante:

ABCDEFGHIJKLMNOPQRSTUVWIXYZ
A|ABCDEFGHIJKLMNOPQRSTUVWXY?Z
BIBCDEFGHIJKLMNOPQRSTUVWXYZA
C|CDEFGHIJKLMNOPQRSTUVWXYZAB
D|IDEFGHIJKLMNOPQRSTUVWXYZABC
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Note aux “astucieux”: on ne se contentera pas de copier-coller depuis le PDF et faire print.

En utilisant cette grille, on peut chiffrer des messages. Par exemple "IAMASECRETMES-
SAGE", crypté par "TAMTHEKEY", devient "QAYTZIMVCBMQLZEQI". L'idée est de répéter
la clef jusqu’a ce qu’elle soit de méme longueur que le message, ce qui donne

TAMASECRETMESSAGE
TAMTHEKEYTIAMTHEKE

puis de coder lettre a lettre via la grille: grille(II) = Q, grille(A,A) = A, grilleM,M) =Y,
grille(A,T) =T, etcetera, et on obtient finalement

TAMASECRETMESSAGE
TAMTHEKEYTIAMTHEKE
QAYTZIMVCBMQLZEQI

On note que, contrairement a des chiffres naifs, ot 1’on substitue un symbole (par exemple
une autre lettre) a une lettre, dans ce cas, une lettre peut étre chiffrée de différentes manieres
selon sa position. Ici, les trois instances de A dans le message sont chiffrées par A, T, et E,
respectivement.

Convainquez-vous que le déchiffrement est aussi facile que le chiffrement... quand on a la
clef.
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52.2  On automatise tout ¢a

Ecrire une fonction pour chiffrer et déchiffrer du texte sans aucune ponctuation (on con-
sidérera uniquement les lettres A..Z, que ce soit pour le message ou la clef). La fonction
utilisera un argument booléen optionnel pour passer du mode codage au mode décodage:
crypt(msg,key) chiffre, et crypt(cmsg,key, True) déchiffre.

msgl = "THESTUDENTSARENICEANDHARDWORKING"
keyl "ORARETHEY"
cypl = crypt (msgl,keyl)

>>> cypl
"HYEJXNKILHJATIIGPGCOEDYEKKAMFBIEK’

>>> crypt(cypl, keyl ,True)
"THESTUDENTSARENICEANDHARDWORKING’

On ne s’amusera pas a lire ¢a sur la grille de la question précédente; on ne construira pas de
liste de liste ou autre grosse structure. In what follows, we shall need to crypt and decrypt
thousands of messages every second to perform cryptanalysis in a reasonable time; the
efficiency of this function is therefore of paramount importance.

Je conseille d"utiliser les fonctions ord et chr pour réduire ¢a a un peu d’arithmétique. 1l
faut que cette fonction soit efficace pour la suite.

On pourra s’aider du fait que, sous la représentation 0..25 pour A..Z, et en notant M, K, et C
le message, la clef (répétée), et le texte chiffré, on a pour tout indice k

Ck = Mk + Kk mod 26
pour le chiffrement, et il s’ensuit donc que
Mk:Ck_Kk mod 26,

pour le déchiffrement.

52.3  Cryptanalyse. Ca ne rigole plus

C’est la guerre entre I’'Empire des Méchants Professeurs (EMP), et les GentilZ Zétudiants
RebellZ (ZZZ). Vous étes un cryptanalyste des ZZZ. De nombreux Bothans sont morts
pour intercepter des transmission impériales; les voici (les transmissions, pas les Bothans):

2017:
MVUDHIVKSMREKSGMMEKOZXSVZVNMTATSLZTOITYGIROLZWMGFRIMIQCLXECSIXLASULCR

2018:

@2)0On ignorera les nouveaux Star Wars made in Disney pour évaluer la coolness de mes références de
pop-culture. Merci. pailleurs quels nouveaux Star Wars ? Il ny a pas de nouveaux Star Wars. That’s crazy talk.
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GVVMFEMMCTKYQBPZBDPYH]YYZIYSOHZRMNIOXMIQPYGBPMLUKVWZRFHAIWECIC

2019:
LXATDEMAFLIDVVFZKZHPBWARJEWXMAHSMZATGWPCJIDIWFSSVTMNAUTVICYFDVVL

2019 bis:
LXATDEMAFLIDVVFZKZHPBWARJEZEHWQTIINWRMNUWEXMTTPMQZXHQDLIPKZSYMDHREVVXCZPX

2020:
XCZIJLWVGIKEYQRBVTQNSPAFMWIEICSIHXNVRPLDIAKENVHFTAMTNGIGIDPWMPRCYUDIBKWHKW
TEWEXUCIGOCQAVS

Damned ! Elles sont chiffrées; et probablement avec des mots de passe différents.

On sait toutefois que I'Empire utilise la grille de chiffrement des questions précédentes, et
rédige toujours ses messages en anglais. De plus, ses officiers n’utilisent jamais des clefs de
plus de 10 lettres. En revanche on ne sait rien de la facon dont les clefs sont choisies; c’est
probablement aussi de 1’anglais, mais rien n’est certain.

Ca fait tout de méme

10
Zzek = 146813779479510 ~ 1.4 x 10"
k=1

mots de passe possibles, ce qui est un peu trop pour tous les essayer.
Nous allons malgré tout casser ce chiffre!

La premiere chose a faire est d’automatiser la reconnaissance de texte en anglais (proba-
blement) valide, par opposition a une suite aléatoire de lettres. Une bonne facon de faire
est d’analyser un large corps de textes anglais, en notant la fréquence d’apparition de
n-grammes (sous-mots a n lettres). Par exemple, TION est un 4-gramme apparaissant
beaucoup plus souvent que AAZS.

Une telle base de données de fréquences permet alors de donner un score a du texte, qui a
de bonnes chances d’étre plus élevé sur du vrai texte que sur du charabia.

Construire cette base serait un exercice intéressant, mais heureusement le Céléne (vaisseau-
mere de la Rébellion) dispose déja du matériel nécessaire a 1’analyse des quadgrams anglais
(sur la base d"une analyse d'un vaste corps de textes anglais). On 1'utilise comme suit —
apres avoir téléchargé et extrait les fichiers ©?:

import ngram_score as ns
fitness = ns.ngram_score()

>>> fitness.score(’ THISISACOHERENTSENTENCE’)
-79.75074906594747

®aThose are due to a guy called James Lyons. (Though I'm not sure who made the 4gram database.) Since
using somebody else’s code and database feels a lot like cheating, we shall make our own later on. ..
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>>> fitness.score(’LKFJLSDFJIOJZOJMIOFINZA’)
-176.05856134934515

L'idée pour casser le code est la suivante: les effets du mot de passe étant locaux, plus on se
rapproche du bon mot de passe, plus on va avoir de bonnes lettres et fragments de mots
se rapprochant de I’anglais. En effet, si j’ai deux lettre consécutives correctes sur le mot de
passe, alors deux lettres consécutives seront déchiffrées en clair dans le message, et ce autant
de fois que le mot de passe est répété pour couvrir le message.

On va donc essayer de muter des mots de passe lettre a lettre, afin de se rapprocher du bon
mot de passe. On ne va donc visiter qu'une toute petite fraction des possibilités, guidés par
notre heuristique des fréquences de 4-grammes.

Supposons que la clef soit de longueur 5, et partons de AAAAA, par exemple; essayons
toutes les lettres a la premiere position, et choisissons celle qui donne le meilleur score, par
exemple SAAAA. Ensuite on passe a la deuxiéme, et on obtient SUAAA. Aubout du compte,
on obtient SUGER. On recommence a la premiére lettre. Elle ne bouge pas. Puis la seconde.
Puis la troisiéme; ah! celle-1a bouge, on a SUPER. Les autres ne changent pas. On fait encore
un tour, plus rien ne bouge. SUPER est donc notre optimum local, en partant de AAAAA.
On regarde le message correspondant; c’est soit le vrai message, soit du charabia qui se
trouve sonner pas mal comme de ’anglais. Rien ne garanti qu’on aura la méme chose en
partant de BBBBB.

Dans le doute, on essaye de partir des 26 candidats AAAAA a ZZZ77, et on garde le meilleur
résultat, qui est notre candidat pour une clef de longueur 5. Reste a faire la méme chose
pour toutes les longueurs de clefs possibles (1..10).

On ecrira une fonction autobreak (<cyphertext>) qui affiche le meilleur candidat (clef,
message, et score) pour chaque intervalle 1..n de longueur de clef possible. Grace a cela, on
déchiffrera le message de I’'Empire.

Par exemple,

>>> autobreak (cypl)

W LCINBROMPLNEMMKTKGSIHCIOOEQJFMIO -215.1410845557442
XW KCHNARNMOLMELMJTJGRIGCHONEPJEMHO -192.46846034100733
HEA AUECTNDELAFABEGICCHADRAKDWMYXIXG -182.68686138209173
XUMC KESHATYGONXYLOUNJICCGESINGADEOSI -165.81846421022996
WYAIT LAEBERMIDONCIANTICGLHAECREOFTPIM -157.3321135527277
WYAIT LAEBERMIDONCIANTICGLHAECREOFTPIM -157.3321135527277
GETYXAR BULLANTCHOLDIRALNEREMSARMDMOVELM -142.23665938186278
GETYXAR BULLANTCHOLDIRALNEREMSARMDMOVELM -142.23665938186278
ORARETHEY THESTUDENTSARENICEANDHARDWORKING -112.42451600254101
ORARETHEY THESTUDENTSARENICEANDHARDWORKING -112.42451600254101

Notons que la solution a -142 commence a ressembler fortement a de 1’anglais. Si on n’a pas
de chance (et on a plus de chance de ne pas avoir de chance quand le message est petit), on
peut obtenir par hasard un “message” encore plus anglais que le message réel: considérons
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>>> ¢ = crypt(’THISISATEST’,’K’)
>>> C
>DRSCSCKDOCD’
>>> autobreak (c)
K THISISATEST -30.663467249176005
K THISISATEST -30.663467249176005
K THISISATEST -30.663467249176005
K THISISATEST -30.663467249176005
LKKKZ SHISTRATEDS -29.063122550537994
DZKPM] ASINGTHEENR -27.47716321489606
ZOKPMID EDINGTHEASO -26.043436663213683
KKKKZVGM THISTHEREST -25.225017010062118
KKKKZVGM THISTHEREST -25.225017010062118
KKOLOPRVBW THERENTINGT -25.003927573660018

La solution finale, “the renting T”, a un meilleur score que le message original, et peut nous
faire croire qu’il est question de la location de quelque-chose par un mystérieux monsieur
“T”. “This, the rest”, est aussi un message convainquant. Un indice pour préférer “this is a
test” est que quitte a choisir un mot de passe long, on choisit rarement des mots de passe
avec des lettres répétées. Le reste est une question d’interprétation.

Evidemment, plus le message est long, moins on risque d’avoir ce genre de soucis.

Note en passant: on pourrait aussi utiliser des algos génétiques sur ce probleme. ;-D Les
résultats seraient probablement meilleurs, mais ¢a serait plus compliqué a mettre en place.

524 m-gram analysis

It is advised to read Sec. 24.4,145): “Dictionaries: class dict”, and in particular Sec. 24.4.1.3y156):
“Counter, from collections”, quite carefully before proceeding. Some material from Sec. 26,155):
“Reading and writing files” will also be necessary.

Han Solo is loosely allied with the ZZZ RebelZ, and shares their need for codebreaking tools,
but he goes his own way in the traditional lonesome cowboy fashion, and is far too proud to
ask for their help.

Consequently, he needs to decrypt the messages, but has no access to ZZZ’s n-gram database
and scoring function. He has a bad feeling about this, because that means he must make
his own. While he does not have access to a vast corpus of texts on which to train his
database, he does have access to a copy of Tosltoi’s War and Peace, pilfered from Chewbacca
‘s nightstand.

He also has access to you, and goes to take a nap while you do all the work. Typical. You
still have the code you wrote for the ZZZ, but you can’t use the ngram database or the
ngram_score code previously provided. Better get going.
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(156)

(157)

(158)

(159)

Download War and Peace (WP . txt) to your R2D2 unit. "

Your first task will be to clean it up for ngram analysis. We only take alphabetic
characters into account, so everything else must go.

To prepare for this, write a predicate isalpha(c) testing whether c is a character of
A..Za..z.

It must satisfy the following assertions:

assert all ( isalpha(chr(n)) == chr(n).isalpha() for n in range(128) )
assert all (not isalpha(chr(n)) for n in range(128,256) )

The reason we do not use str.isalpha directly is that it accepts accented characters.

Will shall need to iterate on the cleaned text ngram by ngram. Write a function
gramiter(s,n=4) that returns an iterable over each successive ngram in the string s.

Preferably, return a generator.

(To do things optimally, we would accept any iterable; thus we could accept a generator
as well, and lazily process ngrams as we read the file. However, I have not written the
section presenting the tools for that yet, so for now we’ll put the file in a string first
and process that in a second time. It’s less elegant, but it works.)

In any case, the following assertions must be satisfied:

assert tuple(gramiter("ATTACK")) == (’ATTA’, ’TTAC’, ’TACK’)

assert tuple(gramiter("ATTACK",n=1)) == (’A’, ’T’, ’T’, ’A’, 'C’, ’K’)
We have all the tools we need to create our database. Write a procedure

process(text="WP.txt", out="quads.txt"):

which processes the file text.

That means loading it up to memory in a string (again, there are more elegant ways,
but this works) containing only the alphabetic characters — all in uppercase. You can
use str.upper () for uppercase conversion.

Then, you can count the number of occurrences of each 4gram in the text, and write
them to a file out. Each line of that file should be of the format

<4GRAM> <nb of occurrences>

and the lines should be sorted in order of decreasing occurrences.

The beginning of the output file should therefore look like this:

®b)You'll find it on Celene, as usual.
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(160)

(161)

(162)

THAT 8285
THER 8187
WITH 6538
DTHE 6295
NTHE 5728
OTHE 5590

Friendly Tip: Counters seem like wonderfully topical things, don’t you think? So does
their most_common method. .. Just sayin’.

Run process () once, creating the database file out. Then comment out the call, for
loading the database from out will be much faster than recomputing it from scratch
each time.

Write a function load_grams (fname="quads. txt") that returns a counter containing
all 4gram/occurrences data in the file.

Define a variable C = load_grams()

Define a function score(s,C=C) returning the sum of all 4gram occurrences in the
string s, according to the counter C. Since Python does not suffer from integer overflow
problems, and we only intend to sum over relatively short sentences, we can affort that
computation. Of course, any 4gram that does not appear in the database is interpreted
as having 0 occurrence.

We now have a function returning a numerical value which can rightly be expected to
increase with the “typicality” of the text — length being equal:

>>> score(’THISISACOHERENTSENTENCE’)
13537

>>> score (’BLAHIBLAHBLOBYAAKNOWAHH)
1623

>>> score(’LKFJLSDFJIOJZOJMIOFINZA’)
0

We are done! Huzzah! Replace your old fitness function by this one, and get
codebreaking again. How does it work out for you? Spoiler alert: not great.

Note: test on the Empire’s messages, and on the provided cypl example.

This fitness function does not seem up to snuff. Why do you think that is?

Let’s inject a little maths into this party and come up with a better score function.

We have a database of K ngrams gy, .. ., gk, of respective occurrences o(g1),...,0(gk).
Let

K
N = ) olgy)

k=1
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be the total number of 4gram occurrences.

Under the — very, extremely questionable — modelling hypothesis that 4grams oc-
currences are independent in text, the probability of an ngram is therefore given

by

o(gx)
N

and the probability of a string s is given by
Ps) = J[ Pla).

gengrams(s)

P(gx) =

However, that would mean that any 4gram that does not appear in our database would
instantly set the probability of the sentence to zero. Zero (and one) are very strong
probabilities — in Laplacian/Bayesian *® terms, they mean literally infinite evidence
against or for a proposition. We know our database is woefully incomplete. Therefore
we assign a small probability

Po = —

100N

to any 4gram not appearing in the database.

Alter your score function to return P(s). You should get something like this:

>>> score(’THISISACOHERENTSENTENCE’)
9.52447211241367e-85

>>> score (’BLAHIBLAHBLOBYAAKNOWAHH’)
7.907084778567561e-146

>>> score(’LKFJLSDFJIOJZOJMIOFINZA’)
9.26233860365592e-169

>>> score (’LKFJLSDFJIOJZOJMIOFINZA’ *2)
0.0

>>> score(’THISISACOHERENTSENTENCE’*4)
0.0

Test the codebreaker with this.
Spoiler alert: disappointment awaits you.

This probability-based approach is not an altogether bad one in principle. There is a
trick to implementing it properly, however. If you kept your ears open during class,
and read the part of this document on floating point numbers, you know that I am
more than a tad skittish about them. Here, we are blithely multiplying a whole bunch of
very, very tiny floating point numbers.

How trustworthy are those infinitesimal results, really? Given the danger of arithmetic
underflow, not very much. As a reminder, the smallest representable floating-point
value in Python is

®9Following Stigler’s law of eponymy, Bayesian probability theory is really due to Laplace.
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(163)

>>> sys.float_info.min
2.2250738585072014e-308

Mathematically, what will happen to P(s) as s grows longer, regardless of how “English”
that sentence may be? How will it play out with sys.float_info.min?

Let us keep the very same method, but use a mathematical trick to alleviate the loss of
precision. If only we could add numbers, instead of multiplying them, the overall loss
of precision would be much less. If only there was a well known mathematical Jedi
mind-trick we could use to turn those x into +. ..

Oh wait, there is:
log(xy) = logx+logy.

Let’s select base 10 arbitrarily — just so you can compare your numerical values to
those of others:

from math import logl® as 1lg

Now let us transform our probabilities into log probabilities: we have

o) = lg(Plgn) = tg(29))

and the log probability of a string s is given by

L(s) = Ig(P(s)) = >  L(g).

gengrams(s)

Let us note in passing that log probabilities have uses far beyond a “mere” numerical
computation trick; they are well-known in probability theory and in information
theory, as they represent (minus) the information content of an even. As we are now
discovering, they are central to natural language processing.

Update your score function to use L(s). You should get something like:

>>> score(’THISISACOHERENTSENTENCE’)
-84.02115908547061

>>> score (’BLAHIBLAHBLOBYAAKNOWAHH’)
-145.10198360473777

>>> score(’LKFJLSDFJIOJZOJMIOFINZA’)
-168.03327934653242

Test the codebreaker again. And rejoice! This time, it is supposed to work fairly well,
though not quite as well as it did when we had the larger database.

Speculate on why that matters for some messages and not others.
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(164) To confirm that the difference in codebreaking performance stems from the database
and not your implementation of the scoring function, without touching the code,
swap your Tolstoi-based database for the previous one, english_quadgrams.txt: itis
written in exactly the same format.

You should obtain the same codebreaking performance as before. Not only that, but
you should obtain exactly the same numerical values for the score, as we now use
exactly the same scoring principles as before.

>>> score(’THISISACOHERENTSENTENCE’)
-79.75074906594747
>>> score (’BLAHIBLAHBLOBYAAKNOWAHH’)
-119.3170079814685
>>> score(’LKFJLSDFJIOJZOJMIOFINZA’)
-176.05856134934515

If that is not the case, there is something wrong with your code.
(165) This is not a question, but thoughts on how to improve the method.

o We could extend the database both in size and in breadth of styles of English
which it represents. As a test, I used a Python web scrapper to extract the text of
the humongous Worm web-serial, written in modern, casual American English,
and combined it with War and Peace — Worm is about thrice as long as War and
Peace, so this substantially reinforced the database. Judging by the number of
occurrences of the most common 4grams, we are still a long way off.

For comparison, the War and Peace database offers THAT as the most common,
at 8285 occurrences. The War and Peace + Worm database offers THER at 31 921
occurrences, while the original database offers TION at a whopping 13 168 375
occurrences; obviously, it must have been made with a very large corpus of text.
(I still don’t know who is the original source for that file. Anyone finding out,
please tell me!)

The addition of Worm did improve the quality of the partially cracked keys, but
not to the point of cracking them completely. Equaling the quality of the larger
database would mean processing a few thousand books.

o We could move up to 5grams. The received wisdom in that domain is that 4grams
are a sweet spot beyond which the marginal increase in performance does not
justify the significant increase in database size.

o If improving the database is not realistic, perhaps we can improve the scoring
function instead. The formula

Ps) = J[ Plo)
©

gengrams
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rests on the assumption of independence of the successive 4grams. I described
this assumption as extremely questionable, which was a polite way of pointing out
that it is, plainly, false. Convenient, yes. A decent approximation, certainly. But
false in glaringly obvious ways.

A better approximation would be a Markov process. Consider ATTACK: the first
4gram is ATTA; having read that, the next is necessarily of the form TTAx, for
some x. Thus the probability of any 4gram not of that form being the second one
is zero. Literally zero this time, not “a very small probability”.

The probability of TTAx, given that the previous 4gram was ATTA, or, put another
way, the probability of the next letter being x given that we just read ATTA, is
given by

o(TTAXx)
Y o(TTAy)

TTAyeD

P(x | ATTA) = P(TTAx|ATTA) =

where D is our database. P(s) is then obtained by multiplying the successive
conditional probabilities, starting from the probability of the first 4gram:

P(s) = P(gogi.. = HP gk | gk— 1
k=1

Of course, we would still require a log probability implementation. I haven't
had the time to test that, but I assume that this new version of score would be
noticeably slower, but much more precise. I would expect (hope?) the codebreaker
to succeed on all messages, even using only the War and Peace database.

We could also simply test more keys in the same timeframe by making use of
multiple processors. This would offset our more complicated scoring method.

I shall get around to writing a section on that eventually.

53

Be there or be square!

In this section, we focus on the computation of the integer square root isqrt(n) = |\/n|,
which we shall perform in many different ways, and compare with respect to performance.

Rappel: | k| est la partie entiere inférieure de k.

53.1

a

The easy way: isqrt_builtin

enforcing consistency of multiple implementations ‘4;8
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Write a function isqrt_builtin(n) using math.sqrt and math. floor. It shall serve as a
reference implementation.

The following assertion must hold:

assert [ isqgrt_builtin(n) for n in range(30) ] == \
[®! 1, 1! 11 2’ 2! 2! 2! 2, 3! 31 3’ 3, 3! 3!
5

3’ 4! 4! 41 4’ 4! 41 4’ 4! 4! 51 5’ 5! 51 ]

In the next questions, for every subsequent function £ computing the integer square root
— you will implement isqrt_hard, isqrt_dicho, and more. .. — the following assertions
must hold:

for n in range (100):
assert f(n) == isqrt_builtin(n), n
Note that the error message n will enable you to know on which value f failed, as it will be

displayed in the interactive mode.

Note that you could factorise all those tests, like so:

for f in (isqrt_hard, isqrt_dicho,...): # replace by your functions
for n in range (100):
assert f(n) == isqrt_builtin(n), (£f,n)

No other use of isqrt_builtinis allowed in the next questions. Nor can you usemath.sqrt,
orpow(n,0.5),orn ** 0.5 0orn ** (1/2), or any other direct way of computing the root.
You must implement the algorithms suggested by the question, and use integers exclusively.

53.2  Racine carrée entiere, the hard way!
Note: On utilisera la syntaxe x * x pour coder x?, car c’est plus efficace que x ** 2.
Ecrire une fonction isqrt_hard(n) calculant | /1|, pour tout entier naturel n.

On utilisera impérativement une boucle while, testant les carrés 0%, 1%,22,32 /... successive-
ment, jusqu’a trouver la bonne valeur.

53.3 Racine carrée entiere, 20% cooler!!

If I am not there to help you or this takes too much time, skip this section. The important thing is to
get to the empirical comparison of your solutions, at the end — it does not change much if you have
one fewer version of isqrt to compare.
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Let us compute a closed form ®® of the sum S,, of the n first odd numbers:

= > (2k=1) = 2) k=) 1 (53.1)
k=1 k=1 k=1

= 2% Mm+1)—

= nn+1)—

= nn+1-1)

= TLz.

This gives us an idea to compute isqrt more efficiently. What if, instead of doing a
multiplication at each iteration, we replaced that multiplication by additions — additions
are less expensive, in processor time, than multiplications.

The idea is to use the same logic as isqrt_hard, except that instead of computing the next
square from scratch at each iteration of the main loop, you can take advantage of Equation
(53.1) to use the previously computed n? to obtain (n + 1)%; you just need to increment
your previous result by the next odd integer. That integer itself can be maintained from one
iteration to the next by adding 2. Thus you replace a multiplication, which can be fairly
expensive in terms of computation time, by two additions, which may be less expensive —
further testing will determine how well that works out in practice.

With this in mind, write a function isqrt_sum(n) computing | /n|, behaving fundamentally
like isqrt_hard, but using the ideas above to be (hopefully) more efficient.

53.4  Racine carrée entiere, par dichotomie

&

On est toujours, jusqu’a présent, dans un nombre d’opérations linéaire en la taille de n.
Ecrivons donc maintenant une fonction isqrt_dicho(n) calculant L\/T_LJ de fagon similaire
a la version “hard” mais en procédant cette fois par recherche dichotomique au lieu de tester
toutes les valeurs. On s’attend dont a un nombre logarithmique d’opérations.

dichotomy on int has its own logical difficulties 4‘$8
using a recursive subfunction

You will write two versions: the first one using while, and then the second one, isqrt_dicho_rec(n),
using recursion. Note that both versions must present the same interface to the user. Unlike

in question (35) 2531, where the search interval [a, b] was expected as arguments, you have

no room in the function’s signature for that.

Tip: Use a recursive subfunction.

Both versions must be tested.

bDA closed form is an expression using only a fixed number of straightfoward operations, such as +, —, x etc,
butno ), ], f etc. Put another way, “compute the value of S,, as a function of n”, or “solve the sum”.
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53.5 Empirisme forcené: Ultimate Showdown of Ultimate SQRT

performance testing of multiple implementations
recognising the futility of reinventing the wheel and premature optimisation

Utilisez la fonction timeit du module éponyme pour tester si les versions par somme et
dichotomie sont réellement meilleures (ou pires ?) que la version brutale, et a quel point —
on utilisera également, comme base de comparaison, la fonction isqrt_builtin(n). .

On expliquera brievement mais clairement ce qu’on fait, pourquoi, ce que 1’on obtient, ce
que ca veut dire, et si ¢a nous surprend.

Sil’on pergoit une morale a cette exercice, on I’exprimera succinctement.

Pour illustrer les résultats, on produira (au moins) un joli petit graphe montrant le comporte-
ment de nos quatre approches en fonction de la taille de n. Le graphe pourra étre fait avec
matplotlib, gnuplot, Libre Office, Word, Google Sheets, ce que vous voulez, mais vous en
fournirez dans tous les cas une version PDF ou PNG, lisible par tout un chacun.

Note: on utilisera 1'interface Python du module timeit — par opposition a la ligne de
commande — dont la documentation est ici.

Begin by importing the function:

from timeit import timeit

The timeit function executes a small snippet of code a large number of times, and returns
the total time taken, in seconds, as a float. Execution times of small snippets of code are
highly variable, depending on system activity; repeating the execution ensures that measures
are reasonably precise.

timeit has two interfaces; one using strings, and one using callables (via lambdas), which is
what we shall use.

The “callable” interface expects a nullary function, whose execution is timed, and an optional
argument number, defaulting to 10°. Timeit returns the total time taken by the execution of
the callable, repeated number times.

Forinstance, let us say we want to time the execution of i sqrt_hard(1000) and isqrt_hard(1000000):

>>> N = 10000 # repetitions

>>> timeit(lambda: isqrt_hard(1000) , number=N) / N
9.853858899987244e-06 # average time, in seconds

>>> timeit(lambda: isqrt_hard(1000000) , number=N) / N
0.00029428713969991804
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54

Prime numbers and sieve of Eratosthenes

In this section, you cannot reuse the results of previous questions unless explicitly mentioned,
since the goal is to do the same thing with many different approaches.

p

(166)

(167)

(168)

more complex comprehension expressions ‘;8
Ecrire un prédicat isprime (n) (N — bool) testant si un entier naturel n est premier,
c’est a dire s’il est strictement supérieur a 1 et divisible seulement par 1 et n.
The body must be written in one line of the form return <expr>.
Read Sec. 24.5.3.41p163): “Reductions”, especially the part about any and all.
The following assertion must hold:
assert [ i for i in range(30) if isprime(i) 1 \

== [2, 3, 5, 7, 11, 13, 17, 19, 23, 29]

Reminder: Composite numbers are positive integers that are not prime. Put another
way, they are formed by the multiplication of two smaller numbers, other than 0 or 1.

With a comprehension, build the set comp of composite numbers in [1,n], using the
following method: use a filter to retain only those integers which have a divisor. Again,
do not reuse isprime for this.

Note that I merely ask for a set, written with a comprehension expression, not for a
function returning a set. Assume that n is defined; for instancen = 100.

The expression will thus be of the form

comp = { i for i in range(...) if any(...... ) }
or
comp = { i for i in range(...) for j in range(...) if ... }

For bonus points, try and write a version for each of those two forms. Might there be a
notable difference in efficiency between the two for large values of n?

Again, build the set comp2 of composite numbers in [1,1], but this time build the
multiples of 2, then the multiples of 3, and so on.

For this question, recall that the multiples of i can easily be computed through
range(i, n+1, i),thanks to the optional third argument of range.

Thus the expression will be of the form
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{ j for i in range(...) for j in range(...) }
(169) Again, build the set comp3 of composite numbers in [1,n], but this time by noting that
they are the set of numbers of the form i x j, for i, j in suitable ranges.

Thus the expression will be of the form

{ i*j for i in range(...) for j in range(...) }

The following assertion must hold:

assert comp == comp2 == comp3, (comp”rcomp2, comp’rcomp3)

Note that the error message gives you the symmetric difference between those sets,
making debugging easier.

(170) Build the tuple primes of prime numbers in [1,n]. Use comp, as defined in previous
questions; do not use isprime, however.

The following assertion must hold:

assert primes == tuple( k for k in range(l, n+1) if isprime(k) )

55 For me it was a Tuesday...

In any calendar-related question, it is forbidden to use the datetime module or anything similar,
unless explicitly required by the question.

The only permitted use of datetime is to verify your answers through assertions, as shown in
question 176 ,347).

In this section, we shall represent dates as triplets of integers y, m, d, for years, months, and
days, respectively. Months are represented as integers in [1, 12].

In some later questions, it might be useful to note that, with this representation, the order
between two dates can be tested naturally through

(y,m,d) < (Y,M,D)

thanks to the lexicographical order on tuples (cf. Section 22.4.9(,03; and Equation 24.1p133)).

55.1  Suis-je bissextile ?

Dans le calendrier grégorien, qui a pris effet le 15 octobre 1582, une année bissextile est une
année qui est divisible par 4 mais pas par 100, ou alors qui est divisible par 400.
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Nommer, documenter, et écrire une fonction pour tester si une année est bissextile. Comme
toujours, on réfléchira aux conditions d’utilisation. . .

Obviously, this must be a predicate (the return value is a Boolean). Try to write it in a single
line of the form

return <Boolean expression>

If you really feel the need to use an if, by all means do so at first, but then spend time
rewriting it into the single-expression form.

55.2  Le mois le plus long

On écrira (nommera, documentera, testera, etcetera) une fonction donnant le nombre de
jours dans un mois. On rappelle que février a 28 jours dans une année normale et 29 dans
une année bissextile.

Tip: you can use the in/tuple syntax (cf. Sec. 22.6.2,101: “in and is”):

x in (1,3,7,10)

replaces

elif x == 1:.. elif x == 3.. etc

A match/case can also serve:
match x:

case 1]3]7]10:

Depending on how you choose to write the function, an expression-if / ternary operator
(cf. Sec. 23.2 (5116 “Conditional expression: .. if .. else .. ternary operator”) may also
be convenient.

55.3 Aide aux jours invalides

Bien que toute date soit représentable par un triplet d’entiers y, m, d, tout triplet ne représente
pas une date valide. Par exemple 2015, 29,2 et 2015, 2, 29 sont toutes deux invalides, pour
des raisons différentes.

On écrira une fonction is_valid_date pour tester cela.
There again, this is a simple predicate, and should be written in a single line of the form
return <Boolean expression>

Now you can — nay, must — use this convenient predicate in every function taking dates as
inputs, as a precondition assertion.
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55.4  Comptons les jours, approximativement
On veut compter les jours entre deux dates.

Ecrire une fonction days_between_approx(y,m,d,Y,M,D) renvoyant le nombre (approxi-
matif) de jours entre les deux dates représentées dans les parametres.

Elle doit donner un résultat cohérent quelque-soit 1’'ordre dans lequel les dates sont données.
Il est utile de penser a cela comme une difference entre deux dates.

On ignorera (le temps de cet exercice) les questions d’années bissextiles: on considérera
qu'un an a 365.2425 jours en moyenne, et que les mois, au nombre de 12 par ans, ont, aussi
en moyenne et approximativement, le méme nombre de jours.

55.5 days_between, exact version

We shall now perform an exact computation. days_between(y,m,d,Y,M,D) has the same
parameters and meaning as days_between_approx , but must return the exact number of
days.

This question is quite difficult, and it is advised to spend some time on paper breaking the
difficulty into subproblems before starting to code. Do not hesitate to define additional
helper functions for clearly-identified sub-problems.

The following assertions must be satisfied:

assert (days_between(1985,10,21, 1985,10,21) == 0)
assert (days_between(1985,10,20, 1985,10,21) == 1)
assert (days_between(1985,10,21, 1985,10,20) == -1)
assert (days_between(1985,10,21, 2017,9,19) == 11656)
assert (days_between(2017,9,19, 1985,10,21) == -11656)
assert (days_between(1999,12, 5, 2000,3,1) == 87)

55.6  weekday, the hard way

Sachant que le premier janvier 1900 était un lundji, écrire, al’aide de la fonction days_between,
une fonction weekday (y,m,d) permettant de déterminer le jour de la semaine de n'importe
quelle date du calendrier grégorien — y compris avant 1900.

On utilisera les entiers suivants pour représenter les jours de la semaine:

Dimanche Lundi Mardi Mercredi Jeudi Vendredi Samedi
0 1 2 3 4 5 6

Note: la fonction doit bien renvoyer ces entiers, et non imprimer les noms des jours.
Here are a few tests that your function must pass:

assert weekday(19600,1,1) == 1
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assert weekday(1985,10,21) ==
assert weekday(2017,9,19) ==
assert weekday(1899,12,31) ==
assert weekday(1700,1,1) ==
assert weekday(2019,9,14) ==

S VT @ N =

55.7 Impression calendrier

A T'aide de la fonction précédente, on écrira une procédure cal imitant le comportement du
programme cal d'Unix (qui, évidemment, affiche un calendrier). En particulier, un appel a
cal(2018,9) doit imprimer ceci:

Septembre 2018
di lu ma me je ve sa
1
2 3 4 5 6 7 8
9 10 11 12 13 14 15
16 17 18 19 20 21 22
23 24 25 26 27 28 29
30

55.8 Merci, Delambre !

La formule de Delambre est une maniere plus directe de calculer le jour de la semaine. Une
date y, m, d correspond, selon cette formule, au jour de la semaine

K = d+m+ {%y”J%—Ey’J—FZ mod 7

o= | B
v = |5,
est la partie séculaire de 'année, et

y’" = y mod 100

en est I’année dans le siecle courant; de plus, le code du mois m est donné par

3

1 23 45 6 7 8 9
m,annéenormale 4 0 0 3 5 1 3 6 2 4 0 2
m,annéebissextile 3 6 0 3 5 1 3 6 2 4
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Par exemple, pour le 21 octobre 1985, on a

K = 21+4+{%19J+ESSJ+2 mod 7
= 232 mod 7
= 1 = lundi,

ce qui est correct.
Implement a function weekday_delambre, as a replacement for weekday.

Vérifier que les deux méthodes implémentées pour calculer le jour de la semaine donnent
bien les mémes résultats pour tous les jours de 1900 a 2100.

Adaptez cal de maniere a ce qu’elle accepte, comme argument optionnel, la fonction
déterminant le jour de la semaine. Un appel a cal prendra donc la forme, par exemple:

cal(1985,10, weekday=weekday)
ou

cal(1985,10, weekday=weekday_delambre),

55.9  Approximating the approximation error

(171) Vérifiez qu’entre le 21 octobre 1985 et aujourd’hui et, I’erreur encourue par 1'usage
d’approximations dans la fonction days_between_approx est de I'ordre de 0.01%.

By this I mean that the following must hold:

def approxrat(*p):
ex = days_between(*p)
ap = days_between_approx(*p)
#print (ex,ap, ap/ex)
return ap/ex

assert isalmost (approxrat(1985,10,21,2020,9,19) , 1 , 0.0001)
Of course, isalmost is the function defined in question 21,43, which you can write
again or import.

(172) Verify that, between 1900 and 2100, the error is of the order of 0.0005%.

That is to say, it must hold that

assert isalmost (approxrat(1800,1,1, 2100,1,1) , 1, 0.000005)

(173) Enyréfléchissant, proposez et testez un intervalle pour lequel l’erreur due al’approximation
sera beaucoup plus importante.

In fact, you can — and must - find two dates so that the following holds:
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assert approxrat(....) > 1.7

55.10  Effects of approximations on weekday

A question in this section requires some understanding of Sec. 291,12 “Iterables, iterators, and
generators”.

Sec. 24.61p168): “Packing and unpacking” can also be quite useful on occasion.

Your weekday function must imperatively be correct for that part.

Since the approximation is so good, did we really need to go to the trouble of writing the exact
days_between function, or could we just have used the approximation days_between_approx
instead?

(174)

(175)

(176)

Write a function weekday_approx, similar to weekday but using days_between_approx
instead of days_between, and rounding the result in an integer. See whether it fails
any assertions which its exact counterpart satisfies.

Spoiler alert: it does.

Let us quantify the degree to which the approximation fails to yield the correct day by
computing the ratio of weekdays correctly computed through approximation over a
few centuries.

Write a generator function daysgen(y,m,d,Y,M,D) generating all successive days — as
triplets — starting from y,m, d and ending just before Y, M,D — the end point is excluded.

The following assertions must pass:

assert next(daysgen(1899,12,31,1900,1,4)) == (1899, 12, 31)

assert list(daysgen(1899,12,31,1900,1,4)) ==
[(1899, 12, 31), (1960, 1, 1), (1960, 1, 2), (1960, 1, 3)]

assert list(daysgen(2020,2,28,2020,3,2)) ==\
[(2020, 2, 28), (2020, 2, 29), (2020, 3, 1)]

assert list(daysgen(2019,2,28,2019,3,2)) == \
[(2019, 2, 28), (2019, 3, 1)]

assert sum(l for in daysgen(1985,10,21, 2017,9,19)) == 11656

Check that the following assertion holds, that checks the correctness of weekday quite
exhaustively:

from datetime import date

assert all( (date(*t).weekday()+1)%7 == weekday(*t)
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(x77)

(178)

(179)

for t in daysgen(1860,1,1, 2100,1,1) )

For once you can comment this assertion out after verifying it, as it might take a second
or two to execute.

Extend daysgen to accept a seventh optional argument, defaulting to False and
which, if True, causes the function to produce not just date triplets t, but couples
t, weekday(t). For performance reasons, this should be done with only one invocation
of weekday, regardless of the number of days generated.

All previous assertions must remain satisfied, along with the following:

assert list(daysgen(1899,12,31,1900,1,4,True)) ==
[CC1899, 12, 31), 0), ((1900, 1, 1), 1),
(C1900, 1, 2>, 2), (C1900, 1, 3), 3)1]

assert list(daysgen(1899,12,31,1905,1,4,True)) ==
[ (t,weekday(*t)) for t in daysgen(1899,12,31,1905,1,4) ]

Verify that the approximation computes about 49% of weekdays correctly in the interval
1985,10,21, 2017,9,19 and about 35% in the interval 1800,1,1, 2160,1,1.

Those percentages may vary greatly depending on the way in which you choose to
round days_between_approx; for instance it may be 38% instead of 49%, and so on.
So long as you find something roughly in the same ballpark, it’s okay.

The assertions that must hold are thus of the form

def approxdayrat(*p):
N = days_between(*p)
n = sum( 1 for (t,d) in daysgen(*p,True) if d == weekday_approx(*t) )
#print (n,N,n/N)
return n/N

assert isalmost( approxdayrat(1985,10,21, 2017,9,19), .49, .001 )
assert isalmost( approxdayrat(1800,1,1, 2100,1,1), .35, .01 )

If you like, write a concluding haiku about the treacherousness of floating-point
approximations, even slight, when applied to integral, exact computations.

56

Dichotomie

On veut réaliser une recherche de zéro d’une fonction continue f sur l'intervalle [a, b],
i.e. résoudre f(x) = 0. On suppose que f change de signe entre a et b.

L’étudiant Toto propose le code suivant pour résoudre le probleme par dichotomie:
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def sign(x):
return 1 if x >= 0 else -1

def di(f,a,b):

m = (a+b)/2
if f(m) = O:
return m
if sign(a) == sign(m):
return di(f,m,b)
else:

return di(f,a,m)

Ce code contient (au minimum) trois erreurs: une d’ordre syntaxique (sans se prononcer
quant a savoir si Python la détecte en tant que SyntaxError), une d’ordre numérique, et une
d’ordre logique.

(180) Quelles sont-elles ? On expliquera le probleme succinctement (une ligne max par
erreur).

(181) Proposer un code corrigé pour di.

(182) Le if dans sign et ceux dans di jouent-ils le méme role syntactique pour Python ?
Le(s)quel(s) ? (Réponse en deux lignes au plus).

57 En sommes...

Nous allons écrire différentes versions de la fonction sum, déja prédéfinie en Python. On a

sum([e1,...,en]) = Zek ’

k=1

et la fonction s’applique en fait & n'importe quel type d’itérable fini; une propriété que 1'on
souhaiterait (optionellement) préserver dans nos implémentations.

(183) sum_while: on utilisera une boucle while.
(184) sum_for_range: on utilisera une boucle for utilisant un range.
(185) sum_for: on utilisera une boucle for n’utilisant pas de range.

(186) Ces implémentations sont-elles équivalentes ? Pourquoi ? (Donner ’argument en une
ligne.)

(187) Donnez la sortie de Python lors de 1’exécution du bloc de code suivant:

1

list(range(1,6))
set(l)
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print(l, sum_while(l), sum_for_range(l), sum_for(l))
print(s, sum_while(s), sum_for_range(s), sum_for(s))

(188) Définir une fonction reduce, applicable a tout itérable fini [e;, ..., e,], telle que

reduce([eh LR en]) eO)f) = f( : 'f(f(eO) 61),62), . '>en)

(189) Compléter le code suivant pour obtenir une implémentation de sum en une ligne.
def sum_reduce(l):

return reduce (## COMPLETER ##)

On rappelle I'existence de la construction
lambda Xx71,...,%Xn : f(X1y...y%n)

en Python pour coder une fonction “anonyme” de parametres x1, ..., Xy, renvoyant
f(X1y...,%Xn) —ou f(x1,...,X,) peut étre n'importe quelle expression Python utilisant
(ou pas) les variables x;,...,x,. Cette construction joue le role syntaxique d"une
expression.

(190) Implémenter en une ligne (sans compter l'entéte def union(1) :) une fonction union
réalisant I'union des ensembles contenus dans un itérable fini:

union([Sy,...,S.]) = USk.
k=1

(191) Donner la sortie de Python pour le code:

print (union([set(’abc’), set(’baba’), set(’coucou’)]))

58 Enter the Matrix: find your paths!

Note:

I gave this exercise in a second-sitting examination, at the end of the year. Consequently I made use,
for flavour, of notions of Graph Theory which are only tackled during the second semester. Those
notions are neither advanced nor strictly necessary to answer the questions, but the exercise will
undoubtedly be more fun for you if you understand what concrete problem we are solving.

[ would therefore advise you to take a cursory look at the notions of "directed graph” and "adjacency
matrix” before proceeding with the questions.
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Soit par exemple la matrice d’adjacence suivante, entendue pour un graphe de nceuds
A,B,C:

011
M= (1 0 1
010

Nous allons jouer a calculer tous les chemins de longueur n sur des graphes. J'espere que
cela vous évoque des souvenirs. . .

It is advised to recall the existence of the builtin sum function, as well as that of the union
function defined in question 190 p350;. Both might come in handy in this exercise.

(192) Définir une variable Python M telle que M[i] [j1= My;. De plus, chacune des cases de
M doit étre mutable.

(193) Définir une procédure mprint pour afficher une matrice; par exemple

>>> mprint (M)

[0, 1, 1]
(1, 0, 1]
e, 1, 0]

(194) Définir une fonction check_squares prenant deux matrices carrées (de méme dimen-
sions n x n) en argument, et renvoyant n. Siles matrices ne satisfont pas cette propriété,
check_squares doit provoquer une AssertionError.

(195) Compléter le code suivant afin de réaliser une fonction mmul permettant de multiplier
deux matrices carrées contenant des valeurs numériques.

def mmul (A,B):
n = check_squares(A,B)
res = ## completer ##
## completer ##
## completer ##
res[i][j] = ## completer ##
return res

On rappelle que le produit matriciel est défini par
[AB]ij = Z AikBk)' .
k=1

De plus, on ne pourra pas rajouter des lignes de code en le complétant. Par la j'entends
que chaque instance de ## completer ## doit étre remplacée par du code qui tient
naturellement en une ligne.

N

(196) Donner une fonction letter qui a un nombre de 0..25 associe la lettre de A..Z
correspondante. (Une ligne, hors entéte.) On définit pour la suite Z = {A,...,Z}.
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(197) Donner une procédure to_path_mat qui transforme sur place une matrice d’adjacence

M classique en une matrice P contenant des ensembles de mots telle que Py; = @ si
M;; = Oet{letter(i)letter(j) } sinon. Dans le cas de notre M, on a

@ {AB} {AC}
P=|{BA} @ {BC}
o {CB} o

(198) Nous appelons ceci des matrices de chemins, pour lesquelles nous définissons la

(199)

(200)

concaténation de chemins, notée ©:

[A®Bly = UAikQBkj ;

k=1
ou © est définie sur les langages et les mots (chemins) comme suit:

LoM={lom|lmel,M} ua®av=uav, Yae X, u,ve r*
Ecrire en deux lignes une fonction pconcat qui réalise ® sur les mots. Elle doit
déclencher une AssertionError siles chemins ne sont pas compatibles.
Ecrire en une ligne une fonction psetconcat qui réalise ® sur les langages.

Ecrire une fonction pmul qui réalise ® sur les matrices. Elle doit comporter le méme
nombre de lignes que mmul.

59

(201)

(202)

(203)

(204)

Générateur de nombres premiers et autres
Ecrire une fonction allints(n=0, step=1) renvoyant un générateur pour N par défaut
et pour les entiers {n + step x k | k € N} en général.

On n’utilisera pas la fonction count du module itertools, car on est en train de la redéfinir
=P

Ecrire une procédure testgen(g,n) imprimant la liste des n premiers éléments du
générateur g. On doit avoir par exemple:

>>> testgen(allints(4,3),10)
[4, 7, 10, 13, 16, 19, 22, 25, 28, 31]
On supposera que g contient assez d’éléments.

Ecrire un prédicat isprime(n) (N — bool) testant si un entier naturel n est premier,
c’est a dire s’il est strictement supérieur a 1 et divisible seulement par 1 et n. (On ne
demande pas de documentation ni d’assert dans cet examen.)

Ecrire un générateur produisant tous les nombres premiers supérieurs ou égaux a m.
(meN).
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Part V
DIU EIL: Récursivité

Cette partie sert de support pour le cours de Récursivité du Diplome Inter-Universitaire
Enseigner I'Informatique au Lycée (DIU EIL) que j'assure a Orléans (2019-2021). The
introduction on terminology also serves during the “Mise a niveau mathématique: Induction”
classes for third-year apprentices.

FEtudiants INSA CVL:

Le fait que vous n’en soyez pas les destinataires principaux ne doit pas vous vous empécher
d’aborder ces exercices. Certains d’entre eux — par exemple sur la mémoisation de la suite
de Fibonacci, ou les relations de récurrence linéaires — sont d’ailleurs tombés en examen.

Etudiants DIU EIL:

Les exercices marqués par & seront traités en séance, en mode TP. Si vous étes en avance,
vous pouvez donc passer a 1’exercice marqué suivant.

Ceux marqués par & seront survolés en séance, sous la forme d"un cours magistral.

Le reste peut servir de base au travail personnel, a plus long terme, et pourra étre abordé en
séance le temps le permettant.

60 A Point on Terminology

“To understand recursion, one must first understand recursion.”
— Some wise guy.

The topic is recursion. There are two other, closely related words which we shall encounter
quite often when exploring the topic: induction, and recurrence.

I find it helpful to begin by clarifying their meaning; or at least making a good attempt at
that. Unfortunately, while the general idea of what those terms mean is quite easy to grasp,
their use is not always consistent across all authors. There are also slight differences between
the English and French use of the terms, specifically for recurrence.

Thus, the definitions I give below are not to be construed as universal or authoritative; they
merely represent my best attempt at putting the concepts into neat boxes that fit most of the
literature that I encountered. Your mileage may vary.
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60.1 Recursion: self-reference, no strings attached

Recursion is the most general term. Anything that is defined with reference to itself, any
function that calls itself, directly or indirectly, is recursive. There are no restrictions on what
those self-references do, no demand for well-founded orders or base cases or termination.
The resulting object may not even be well-defined. Even when it is, it may be very “hairy”
and difficult to deal with.

60.2 Induction: well-founded structured recursion

Induction is a much more selective subset of recursion, applied to (1) recursive definitions
of sets of objects (or types), which are then said to have inductive structure, (2) definitions of
functions upon said structure, and (3) proofs — usually concerning the functions in question
— that rely on said structure.

60.2.1  Defining Inductive Types

The first class of inductive definition is a recursive definition whereby, from given atomic
objects, more complex objects are formed.

For instance, let us define the set E of arithmetic expressions by saying that any number
is an arithmetic expression, and that any two such expressions, separated by +, form an
arithmetic expression. (Use your imagination for other operators.)

We can formalise that by saying that E is the smallest set, with respect to inclusion, such that
RCE and @, ek = @o+VYeE.

Note that + here is just a symbol; we are working with the syntax of the expression. Giving
them semantics is another task.

We would instead write a formal grammar:
E - R | E+E

With R a non-terminal coding real numbers. Other communities favour a “deduction
rule”-like syntax:

TeR x €Lk yet
rek x+yek

Note that induction must proceed bottom-up ®®, constructing more and more complex
objects.

Of particular interest for us is the inductive definition of integers, often referred to as the
Peano definition:
nenN
— and ——— .
0eN n+1eN

®morally, at least; deduction rules build terms top-to-bottom, on the paper.
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Here n + 1 is not to be understood as the application of some binary operator +, but only as
a syntax for “the successor of n”. Our usual notations are shortcuts:

1=0+1
2=(0+1)+1
3=(0+1)+1)+1

To avoid any confusion, in a very low-level discussion of Peano integers we shall often use

g JREN
0eN S(n) eN

instead, with S(n) standing for “the successor of n”. Thus we have:

Then, using this unambiguous syntax, we can define a binary operator + and later show that
n+1=1+mn = 5(n), as a theorem, and henceforth the syntactic distinction can be dropped
without fear.

0 and S, or 0 and +1, are referred to as constructors, because that is what they do: they
construct new values of the type. 0() is a nullary, or atomic, constructor, it depends on no
previously constructed values and constructs. . . itself, essentially. S(-) is a unary constructor:
it takes a existing value and constructs a new one, more complex. The 0-rule is an axiom,
and the S-rule is an inductive rule.

A derivation is an application of several rules generating a value:

0eN
S(0) eN
S(S(0)) e N

g(...g(o)....)eN

Put another way;, it is a deduction of the fact that, say, S(S(0)) € N, in the inference system
defined by the construction rules.

There are many other interesting inductive types. Consider the type «f of (linked) lists of
elements of type o:

and a€x le ok
[ e ol a:leand
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Through longstanding tradition, staring with LISP, I believe, the empty list “[]” is often called
Nil, and the list constructor “:” is written Cons, because it is the seminal constructor from
which the line of thinking and the terminology presented in these pages are generalised.

Let us build an interesting list: [1, 2, 3]:

3eN [JeNt
2eN 3:0eNt
1eN 2:3:[]eNl
1:2:3:[]eNt

Here we have employed the usual notations and taken the existence of the integers as
hypotheses, but we can fully develop that proof tree using the rules of both types:

0eN
ECE
0eN S(S(0)) eN
S(0) eN S(S(S(0))) eN [ eN
0eN S(8(0)) eN S(S(S(0))): [l e NE
S(0) eN S(S(0 (0)

)) : S(S(S(0))) : [l € NI
S(0) : S(S(0)) : S(S(S(0))) : [ e NE

Interestingly, that proof tree is, visually, surprisingly evocative of a Spanish Galleon, seen in
profile. Or maybe I'm just tired.

The type of lists ol can easily be generalised to the type T of binary trees with nodes and
leaves of type o:

ac€Ex ac€Ex ti,t € xt
an
a€ ot a(ty,ty) € at

For instance, we build:

1eN 2eN
3eN l1eNt 2eNT 5eN
4 €N 3(1,2) eNT 5eNt

4(3(1,2),5) € Nt

60.2.2  Defining Functions and Operators on Inductive Types

Now that we have inductive types, what can we do with them? We can define functions acting
on objects of those types; they will follow the rules though which those objects have been
constructed, and break them down, recursively dealing with the more primitive sub-objects.

Let us assign a semantics to our arithmetic expressions:

VreR, [r] =, Ve,e' € E, [e+e'] =[e] + [e] -
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Less trivially, let us equip our Peano integers with an addition. To avoid notational confusion
between addition and successor, we shall write +(x, y) instead of the addition x +y, and
S(x) instead of the successor x + 1:

+(x,0) = x
+(x,S(y)) = S(+(x,y)) -

This is not the most trivial inductive definition on Earth, because we have two parameters.
Fortunately, in that case, using the inductive structure of either one of them, leaving the
other alone, suffices.

As an example on lists, let us define a function ¥ : R{ — R that sums the elements of a list of
real values:

=0, ZI(r:l)=r+2L.

Finally, for trees, let us define X : Rt — R that sums all the nodes of a tree:

Ya=aq, Z(a(t],tz)) =a-+Xt; +2t,.

All those belong to the second type of inductive definitions: functions acting on inductive
types, defined along the inductive structure. Note that those definitions are top-down
instead of bottom-up: you take an existing structure and break it down into smaller ones,
eventually finding an atom and stopping.

60.2.3 Implementing Such Types and Functions

There are languages that are particularly well-suited to the manipulation of inductive types
and functions, such as OCaml and Haskell. Unfortunately, we use Python in this course.

Fortunately, however, since version 3.10, Python supports structural pattern-matching: see
Sec. 23.6(p122): “Pattern matching: match. .case” and Sec. 28206 “Advanced structural
pattern matching”. Following the principles outlined in those sections, implementing those
types and functions is fairly straightforward:

class Zero: pass
Z = Zero()

@dataclass
class S:
i: object

def plus(n,m):
match n,m:
case n, Zero() : return n
case n, S(m) : return S(plus(n,m))
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60.2.4  Proving Stuff on Inductive Types

The third use of induction is in proofs that rely on inductive structures. Just as the construction
rules of the induction definition of types dictates how functions must be built, so do they
enforce the structures of proofs. For Peano integers, built by the rules

nenN

and - SieN”

0eN
we have the following inductive proof pattern, for any property P(n) of integers n € N:

P(0) ¥YneN, P(n) = P(S(n))
¥YneN, P(n) ’

(60.1)

This theorem is not arbitrary; it follows mechanically from the inductive definition of N, and
similar theorems can be derived for any other inductive type. For instance, it holds that for
every property P of o-lists, built by rules

acax leod

el g a:lexd ’

we have the inductive proof pattern

P([]) VYaea, Yie ad, P(1) = P(a:1)

2
Vle ok, P(1) (02
For binary trees «t, defined by
aex aex t1,t € at
an
a € ot a(ty,ty) € ot
we have
Yae , P(Cl) Yae , Vt],tz € T, P(t1) A P(tz) — P(a(t1,tz)) (60 3)

VYt € at, P(t)

60.2.5 General Forms of Induction

We have seen three inductive types, functions defined on them, and the corresponding
proof patterns. I have said that the proof patterns could be mechanically derived from the
inductive rules, but not how.

Let us now take a more abstract view, which will enable us to express that.

An inductive type I is defined by a finite number N € N of deduction (or construction) rules
of the form

Xk € Xy ik €I
Cr(xx,ix) €1
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where Xy is a product of non-inductive types (at least from the perspective of the type I), and
I, = I for some ny € N. That is to say, a rule has for premisses the existence of a number of
objects x and i, some of different, already existing types (X), and some of its own type (I).

A rule where i is empty, that is to say, that does not depend on previously constructed
members of the type I, are called axioms, the others are said to be inductive rules.

An inductive type must have at least one axiom.
Take a minute to see how the three types we have defined so far all fit in this framework.

Given those rules, functions defined on those types will generally be given by N lines of the
form

f(a) Ck(xk)ik)) ,

where a is a number of other arguments that do not require induction, but the definition can
of course be more complex if several arguments require simultaneous induction, or if some
require nested patterns like C;(Cj(...)).

Given the rules, the proof pattern is derived as

Vi e [1,N], Yxi € X, (Plix) = P(Clxir i)

Viel, P()

In other words, for each constructor rule Cy, we assume that, for all possible inputs of
the constructor, it preserves the property. That is, if all “smaller” elements going into the
constructor satisfy the property, then the newly constructed element does as well. As that is
true of course no matter what non-inductive elements are involved in the construction.

Note that in the case of axioms, the corresponding premise reduces to

Vxi € X, P(Ci(xx)) -

60.2.6  Aside: Induction vs. Deduction

Those of you with a background in philosophy — or with friends with such back-
ground — may come across contexts where induction is opposed to deduction.

It bears mention that, in such contexts, the word induction (inductive reasoning)
has a completely different meaning to that which is presented here.

In philosophy, where deduction means “applying general laws to a particular
case”, induction means “drawing reasonable inferences for a general law, on
the basis of particular observations”. Philosophical induction may yield wrong
conclusions even if the premises are true; deduction may not.
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Our kind of induction, which is referred to as mathematical induction in the
context of proofs, is very much a deductive process. The deduction rules
(60.1) p3ss), (60.2)(p3581, and (60.3)p355) are just that, deductions, theorems. If the
premises are true, the conclusion does follow, every time.

In computer science, there is seldom any ambiguity about which kind of induction
we use: we do not deal with philosophical induction as such. That is not to say we
never deal with imperfect knowledge or with notions of “reasonable inference”.
We do, in various fuzzy or probabilistic logics. But those are deductive systems,
where we reason deductively about our own gaps in knowledge and uncertainties,
and produce conclusions qualified by our degrees of certainty.

For instance, in Bayesian logic, let us say that P(“the Butler did it”) = .6, that
is to say, you rather believe the Butler might have done it; it’s more likely than
not.® Then it must follow, deductively, on pain of paradox, that P(“the Butler
did not do it”) = P(—~"the Butler did it”) = 1 — .6 = .4. Not .35, not .5, nothing
but .4 does it.

The contexts where you are most likely to be exposed to possible confusion
are works that define logical systems to formalise some aspects of inductive
reasoning. For instance a quick search in E. T. Jaynes’ Probability Theory, The
Logic of Science shows many uses of the word induction/inductive, a majority of
which refer to mathematical induction, but a significant proportion refers to the
philosophical notion.

Thus, as this might crop up if you read about decision theory, Al, business
intelligence, etc, it bears keeping in mind to avoid potential confusion.

Back to the topic at hand. . .

60.3 Recurrence: Induction on N

Recurrence refers to a restricted kind of recursion, whereby an integer sequence or a proof ®8)
at rank n refers to previous ranks of itself, and only to previous ranks. The Fibonacci
sequence, for instance, is defined by recurrence:

FOZO,F]:1, TL>]=>Fn:Fn_1—|—Fn_2.

Recurrence therefore simply refers to the inductive structure of Peano integers, and is
therefore a subset of induction.

®9T don’t want to make an aside in an aside (that would be too recursive) so I'll just quickly mention that
Bayesian logic deals with an agent’s (rational) belief in a proposition, not with limits of relative frequencies in
outcomes of a hypothetical infinity of trials (the “frequentist” approach).

®8)mostly in the French phrase “raisonnement / preuve par récurrence”; the English usage mostly uses “proof
by induction”.
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Figure 6: Spirale de Fibonacci

61 Les différents types de récursivité

Ecrire les fonctions suivantes, de maniere récursive:

(205) & factorial, telle quen € N = factorial(n) =n!, ou

n! = Hk = I xXx2x---Xn

On note que 0! = 1, élément neutre multiplicatif.
(206) power, telle que a € R,b € N = power(a,b)= ab. (sans utiliser ** ou pow)

(207) & fibonacci, telle que n € N = fibonacci(n) = F,, ou la suite (F,, ), est définie par
la relation de récurrence suivante: Fo =0, Fy =1, n>1= F, =F, ; +F, »>.

(208) even et odd, testant la parité d'un entier n € N.
On utilisera des définitions mutuellement récursives.
(209) ackermann, telle que m,n € N = ackermann(m,n) = A(m,n), ot
n+1 sim=0

Ammn) = ¢(A(m—1,1) sim>0etn=0

Am—1,A(m,n—1)) sinon.

Calculer a la main A(1,1). Sur machine, calculer également A(1,2), A(2,2), A(3,2),
A(4,2). Que se passe-t-il ?

Modifier la fonction de maniere a mettre en évidence tous les appels récursifs.

Nous reviendrons sur cette fonction dans la question 249.

361



(210)

(211)

(212)

syracuse (ou collatz) telle que n € N = syracuse(m,n) = S(n), ou

1 sin<i
n .

S(n) = S(E) sin=0 (mod 2)
S(3n+1) sinon.

Calculer les 100 premieres valeurs de S.
Formuler une conjecture. Tester la conjecture sur les 10° premiers entiers. ®V

# Can you think of any legitimate use for a function calling itself without modifying
its arguments in any way?

For instance:

def f(args):
. # no side effects on args
f(args)

What do you think of the list 1:

>>> 1=[1]
>>> 1.append(l)

Think about it and experiment, then read Sec. 24.2.2.4,130): “Infinitely deep lists”.

Note that some language, such as Haskell, allow infinite structure without any fuss (so
long as you do not seek to consume them exhaustively). For instance

is a licit list definition in Haskell.

62

(213)

Combinatoire amusante — et récursivité

& Les arrangements ordonnés, ou permutations, de k objets parmi n, notés Afl, sont
donnés par les formules suivantes:
AF = n = nn—-1)(n—-2)---(n—k+1) k<n
" (m—k)! S
Donner une version directe de permut (k,n) = A'Ti, en utilisant factorial, suivant la
premiere formule donnée — attention au type de retour.

PhLa preuve de cette conjecture est trop longue pour le bas de page de ce TD. Et puis elle est ouverte depuis
1937, et est considérée un des problemes les plus difficiles des mathématiques. Ca n’aide pas. :-)
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(214)

(215)

(216)

(217)
(218)

(219)

(220)
(221)
(222)

(223)

Donner une version récursive, suivant la seconde formule donnée — qui évite des
calculs inutiles.

On pourra utiliser une sous-fonction récursive, ou déduire et mettre a profit une
expression récursive de AX.

Les combinaisons non-ordonnées de k objets parmi n, notées (1), sont données par la
formule bien connue (qu’on ne demande pas d’implémenter)

n Ak n! “n— it ]
(k) Kl K —k)! 1:1[ i m
On rappelle également la formule du bindme de Newton:

(X+y)n — Z(z)xkyn—k — Z(E)Xn—kyk.

k=0 k=0
Utiliser le théoréme du bindme et I'identité évidente
(T+x)"=14+x)"""(1+x)

pour trouver une expression récursive de (). On pourra aussi procéder par dénom-
brement combinatoire, en isolant un élément et en comptant les cas ot il est pris ou
laissé. On peut aussi connaitre la relation de Pascal par cceur, mais c’est moins drole.

Utiliser cette expression pour écrire une fonction binom telle que binom(k,n) = (L‘)
Dessiner l'arbre des appels pour (3).

Prédire 'ordre et le nombre des appels récursifs. Indication: en Python, les opérandes
d’une addition sont exécutées dans l'ordre: i.e. pour x + y, x est calculé avant y.

Modifier binom de maniére & vérifier cette prédiction.

Quels sont les types d’opérations élémentaires réalisées par binom(k,n) ? Dénombrer
le nombre d’instances de chaque type d’opération durant I’exécution de binom(k,n),
et en déduire la complexité en temps T(k,n), que l'on exprimera comme un ©
d’une expression simple. (On utilisera le modele de cotit uniforme: les opérations
élémentaires ont toutes le méme cofit).

Quelle est la complexité en espace de binom(k,n) ? On pourra attendre d’avoir traité
la question (239)pz67)-

Aprés avoir complété la question (247) (370, mémoisez binom a ’aide d"un décorateur.
Quelle est la nouvelle complexité en temps de binom, apres mémoisation ?
Quelle est 1a nouvelle complexité en espace de binom, aprés mémoisation ?

GOTO q (249) [p370]

363



63  Tris et récursivité

Vous avez déja vu des tris itératifs en O(n?) en moyenne et dans le pire des cas. Les meilleurs
algorithmes de tris, utilisés en pratique, sont basés sur des procédés récursifs. Les deux
principaux sont traités ici. On peut aussi mentionner le tris par tas, ou heapsort.

(224) Ecrire une fonction dicho telle que dicho(e, 1) soit équivalenta e in 1,silest une
liste triée. On procédera par recherche dichotomique, et on utilisera des slices pour
créer les sous-listes dans les appels récursifs.

(225) Ecrire une nouvelle version de la recherche dichotomique, telle que dicho(e,1,a,b)
effectue la recherche entre les indices a et b, inclus, et retourne None si e ¢ 1, et un
indice k tel que e = 1[k] sinon.

(226) & Le tri rapide, ou quicksort, de complexité moyenne O(nlogn), pire des cas O(n?),
repose sur les observations suivantes, en notant Tl un tri d"une liste 1:

o La liste vide [] est déja triée: T[] = [].
o Toute liste singleton [e] est déja triée: Tle] = [e].

o Soit une liste [p, eq, ..., e,]; alors la liste
tley [es <pl + [pl + tlei| ey > pl

est triée, et contient les mémes éléments que 1. On appelle p le pivot.

Donner une fonction gsort qui renvoie une version triée de la liste passée en argument.
On n’hésitera pas a utiliser la syntaxe en compréhension de Python, cf. Sec. 24.55;57;:
“Comprehension expressions”.

Exemple: [2%i for i in range(5) if i != 2] renvoie [0, 2, 6, 8].
On pourra également utiliser le packing * pour décomposerlaliste: p, *1 = [p, ej,..., en]
donnep =eetl = [er,...,e,]. Voir aussi l'unpacking, question 238. Pour plus de

détails, voir Sec. 24.6,1¢5): “Packing and unpacking”.

(227) Ecrire une fonction merge permettant de fusionner deux listes déja triées en une
nouvelle liste triée. On procédera par induction structurelle sur les listes.

Note sur les listes: ce que Python appelle “listes” correspond classiquement plutot a
des tableaux dynamiques. Une liste classique est définie inductivement comme étant
soit

o la liste vide []

o un doublet (e, 1) contenant un élément e (le “premier”) et une liste 1 (le “reste”)
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La liste [1, 2] est donc classiquement construite comme (1, (2, [I)). L'implémentation
classique est la liste chainée, une structure contenant un élément et un pointeur vers
une autre liste — ou la méme liste, si on veut une liste infinie.

Méme si cette structure inductive ne correspond pas a celle implémentée par Python,
il est utile de la garder a I'esprit pour écrire des algorithmes récursifs sur les listes. On
pourra écrire 1[0] pour le premier élément, 1[1:] pour le reste (ou utiliser le packing),
[e]+1 pour ajouter un nouvel élément au début, et enfin tester si la liste est vide avec
if 1ouif not 1.0V

(228) Le tri fusion, ou merge sort, de complexité moyenne et pire des cas O(nlogn), repose
sur le principe suivant: pour trier une liste, on la coupe en deux morceaux de tailles
égales (+1), on trie chaque morceau, et on les fusionne. Ecrire une fonction msort qui
réalise cela. Il va sans dire qu’on devra utiliser merge.

64  Les tours de Pizzanoi

Il est dit qu’au commencement du temps, le Monstre Spaghetti posa trois pieux, et empila
soixante-quatre délicieuses pizzas (imputrescibles et indestructibles jusqu’a nouvel ordre)
de diametres décroissants sur le premier pieu.

Et en vérité il dit aux moines affamés: “Vous pourrez manger les pizzas lorsque vous les
aurez transférées, une par une, sur le troisieme pieux. Mais sachez-le, vous ne devez poser
une pizza que sur un pieu vide, ou sur une pizza plus grande. Pourquoi ? Parce que.”

Les moines ronchonnerent et rumineérent et réfléchirent et résolurent le probleme pour de
petits nombres n de pizzas; par exemple pour n = 2:

etn =3:

®)Dans le contexte d"un test, Python traduit une valeur non-booléenne en booléen selon le principe: “si c’est
vide, c’est faux, sinon vrai”. if 1,if len(l) > 0,etif 1 != [] sont donc presque équivalents. La différence
est que les deux premiers tests seront faux pour un tuple ou un dictionnaire vide, alors que le troisieme sera
vrai. if 1 est donc la fagon la plus agnostique du point de vue du type de tester si une structure conteneur est
vide.

For more information, cf. Sec. 22.6.5(,105): “The semantics of and and or, & implicit Boolean conversion”.
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(229) & Pour quelles valeurs de n le probleme admet-il une solution ?
Donnez un algorithme récursif.

(230) & Lorsque le probléme admet une solution, donnez une borne supérieure T, au nombre
d’opérations nécessaires, exprimée par une relation de récurrence.

(231) & Montrer que la borne supérieure est aussi une borne inférieure — du moins si vous
avez trouvé la bonne solution.

(232) & Donner une forme close de T,,, par toute méthode appropriée.

(233) En comptant en moyenne 10 secondes pour déplacer une pizza d"un pieu a l'autre,
dans combien de temps les moines pourront-ils passer a table ?

(234) Ecrire un programme Python pour générer et représenter les étapes de résolution du
probléme.

65  Suite de Fibonacci: piles & mémoisation (™
Soit la fonction suivante, qui implémente la suite de Fibonacci:

FOIO, F]=1, n=2 = Fn:Fn—]+Fn—2-

def f(n):
print("call f", n) # afin d’imprimer une trace des appels recursifs
return n if n <= 1 else f(n-1) + f(n-2)

Note: closed form

It will be useful in some of the following questions to keep the rate of growth of
F, in mind, which is clearer when seeing a closed form. Let

1+ 5

= 5 ~ 1.6180339887...

be the famous “golden ratio”; then we have
n

-

®)Non, I’absence de “r” n’est pas une typo.

}, forn >0,
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where [x] stands for “round x to nearest integer”. In fact, asn grows the rounding
error becomes vanishingly small.

Of course there are other closed forms, without any rounding or truncation, but
this one is the simplest, and serves well to illustrate the relevant fact: F,, increases
exponentially in 1.

65.1 Arbre, pile, et nombre d’appels

(235) & Sans utiliser la machine, prédisez ce que va afficher Python lorsqu’on exécute
print(£(5)).

(236) Soit C,, le nombre total d’appels a f lors du calcul de f(n) —i.e. , le nombre de lignes
“call” affichées. Exprimez C,, par une relation de récurrence.

(237) Exprimez la complexité en temps de calcul de £(n) comme un () d’une expression
simple, et en déduire qu’il est (au moins) exponentiel.

(238) & Simulons la pile® d’appels avec le code suivant:

stack = []

def fstack(n):
stack.append(n) ; print(*stack)
r =n if n <= 1 else fstack(n-1) + fstack(n-2)
stack.pop() ; print(*stack)
return r

print (fstack(3),stack)

Sans utiliser la machine, écrire ce que Python afficherait si 1’on exécutait ce code.

Note: I’* dans print (*stack) correspond ici simplement a un unpacking, ot les élé-
ments d’un itérable sont passés en argument de la fonction. Le code print(*[1,2,3])
correspond a print (1,2, 3) et produit I’affichage 1 2 3. Voir Sec. 24.6(p163: “Packing
and unpacking” pour plus de détails.

(239) Quelle est la profondeur maximale de la pile d’appel au cours de 'exécution ? En
déduire la complexité en mémoire de f£(n). On peut maintenant traiter la question 219.

65.2 Msémoisation: vers la programmation dynamique

La grande complexité en temps vient de ce que les mémes calculs sont effectués de trés
nombreuses fois. On veut rendre la fonction plus efficace, spécifiquement pseudo-linéaire ®?,

K Une pile - pensez a une pile de copies a corriger — est une structure de données suivant la discipline LIFO
(rien a voir avec le Laboratoire d'Informatique Fondamentale d’Orléans; cela signifie Last In, First Out). On
peut déposer un élément sur la pile, ou retirer I'élément sur le dessus de la pile. Et c’est tout.

®)_ .. c’est a dire linéaire en la valeur de I'entrée, par opposition a linéaire en la taille du codage de 'entrée, ce
qui est la vraie mesure de complexité algorithmique.
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en mémorisant les résultats des calculs déja faits. On utilisera a cette fin un dictionnaire.

A chaque appel, la fonction vérifiera si le résultat est déja précalculé dans le dictionnaire;
s’il y est, elle renvoie cela directement au lieu de refaire le calcul; sinon, elle fait le calcul et

ajoute ce nouveau résultat au dictionnaire avant de le renvoyer.

Ceci décrit le principe général de la mémoisation — on se laisse des memos, ou memoranda,
“choses qui doivent étre retenues”, des calculs précédents.

(240)

(241)
(242)

(243)

& Ecrire une nouvelle version de la fonction (en partant de la version précédente)
suivant ce principe; on complétera le code suivant

{}

memo =

def ff(n):

print("call f£f", n, memo)

Lorsqu’on invoque print (££(5)) deux fois de suite, on doit obtenir

call £f£f 5 {}

call ff 4 {}

call ff 3 {}

call ff 2 {}

call ff 1 {}

call ££ 0 {1: 1}

call £ff 1 {1: 1, 0: 0, 1}

call ff 2 {1: 1, 0: 0, 1, 3: 2}

call ff 3 {1: 1, 0: 0, 1, 3: 2, 4: 3}

5

# second call

call ££ 5 {1: 1, ®: O, 2: 1, 3: 2, 4: 3, 5:
5

& Explain this call trace by means of a traversal of the call tree.

& L'utilisation d"un dictionnaire limite-t-elle I’applicabilité de la méthode de la question
précédente a d’autres fonctions que Fibonacci ? Est-ce une restriction inhérente au
principe de la mémoisation ou contingente a nos choix d’implémentation ? Dans ce
dernier cas, y a-t-il des alternatives ? Quelles propriétés seraient changées ?

On veut encore une autre implémentation pseudo-linéaire de la suite de Fibonacci,
encore plus élégante et rapide, tenant compte du fait qu’il s’agit du cas particulier
d’une suite récurrente linéaire. L'idée est que nous n’avons besoin que des deux
derniéres valeurs, et que nous pouvons donc transformer la récursivité double sur une
valeur en une récursivité simple sur un doublet.

Complétez le code suivant

def fff(n):
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print("call ff£f", n)
if n == 0:
return (0,1)

de maniere a ce que fff(n)[0] = f(n), pour tout n € N. Lorsqu’on invoque
print (£££(5) [0]), on doit obtenir

call fff
call fff
call fff
call fff
call fff
call fff
5

S~k N W U

65.3 Foncteurs et décorateurs de mémoisation

Python supporte les fonctions d’ordre supérieur, c’est a dire les fonctions qui prennent en
argument ou renvoient des fonctions. Nous nous intéressons ici aux transformations fonction
vers fonction. On parle parfois de foncteurs ou, dans le cas de Python, de décorateurs.

(244) Ecrire un décorateur memoize, tel que pour toute fonction monadique f d’argument
mutable, memoize (f) renvoie une version memoizée de f. En exécutant

f = memoize(f)
print (£(5))
print (£(5))

on doit obtenir

call
call
call
call
call
call
5

5

H Hh HFh Hh Hh Hh
S L N W h U

(245) Commenter le code de test précédent, et le remplacer par

g = memoize(f)
print(g(5))
print (g(5))

Obtient-on la méme chose ? Pourquoi ?
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(246)

(247)

(248)
(249)

Alerte: Autant certains aspects de la programmation — par exemple la sémantique
d’un if - relevent dans une grande mesure du sens commun ®™ et sont transposables
d’un langage a l’autre, voir d'un paradigme a 1’autre, autant certains peuvent varier et
étre assez subtils.

En I’occurrence, le comportement de memoize dépend de certains choix de language
design: clotures lexicales & portées lexicales ou dynamiques, espaces de noms mutables
ou immutables, ... qui seront mieux compris avec de 'expérience sur plusieurs
langages différents. Ne passez donc pas trop de temps sur le “pourquoi ?” pour
l'instant.

& Commenter (ou écraser) la définition de g de la question précédente, et tester le code
suivant:

@memoize
def g(n):
print("call g", n)
return n if n <= 1 else g(n-1) + g(n-2)

En déduire comment Python interprete ’annotation @memoize et pourquoi on parle de
“décorateur”.

Nous avons supposé pour l'instant que la fonction & mémoiser f est monadique.
Altérez le décorateur memoize de maniére a ce qu’il supporte toute fonction variadique
d’arguments non-mutables.

Indice: utilisez le packing (q. 226) et 'unpacking (q. 238). Dans le corps d'une
définition de fonction def £(*x), x est le tuple des arguments passés a la fonction.
Voir Sec. 24.6(51¢5): “Packing and unpacking” pour plus de détails.

GOTO q. 220.

Appliquez maintenant le décorateur memoize a la fonction ackermann de la question 209.
Comme binom, c’est une fonction a deux arguments entiers. Obtient-on les mémes
gains de complexité ? Pourquoi ?

66

Dynamic Programming for Difference Equations

The Fibonacci sequence is only the best known instance of a much larger class of equations
know as linear recurrence relations, or linear difference equations ™.

tmEt encore, méme pour le if il convient de distinguer les instructions des expressions conditionnelles. . .
) Note to be confused with differential equations, of course.
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A linear recurrence relation with real coefficients of order K is an equation of the form

K
Un = Clo+§ AiUn_i,
i=1

where ao,...,ax € R, ax # 0. At least K initial values must be provided to define a function
N — R.

When a, = 0, it is said to be homogeneous.
(250) & Can any linear difference equation be memoised?

(251) & Dynamic programming refers to the general idea of solving a complex problem
recursively by breaking it down into simpler subproblems. If an optimal solution can
be found by combining the optimal solutions of the subproblems, then the problem is
said to have optimal substructure, and is well-suited for the approach.

Memoisation can be thought of as a top-down approach to dynamic programming;:
the problem is broken down and, at the final steps of the recursion, the values are
calculated and stored.

Can you imagine what a bottom-up approach would look like? Apply this intuition to
provide a linear implementation of the following function, without using recursion.

def lin_diff_eq(n, init, *a):
"""This variadic function returns the list of the n first terms
of the linear recurrence relation

£(0) init[0], ..., f(m) = init[m],
f(n) = a[0]*f(n-1) + a[l]l*f(n-2) + ... + al[k-11*f(n-k) + al[k]
, for n > m

where k = len(a)-1 and m = len(init)-1. If init is too small,
an AssertionError should be raised.

For instance, lin_diff _eq(10, [0, 1], 1, 1, ®) corresponds to
the first terms of the Fibonacci sequence

f(0) =0, £(1) =1, £f() = f(n-1) + f(n-2), for n >= 2

Furthermore, an *efficient* implementation, in O(n) time, is required.

Here are a few test cases; let us start with our good friend Fibonacci:

U =0, u; =1, Uy=up 1+uUy 2

>>> lin_diff_eq(10, [0, 1], 1, 1, 0)
[, 1, 1, 2, 3, 5, 8, 13, 21, 34]
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Let us check the efficiency of our function by computing 1999, an impossible feat with
a naive implementation:

>>> round(logl®(lin_diff_eq(1000, [0,1], 1,1,0)[999]))
208

Now for a non-homogeneous variant of Fibonacci, which is relevant for a question in
another exercise (but I'm not telling you which one!):

U =0,y =1, u,=up 1+u, >+1

>>> lin_diff_eq(10, [0, 1], 1, 1, 1)
[6, 1, 2, 4, 7, 12, 20, 33, 54, 88]

A simple geometric sequence:

w =1, up=2u, q

>>> lin_diff_eq(10, [1], 2, O)
[1, 2, 4, 8, 16, 32, 64, 128, 256, 512]

and a staggered, order 2 variant:

u=0,u; =1, u,=2u,

>>> lin_diff_eq(10, [0,1], O, 2, O®)
[6, 1, ©, 2, O, 4, 0, 8, 0, 16]

Finally, an order 4 variant of Fibonacci:

=0, =1u=0,u3=0, Up=Un 1+Uy 2+ Up 3+ Uy 4

>>> lin_diff eq(18, [0,1,0,0], 1, 1, 1, 1, 0O)
[6, 1, ®, ®, 1, 2, 3, 6, 12, 23, 44, 85, 164, 316, 609, 1174, 2263, 4362]

Note for mathy types: The ultimate implementation would of course solve the equation
into a closed form, which is always possible in the linear case, but (1) requires quite a
bit of legwork (and specialised knowledge) and (2) won’t work in the non-linear case,
as non-linear difference equations are often unsolvable (they have no closed form).

(252) & Our difference equations have two major restrictions: the coefficients being constants,
and the linearity of the recursive expression. The first prevents us from dealing with,
for instance, the factorial sequence:

fO:]) fn=nfn_1,
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and the second excludes very important sequences, such as the logistic map, which is
a quadratic difference equation:

Xne1 = Txn(l—x%n). (66.1)

Do you think those restrictions are important for our application of dynamic program-
ming?

An aside on the logistic map:

Consider a population P. At what rate does it grow over time? Given
unlimited space and resources — that is to say, whatever pressures are at
play to encourage reproduction or death do not depend on the population
— the average offspring per capita and death per capita will boil down to
a constant v, which means that the growth is proportional to the current
population, and we have

dpP _
dt

which solves into

Pr,

P(t) = Poe”

Where P, is the initial population. This is the Malthusian (Thomas Robert
Malthus, 1766-1834) model of population, which is quite restrictive since it
boils down to either one of three behaviours: unlimited exponential growth
ifr > 0, eventual extinction if v < 0, or endless stagnation if r = 0.

Let us now assume, as did Pierre Francois Verhulst (1804-1849), that there are
other forces at play — limited resources — so that the greater the population,
the lesser its growth rate. More specifically, let us say that each new individual
in the population increases everybody’s mortality by some amount s. We
obtain

clP
dt

which can be rewritten (rescaling P by *) in the more convenient form

=P(r—sP),

dp

dt
What is the connection between this differential equation and the quadratic
difference equation (66.1)?

TP(1—-P).

As humans, we are used to the idea of population growth happening
continuously, as our generations overlap. That is not true of all species.
Consider an insect population that breeds then dies, leaving eggs which
hatch much later — an example of this is Dawson’s burrowing bee.
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Parents never live to meet their offspring, generations are nonoverlapping.
In that case, growth still happens, but in discrete steps: P is a sequence,
where P, represents the population at generation n. We have, for unlimited
ressources, an equation of the form

PTI—I—] = TPn o

Though we adjusted the meaning of the constant for the sake of simplicity —
our 1 here would intuitively correspond to 1 + 1 in the continuous version —
the same arguments as before apply, leading to

Pn+1 = Pn(r - SPn) ’

and, by taking x,, = 3P, to equation (66.1) again.

The logistic sequence not only models real-world populations very well, but
it also exhibits extremely interesting, unintuitive behaviours which are, sadly,
out of the scope of this course.

Let us just note that it is quite chaotic for some values of r, to the extent that
is was used as a very simple pseudo-random numbers generator in early
computers — though it is not quite up to modern standards for that use case.

The logistic map therefore stands as a good introduction to the basic obser-
vation at the heart of chaos theory: the fact that non-linear systems, though
simple to define, can have extremely complex and unpredictable dynamic
behaviours, and that this is every bit as true for discrete recurrence relations
as it is for continuous differential equations.

Of course, equation (66.1) cannot even be solved — that is to say, expressed
as a non-recursive, closed form — except for some few fixed values of r. I
believe the only closed forms are forr € { —2,2,4}.

(253) & In all generality, a recurrence relation of order k*® is an equation of the form
U, =@M, un 1,Un 2,...,Uy ) with n>k,
where ¢ is a function of type N x S* — S for some set S. Given at least k initial values,
this defines a functionu: N — S.

Give a general dynamic programming implementation of recurrence relations as a
function of the form

recrel(n, init, ¢, k=None)

(b9 Also often called simply a difference equation. This usage can be ambiguous, though, as some authors
apply the term difference equation exclusively to some specific forms of recurrence relations, involving differences
of successive terms in a sequence. In this document, I subscribe to the more general terminology.

374



that efficiently yields the list of the first n elements of the sequence, given a list init of
initial values, and ¢ as above. We shall assume that init contains exactly k values,
which enables the function to determine the order without needing to analyse the
arity of @ ®P). Otherwise, the order of the relation must be passed explicitly as the
parameter k.

Let us try it on a few interesting relations. . . First, the factorial equation
fo=1, fan=nfa
becomes:

def rr_fac(n,u): return n*u

>>> recrel( 10, [1], rr_fac)
[1, 1, 2, 6, 24, 120, 720, 5040, 40320, 362880]

The Fibonacci sequence:

def rr_fib(n,u,uu): return u+uu

>>> recrel( 10, [0,1], rr_£fib)
[6, 1, 1, 2, 3, 5, 8, 13, 21, 34]

A quadratic variant of the Fibonacci sequence:

Fo=0,Fi=1, n»2 = F,=F_,+F_,.

def rr_fibs(n,u,uu): return u**2 + uu**2

>>> recrel( 10, [0,1], rr_£fibs)
[6, 1, 1, 2, 5, 29, 866, 750797, 563696885165, 317754178345286893212434]

And finally, the logistic map. Since the logistic map has a parameter, we have to be
careful with the signature of ¢. We cannot include r as a parameter of ¢ itself, as that
would confuse recrel. The solution is to use a higher-order function:

def logistic(r):
return lambda n,u : r*u*(1l-u)

which would admittedly be much more elegant in a language supporting currying ®9,
such as OCaml or Haskell, but hey, you do with what you got, as they say.

We can play with different values of  to exhibit some of the sequence’s fun behaviours:

®P)This could be done using inspect.getargspec, but playing with introspection is not the goal of this
exercise.

®dCurrying is a way of reducing functions with multiple arguments into unary higher-order functions. That
is, the correspondence between f : X X Y — Z and its curried version f' : X — (Y — Y). Functional languages
of the ML family handle multiple arguments that way.
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# two values oscillation

>>> list(map(lambda x:round(x,1), recrel( 10, [.99], logistic(3) ) ))
[1.0, 0.0, 0.1, 0.2, 0.5, 0.7, 0.6, 0.7, 0.6, 0.7]

>>> list(map(lambda x:round(x,1), recrel( 10, [.3 ], logistic(3) ) ))
[0.3, 0.6, 0.7, 0.6, 0.7, 0.6, 0.7, 0.6, 0.7, 0.6]

# four values oscillation

>>> list(map(lambda x:round(x,1), recrel( 10, [.01], logistic(3.5) ) ))
[0.0, 0.0, 0.1, 0.4, 0.8, 0.5, 0.9, 0.4, 0.8, 0.5]

# chaotic behaviour
>>> list(map(lambda x:round(x,2), recrel( 100, [.01], logistic(3.99) ) ))
[0.01, ©.04, 0.15, 6.51, 1.0, 6.01, 0.65, 0.19, 0.6, 0.95, 0.18, 0.58,

., 1.0, 0.01, 0.05, 0.18, 0.58, 0.97, 0.11, 0.4, 0.96, 0.16]

(254) & Can you apply recrel to the Ackermann function (209)p361)?

(255) & Can you apply recrel to the Collatz function (210)p362)?

67 Dél‘éCUI‘SiVﬁtiOl‘l — si, si, c’est un mot, ca.

Tout algorithme récursif peut se réécrire de facon itérative, a 1'aide d'une pile (et vice-versa).
En pratique, c’est comme cela que nos programmes récursifs tournent sur machine: la pile
d’appel gere les appels récursifs.

Sil'on en ressent le besoin — par exemple si ’on écrit un compilateur, ou si l’on se trouve
limité pas des problémes de stack overflow ® — on peut donc “dérécursiver” un algorithme.

67.1 Récursitivé terminale

Le cas le plus intéressant est celui de la récursivité terminale, ou tail recursivity — tailrec. Une
fonction est récursive terminale si elle n’effectue aucune opération apres un appel récursif.

Dans ce cas, on peut tres facilement éliminer la récursivité. En effet, comme on n’a jamais
besoin de revenir a un contexte d’exécution antérieur, gérer une pile d’appel est inutile.

Notons que de nombreux compilateurs détectent la récursivité terminale et effectuent cette
transformation automatiquement. C’est en particulier le cas de tous les langages fonctionnels,
tels que OCaml, Haskell, Lisp, Scheme, et cetera. Ce n’est malheureusement pas le cas de
Python.

De maniere abstraite, un algorithme récursif (simple) est de la forme suivante, en pseudo-code
style Python:

®IEn Python, on peut augmenter “a I'arrache” la taille du stack par, e.g. , sys.setrecursionlimit(99999).
Dans d’autres langages ¢a peut étre géré au niveau de 1'OS.
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def A(x):
if C: I ; A(tx) ; F
else: T

<

A est l’algorithme sous considération

<&

x est 'argument — ou la liste des arguments — de A

&

C est une condition portant sur x

¢ T est une transformation des arguments

o I, K, T sont des traitements, initial, final, et terminal, dépendant de x.
Pour se simplifier la vie, on supposera que C, I, F, T, T ne font pas d’appels a A.
Si F est vide, alors l'algorithme est récursif terminal, et est équivalent a
def A(x):

while C: I ; x:=1x
T

(256) & La fonction factorial de la question (205)361) est-elle récursive terminale ?
Pourquoi ? Réécrivez-la pour mettre sa structure C, I, F, T, T en évidence.

(257) & Transformer factorial de maniere a effectuer le traitement des données dans une
sous-fonction récursive terminale.

(258) & Réécrivez la sous-fonction pour mettre sa structure C, I, T, T en évidence.

(259) & En appliquant la transformation générale donnée dans cette section, dérécursiver la
sous-fonction.

(260) & Intégrer la sous-fonction dans le corps de la fonction.

67.2  Récursitivés complexes: simuler la pile d’appel

Lorsque les récursivités sont trop complexes pour pouvoir étre transcrites en récursivités
terminales de cette maniere ®¥, il faut simuler les appels récursifs a ’aide d’une pile. Une
autre facon de voir les choses est que la récursivité n’est qu'une écriture astucieuse d’'un
empilement.

Quoi qu’il en soit, en pratique, lorsque votre programme récursif tourne sur un ordinateur,
c’est en réalité un algorithme itératif utilisant une pile qui s’exécute, la récursivité n’étant
pas une caractéristique primitive des architectures matérielles actuelles (ou passées).

()] existe une approche générale pour tout convertir en récursivité terminale: Continuation-Passing Style.
Il s’agit d'une technique avancée de programmation fonctionnelle, souvent utilisée dans les compilateurs.
Comme sa petite cousine impérative, Single Static Assignment (Form), elle est rarement utilisée directement
par un programmeur.
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La version dérécursivée avec une pile de I’algorithme A, non récursif terminal, est comme
suit:

On définit new et end, deux symboles distincts, indiquant si I'on empile le début d"un nouvel
appel, ou le retour d’un ancien.

def A(X):
if C: I ; A(tx) ; F
else: T

devient

def A(x):

calls = [new,x] #pile d’appels.
ret = None # valeur de retour
while calls:
X = calls.pop() # on recupere les arguments de 1’appel
state = calls.pop()
if state == new: # nouvel appel; on traite le debut de A
if C:
I
calls.extend((end,x))
# quand on aura fini 1’appel recursif qui suit,
# il faudra terminer cet appel: il reste F
# On stocke le contexte d’ex\’ecution
# ici, le parametre de la fonction
calls.extend ((new,Tx))
# On lance un nouvel appel A(tx)

# les return sont traites
# comme une affectation a ret
elif state == end: # fin d’ancien appel a terminer
F # meme remarque que pour T
return ret

(261) & Dérécursiver la fonction factorial de la question 205 en utilisant le patron ci-dessus.

(262) & Que faire pour les récursivités multiples, mutuelles, ou imbriquées ?
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Part VI

Python Project 2025-2026: MedievAll
BAlttle GenerAll

pyproj2526_generail.tex WORK IN PROGRESS !
Short version: implement a medieval battle simulator capable (hopefully) of sophisticated tactics.

The context in a nutshell: Age of Empires (2) (AOE) is a medieval-themed RTS (cf. Sec. 743991
“What is an RTS / AoE?”). I'm rather fond of it, both as a game and as an bottomless well of
ideas for Python projects. Although 2021 and 2024’s projects *" were also inspired by AOE,
all three have different focuses and present very different challenges. You won’t gain much
from reusing code from last year.

68  Scope of the project

Whereas previous projects covered both economic and military aspects, with and without
user interaction, with the goal of imitating a small subset of AOE, this year’s goal is to focus
exclusively on Al battles, without any user interaction, base building, economy, or unit
production, and to exceed the performance of AOE in that regard. Basically you will write
artificial generals, give them command of equal armies, and may the best AI win.

The AOE Al is terrible in this regard.

The principle of AOE is to balance the player’s attention between building an economy
(villagers gathering resources and erecting buildings), training an army (units produced
from specific buildings, at the cost of time and resources), and managing the armies in battle.

The Al in AOE is simultaneously absolutely godlike and utterly pathetic.
It is godlike, because it always pays attention to everything at the same time.

A human player is doing one thing at a time. When he is micromanaging a battle, he is
not reassigning his villagers towards new resources and rebuilding his base that just got
destroyed and building a new military complex to prepare for the switch to a different kind
of unit that counters the enemy’s.

The Al is always micromanaging each of its (up to 200) units at all time. If you give the Al
infinite resources and instant construction and conscription time, it can and will turn three

®PYSec. VI p399: “Archived Python Project 2024-2025: Alge of EmpAlres”, Sec. XIjps4): “Archived Python
Project 2021-2022: Age of Cheap Empires”
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villagers into a heavily fortified base covering half the map and spewing a constant stream
of hundreds varied units in twenty seconds flat. And while it’s doing all that, if you fire an
arrow at some random villager, it will casually move the villager to sidestep the arrow.

It is also programmed to implement the optimised openings developed by the expert players
of AOE2 over 25 years.

It is pathetic, because the massive armies which its economy can sustain are usually streamed
as a constant diarrhoea of units spewed in utter disorder at whichever point it’s decided to
attack, with complete disregard for common sense and survival, let alone tactics.

Combat in AOE is a game of counters; almost of rock-paper-scissors.

Cavalry counters archers, because it’s fast, tanky, and hits hard, so it charges, gets up close
and massacres the squishy archers. Infantry counters cavalry, because they’re cheaper, so
you have more of them. Archers counter infantry, because they aren’t too tanky and are
quite slow and take a lot of damage before getting close.

It gets more complicated, because there are many types of units within those categories,
each with different HP, armor (melee or pierce), and bonus damage.

For instance, pikemen are a very weak infantry unit generally, but they do massive extra
damage against cavalry.

Skirmishers are very weak archer-like units, but they have high pierce armor (defending
against arrows) and do high bonus damage against all archers (and some against pikemen).

Add to that micro-management of units. Do pikemen counter cavalry archers?
If the player with the cav archers is not controlling them at all, he’ll be wiped out in seconds.

If he is paying attention and just uses hit and run tactics, all pikemen will die without
landing a single hit. Having 1000 pikemen against one cav archer won’t change that. It just
takes longer. That'’s the entire point of having cav archers, whether in the game or in real life.

Add in all there considerations, and an AOE battle involves many moment to moment
tactical considerations, especially with regards to battle formations and positioning generally.
The goal is to manoeuvre the battle in such a way as to have the right type of soldier dealing
with the right type of enemy, even if you sometimes have to sacrifice some of your army to
move counter-units out of position.

The Al does not do any of that; it will send a skirmisher alone against a castle, to die instantly
without doing any damage; and the next one 15 seconds later; and the next ones indefinitely.
It will not use battle formations, though that is an AOE feature.

You will do better.
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69 Requirements

(1) The game takes place on a map, which is a grid of size N x M tiles. The absolute
minimum size you must be able to handle is 120 x 120, which corresponds to a “tiny”
map in AoE2.

(2) Battle scenarios.

Your battle engine will take as input a battle scenario, which is to say a map with
military units and defensive structures placed on it for each of the two players.

I have little interest in asymmetric battles. I want to see the clash of different tactics,
not of different armies.

In fact I strongly advise you to define your scenarios by populating half the map, and
mirroring that for the other player.

I have no interest in scaling up to N players in this project.

You should be able to handle armies in the 100-200 units range; plus a few buildings if
you implement those.

Scenarios should play out very fast (2min max at human-compatible speed); don’t
position the armies very far from each other; but still far enough that the general has
time to get his army in whichever formation he wants before the engagement begins.

(3) Programmable Scenarios and Lanchester’s Laws.

You should make your battle scenarios by programming them. Do not make a visual
map editor. A map/scenario is defined by a script that places units on the grid. It
should take parameters, for instance, the number of soldiers.

You will make (at the very least!) a Lanchester(type, N) scenario for the purpose of
testing Lanchester’s Laws ®%.

type is the type of units to create (melee or archer type)
N is the base number of units: you will pit N soldiers against 2*N of the same soldiers,
within range of each other.

By varying N, you'll see (and graph, more in the CLI section) how the losses correlate
with N for both types of units. If Lanchester’s laws apply, you should get very different
curves depending on unit type.

(4) Generals.

CWhttps://en.wikipedia.org/wiki/Lanchester’s_laws
https://cgsc.contentdm.oclc.org/digital/api/collection/p4013coll3/id/1786/download
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Your program will also take as input a type of Al (a “general”), who commands its
army.

You will have at least two generals.
Victory = destroy target building (wonder) first OR kill all enemy units.
a. Captain BRAINDEAD.

The good captain has just come back from a successful lobotomy. He is in no state
to give any order.

Units on the field will still attack take individual action, attacking units within
their line of sight and fighting back against an attack, but they will not seek out a
tight if left alone.

Basically, zero tactical Al
b. Major DAFT.
His name stands for. .. itself. .., and Dumb-As-Fuck-Tactician.

Major DAFT will command all of his army to attack the nearest enemy with
absolutely no further consideration.

The difference with Cpt. BRAINDEAD is that units will actively seek out targets
and get back into the fight.

Needless to say, those exist just to make anyone else look good.

Impressively, the AOE Al manages to consistently lose to both of them in my little test
scenario. I will demonstrate this to you during the project’s introductory lecture.

You will do better. I hope. You will program other generals, ideally capable of using
unit formations, exploiting counters, using hit-and-run, interceptions, feints, and
sacrifices. I'm less interested in dodging micro (arrows, onagers shots), but it’s also an
option.

Concretely, your final version should probably have one central Al program, and each
of your generals should be defined by a few parameters, activating some features
(e.g. micro) or changing the weight of different incentives. The alternative risks huge
code duplication.

That said, during development you should also be able to pit successive versions of
your general against each other, so make sure to structure in such a way that this can
be done.

No general will play “keepaway” indefinitely. Even if he sees no path to victory, he
will send his last men on a suicide attack.

(5) Automated battle tournament.
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(6)

You should have a way to automatically pit your generals against each other and score
their relative strengths.

You select the participating generals (by default all available functional ones) and the
scenarios (by default a selection of pertinent scenarios), and launch the tournament.

Once the tournament is launched, it is fully automatic. For each scenario, and each
pair of generals, it runs the scenario a set number of time (alternating competitors’
positions / player number by default) and records victories (draws if takes too long,
which should be see as a problem and fixed!).

The tournament will generate a document (HTML, PDE...) listing outcome and stats,
with score matrices:

a. General score for each general across all opponents and scenarios (in percent of
victories)

b. General vs General, across all scenarios.
¢. One version of above for each scenario

d. General vs Scenario, across all opponents (would be interesting if a general had
inconsistent performance across scenarios)

Do not exclude reflexive matchups (X vs X): if you don’t get roughly 50% everywhere
(with enough matches), when not alternating positions, it means you have a bug that
favours one “player” over the other.

See also the section on CLI syntax.
Mechanics, Units, and Structures.

This is not a game design course, so we will just reuse the mechanics and exact stats
from AOE. The AOE wikis and other websites will be your sources.

For instance, you will in https://ageofempires. fandom.com/wiki/Attack

the general damage formula, with keie, €{.75,1.25} as appropriate (see the next point
on elevation)

Damage = max(1, kepey X Z max(0, Attack; — Armory))

1

Theis alsonice: https://www.aoe2database.com/damage_formula/en, https://www.
aoe2database.com/unit/25/-1/en.

For units, I also like https://aoe2techtree.net/#Magyars as a synthetic source.

For instance I can quickly extract the relevant info for Pikemen:

Pikeman
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Stats
HP: 55, Attack: 4, Armor: O, Pierce armor: 0O, Range: O,
Line of Sight: 4, Speed: 1, Build Time: 22s, Reload Time: 3s

Advanced Stats

Attacks

1 (Shock Infantry), 1 (Standard Buildings), 25 (Elephants),
4 (Base Melee), 22 (Mounted Units), 16 (Ships), 18 (Camels),
7 (Mamelukes), 16 (Fishing Ships), 0O (All Archers)

Armours
® (Spear Units), 0 (Infantry), ® (Base Melee),
® (Base Pierce), 0 (Obsolete)

You will use the exact value from the game — HP, Armors and armor classes, bonus
damage, reload times, damage values, line of sight, etc — for each unit and building
you implement.

We will ignore all civilisation bonuses and pretend we’re in Dark Age, meaning no
upgrades whatsoever. The units themselves will be mostly from Castle Age, with
some from the Imperial Age. That means you can take their raw stats as listed in the
sources, no +1 or +2 or anything.

The way archery is handled in AOE2 is complicated: Ballistics, Precision, Missed Shot
Damage, and Hitboxes are some of the concepts involved. I'm not asking you to
reproduce all that. Just pick a system that works and uses the same damage and fire
rate calculations as AOE2. We copy AOE2 behaviour where and to the extent that it’s
easy, and don’t sweat the details where it isn’t, so long as it’s similar enough that I
understand at a glance the balance of the forces in play.

The first three units below are absolutely mandatory. Implement the rest as you can,
preferably roughly in that order.

a. Knight

b. Pikeman

c. Crossbowman

d. Long Swordsman

e. Elite Skirmisher

[ma)

Cavalry Archer
Onager

7 W

Light Cavalry

e
.

Scorpion
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(7)

(8)

j. Capped Ram

k. Castle (defence and target to destroy)
1. Trebuchet

m. Elite War Elephant (trample damage)

n. Monk (healing and conversion: counter to elephants :-)
o. Wonder (target to destroy: victory condition)

You will use clearly recognisable sprites (crib those from AOE) so that I know at a
glance exactly what the units on screen are.

Agile implementation.
Do not try and implement all units and buildings in one go.

Begins with just Knights and BRAINDEAD and DAFT. Then add Pikemen and
Crossbowmen.

Then make a general that uses counters to beat the pants off of DAFT, every time.

Then spend time improving him. You can (and must) automate tournaments across
different generals / versions / scenarios to quickly test whether your ideas are paying
off in practice.

Don’t optimise first. Develop your tactics using formations with smaller armies first,
then optimise and scale up.

Don’t add new units if you don’t do anything with them in the end. If you “have” Elite
Skirmishers but your Al uses them exactly as it does Crossbowmen, then it’s pointless.
Do not claim to have fully implemented them, then. You'll show a yellow partial
implementation checkmark for that unit in the checklist during the project defence.

A unit is fully implemented when it has all the right values/armor classes etc AND a
specific behaviour in the hands of at least one of your generals, which plays to that
unit’s strengths.

You'll preferably has a small scenario ready to show for each unit that illustrates that
behaviour in 30s flat, outmanoeuvring DAFT through superior tactics / positioning.

FISA: You have much less time for this project than your FISE comrades. Trying to
pointlessly multiply units would be an even greater trap for you. Focus on a few, and
make them work as intelligently as you can. Using one’s time efficiently is always
important, but the less time you have, the more critical it becomes.

No main menu: CLI

Do not spend much time implementing a sophisticated game menu with a pretty
background and music etc. I could hardly care less.
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I care about functionality. Let’s use a CLIL. You will use argparse.
You should have something like that

battle run <scenario> <AIl> <AI2> [-t] [-d DATAFILE]

battle load <savefile>

battle tourney [-G AI1l AI2...] [-S SCENARIO1 SCENARIO2] [-N=10] [-na=False]
battle plot <AI> <plotter> <scenario(argl,...)> <range for argl> ..... [-N=10]

To launch a battle / load a save / run an automatic tournament / plot the outcomes of a
scenario with parameters.

-t for launching terminal view instead of 2.5D.

-d for specifying whether / where to write data from that battle.
-N number of rounds for each matchup.

-na for not alternating player position across N matches.

Tell me if you think of important options, I may want to put them here so every group
uses the same syntax.

More explanation for plot, by example:

battle plot DAFT PlotLanchester Lanchester [Knight,Crossbow] range(l,100)

Recalling the signature of the scenario: Lanchester(type, N), this does roughly
(pseudo code):

for type in [Knight,Crossbow]:
for N in range(1,100):
data[type,N] = Lanchester(type, N).run() # also, repeat N times etc...
PlotLanchester (data)

where data[type,N] contains at least the number of casualties / units remaining / total
HP damage taken on each side, and PlotLanchester produces pertinent graphs to
visualise that data. In that specific case, I expect the larger side to win every time, and
what’s interesting is to have a graph with two curves corresponding to types, with
x=N and y=casualties sustained by winning side.

Of course, a scenario may have several pertinent Plotters, and you may want to
produce the data once and iterate on the plotters, so it’s probably best to separate the
code for the scenarios and the plotters.

For the CLI arguments, do not hesitate to use eval () it will simplify things, allowing
you to use Python code with you own class names etc directly in the arguments, rather
than waste time writing a front-facing translation layers between them. (What are the
security implications of using eval () in that case?).
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(9)

For tourney and plot, note that it should be possible, even easy, to have these battles
in parallel, on powerful CPUs at least. Two reasons:

(1) If you have properly separated the logical engine from the graphical interface, you
can run battles without displaying them graphically, and, without no need to slow
down for the benefit of humans, as fast as the CPU can compute the moves (headless
mode). (2) You don’t need a very sophisticated architecture to run battles in parallel.
Especially in headless mode. tourney can just call plenty of instances of run as batches
of external processes and wait for them to finish to collate the data / call a new batch.

Thus a very good implementation will allow you to gather data from hundreds or
thousands of battles in few minutes.

Of course, if you can’t do that, a naive implementation of tourney and plot, running
at human speed is better than no implementation at all :-)

Map visualisation: terminal

Just like the game of chess is independent of the gameboard you use — wooden or
glass pieces? on the table or on a computer or purely via chess notation through email
or snail mail or ...— the logic of your game must be independent of its graphical
visualisation.

This is extremely important to understand, with far-ranging consequences on develop-
ment time, quality and reliability of code, etc.

To force you to separate the logic of the game (the rules, its state in the abstract) from
how it is visualised, I ask you to provide two visualisations.

The first one is a terminal view. It does not need to show everything, but should still be
sufficient to get a general idea of what’s going on for small games on very small maps.

It will serve as a failsafe should you fail to develop the 2.5D view, so you have
something to show on the day of the evaluation.

You will use the letters given for each building / tile to represent the map. For instance

cccceccce
ccccecccce

PPPPP
PPP
p
kkkk

k

represents a formation of Pikemen (P) converging towards enemy knights (k). I use
uppercase/lowercase to distinguish players here, but you should use colours.
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One must be able to pause the game with P, to scroll the map using ZQSD and
directional keys (+Maj to go fast).

Pressing TAB will pause the game and open a webpage (generated HTML file) listing
all units in the game and their stats (HP, position, etc) and current tasks, as well as any
relevant data on the states of player Als. (This is purely a snapshot of the current state;
it need not be regenerated as the game progresses!)

For instance, one could learn that the soldiers have lost HP.

You will not spend too much time making the page look pretty, but do give some
thought to making it readable and searchable (collapsible sections) etc.

(z0) Map visualisation: 2.5D

Separately from the terminal visualisation, you shall provide a graphical, top-down
2.5D (isometric, sprites-based) visualisation of the game map, in the style of AoE.

That means you can start or load a game either in terminal of GUI mode, or even
switch between them on the fly, using the F9 button.

You may the use the sprites of AoE or other games, if you can extract or download
them. It's a programming project, not an art class.

You will need a graphical framework for this task. Various possibilities include:

o PyGame, https://www.pygame.org is the most common choice among students
for this type of projets.

¢ the Arcade Library https://api.arcade.academy
https://learn.arcade.academy.
Very fresh, but active; a few groups used it and had a good experience.

¢ Tkinter,
o PySimpleGUI (with TkInter backend only; simpler to begin with)
o PyQt5 or PyQt6 (more powerful, more complex, external requirements ®")

o wxPython, https://www.wxpython.org
Bindings to wxWidgets, similar to PyQt.

¢ PursuedPyBear, https://ppb.dev
This one seems very fresh out of the oven, and not documented.

¢ Kivy, https://kivy.org

®Vhttps://pypi.org/project/PyQt5/; cf. http://doc.qt.io/qt-5/examples-graphicsview.html pour
de la documentation C++. C’est & adapter a la version Python, car PyQt5 est juste une bibliothéque de liens
(bindings) vers Qt5.

388


https://www.pygame.org
https://api.arcade.academy
https://learn.arcade.academy
https://www.wxpython.org
https://ppb.dev
https://kivy.org
https://pypi.org/project/PyQt5/
http://doc.qt.io/qt-5/examples-graphicsview.html

(1)

(12)

(13)

(14)

o or anything that works with Python, really, I'm not picky, what matters is the
result.

Test the different possibilities, and choose wisely.

Do not attempt to do this in full 3D.

You should also be able to pause in this view. Variable speed would be great as well.
Minimap (2.5D):

The 2.5D view should include a minimap for fast navigation — this will be of great use
during the demonstration.

This can take the form of an actual minimap always present in the corner as in AoE, or
be a global, zoomed-out view activated through the M key. You can also have both, if
time allows.

Army visualisation:
One should be able to see the numbers and types of units for both players at all times.

If all this obscures too much of the screen, use F1 through F4 to activate / deactivate
some or all of the displayed information.

Save and load.

You should be able to save the game state whenever you want, and load it with minimal
loss of information.

Ideally, that includes what the Al’s state of mind (planning an attack, game plan, etc).

You must be able to handle an arbitrary number of saves, manipulating them as
standard files.

F11 = quick save
F12 = quick load

Since your scenarios should only last a couple of minutes at most, it’s less important
than for past years’ projects, but still nice to have, and it’s another thing that forces
you to have a decent architecture behind the scene, in which case it can be done in a
few lines via serialisation.

Elevation. (“I have the high ground, Anakin!”)

In AOE, a map tile exists on a level of elevation (0-16). A unit on “the high ground”
relative to another, that is to say on a tile with a higher level, inflicts 1.25 times the
damage, and takes .75 times the damage. This applies to all units, buildings, and
damage types, not only archers.

This adds a very interesting tactical consideration, and I'd like you to implement that.
It is not a great priority, however.
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It can be tough to represent graphically, but topological lines and a colour gradient
will amply suffice; plus perhaps moving up slowing units down a bit.

(15) Obstructions. VERY OPTIONAL

We'll begin with entirely open maps with no obstructions besides units and (maybe) a
few building.

Ifyou've pretty much covered all the rest, you can add obstructions to your map: impassable
tiles.

The completely changes how how the forces interact, more complicated pathfinding
algorithms become necessary. . . you get the idea.

Part VII

Python Projet: Practical Modalities

70  Groups: size and composition

This project is done in groups of 5 or 6.

Groups will be determined “randomly”, not chosen by students. The aim is both to save
time and avoid reproducing the usual cliques.

It is recommended that each group designate a “project secretary”, whose tasks include
keeping track of who does what; he should have a global vision of the state of the project,
and be able to inform me of it efficiently. He will probably be the main writer of the final
report, so pick somebody who likes to write (French or English, I don’t care).

None of this should take much time, so only a slight reduction in overall programming or
design tasks is acceptable for the group secretary.

Nor is he automatically the taskmaster, bossing others around. If that’s what you want, why
not, but how you organise yourselves in the group is entirely up to you.

71  Evaluation

At the very end of the semester, each group will:
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¢ Hand over a short report, a couple of days before the defence, summarising which

requirements have been met, the individual contributions of each member, and the
individual score of each member, agreed upon by group consensus.

o Present their work (15 minutes). This is referred to as “the defence” / “la soutenance”.

It is mostly a live demonstration of the work, with the help of a few very specific slides.

¢ Hand over the git history of the whole project (all source code and assets). Immediately

before the defence.

¢ Hand over the slides used for the defence. Immediately after.

An individual mark shall be given to each student on the basis of all that.

Neither the report not the defence are marked in and of themselves. They are tools to
communicate and assess the scope and quality of your work, and that is what we endeavour
to evaluate.

72

Short report

The report must be a single PDF file, not exceeding 5Mb, titled “<group number> python
report.pdf”. Only one must be uploaded on Celene for the group.

It must contain the following things:

(1)

(2)

(3)

(4)

A recent photograph of each member of the group, with the corresponding names,
arranged so that all fits on one A4 page, vertical / portrait.

A screenshot of the 2.5D view of your project, showing as many things as possible.
Again, must fit on a single A4 portrait page.

A synthetic list of requirements:

The project has a number of requirements, numbered in the document, each with a
title in bold.

For each requirement, in order and using the same numbering scheme as me, and using
the same titles in bold as me, you will state whether it is fully met (green), partially
met (yellow), or not met (red), with a few lines of text explaining, where applicable,
how your implementation deviates from the requirements.

A detailed description of the contributions of each. It must be clear enough, in
conjunction with the presentation, to enable the jury to mark the work of each student.

Each member must write a paragraph listing their useful contributions to the project.

The whole group must read every such paragraph, and a consensus must be reached
that they are accurate. If a consensus cannot be reached — which will reflect poorly
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upon the whole group — a dissenting opinion must be written in a paragraph below
the offending paragraph.

For instance, suppose that X claims to have done all the GUI, and Y and Z think they
have meaningful contributions to it, and the rest of the group has not followed what
happened in that part of the code.

Y and Z protest X’s claims in his contributions paragraph when the group reads it. X
refuses to modify his paragraph. Then Y and Z should add a dissenting opinion under
X's paragraph, explaining what they disagree about. X cannot modify their dissenting
opinion, anymore than Y and Z can modify X’s contributions paragraph.

The final report must of course bear the imprimatur of all group members, but this is
especially vital for those paragraphs.

A zero-sum scoring of the contributions of each group member.

Il vous est demandé de pondérer la quantité de travail (utile, justifiable) de chacun par
consensus du groupe. Par exemple: tout le monde a fourni le méme travail, sauf X qui
a travaillé 2 fois plus (fourni deux fois plus d"“utilité”, pas seulement “remué deux
fois plus vent”) que les autres. Ces pondérations affecteront la note individuelle.

Qu’entend-on par travail utile, justifiable ?

Le plus facile a évaluer est la quantité de fonctionalités congues et implémentées,
pondérées par leur importance pour le projet.

Des aspects plus indirects ou flous de 1'ordre du managérial ou “aide a la cohésion
du groupe” sont a prendre en compte avec modération et beaucoup de prudence. Ne
donnez pas un poids élevé a “ce gars a maintenu notre moral en faisant des blagues
hénaurmes toutes les 5min” ou méme au plus sérieux “il a joué le Boss et fait les
diagrammes de Gantt de tout le monde” — sauf si c’était vraiment tres utile, finement
détaillé techniquement, et a vraiment eu une influence forte sur le groupe. Mais méme
dans ce cas, c’est un travail d'ingénieur qu’on note, pas de manager. S'il a fait les deux
c’est un bonus, mais s’il n’a fait que le manager le score doit étre faible, car ce n’est pas
ce qui est demandé.

On note les “résultats”, pas juste le temps passé. Quelqu’un qui bosse jour et nuit mais
fait surtout des bétises ou dessine 50 versions des icones dont personne n’a besoin
pendant qu’il reste des bugs urgents doit avoir un bas score. Quelqu’un qui fait ¢a
alors que le groupe insiste pour qu’il fasse autre chose, mais est ignoré, doit avoir un
trés bas score.

Notons que “résultat” n'implique pas que, si ¢ca n’apparait pas dans le produit fini, ¢a
ne compte pas. Le débuggage dun bug complexe est un travail a valoriser dans le
score, méme si au final la partie du code qui a été debuggée a fini par étre retirée du
projet pour d’autres raisons.
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La question est “au moment ot le travail a été entrepris, était-il pertinent étant donné
les connaissances du groupe a ce stade”.

Par exemple, un travail de recherche en profondeur est tout a fait valorisable, méme si
le résultat final n’est pas a la hauteur des espérances — mais évidemment c’est toujours
beaucoup mieux s’il l'est !

De méme, aider un camarade est aussi valorisable — la aussi dans la mesure du
raisonnable.

Le rapport doit obligatoirement fournir la pondération de la manieére suivante,
obtenue par consensus®) au sein du groupe:

Chaque membre du groupe i est assigné un score / une pondération p; € N, de maniere
a ce que le ratio Pi/ P; reflete bien la proportion de travail utile fourni par i par rapport
aj. Vous devez donc CONCRETEMENT rendre une liste d’association “membre du
groupe — score (nombre entier)”.

(Note: use your full name, of the form “FAMILY Given-name” for this, not just your
tirst name. My lists are sorted by family name, and I don’t know by heart who “Bob”
is. Bonus points (morally, at least) if you sort by family name.)

Par exemple, sil’on a ppasii = 2, Pcunsgonde = 1, €t PQuetzaicoart = 8 cela signifie que Basil a en
gros été deux fois plus productif que Cunégonde, mais bon globalement Quetzalcoatl
est un dieu et a bien porté le groupe, ayant fourni

pQuetzalcoatl 8

= — = 73%
PBasil oty pCunégonde - pQuetzalcoatl 1

du travail total — en supposant un groupe de trois.

Pour discuter des scores de chacun, il peut étre utile d"utiliser des nombres de points
“intuitifs”.

Par exemple, si ) . pi = 100, i.e. on a 100 points au total a distribuer entre tous
les membres, alors p; représente la proportion du projet (produit fini ou travail de
recherche valide) attribuable au travail de i, exprimée en pourcents.

On peut aussi partir de p; = 100 pour chacun (tout le monde est égal est moyen) et
ajuster en rajoutant des points aux membres moteur (par exemple, Machin est a 120%
par rapport au membre moyen, donc pyucin = 120) et en enlevant aux membres qui ont
été plus tirés par le groupe pr.c = 80, en essayant de maintenir l'invariant ) ; p; = 600
(pour un groupe de 6), afin de préserver 1'idée que 100 représente le score du membre
moyen du groupe. (Méme si ¢a fait chaud au cceur de dire “tout le monde est au dessus
de la moyenne du groupe”, mathématiquement ¢a ne marche pas. L'utilisation d'un
score “zero sum” évite ce biais.)

®Wpas majorité; ce n’est pas un vote. On en discute ensemble jusqu’a ce que tout le monde tombe d’accord.
Voir plus bas si l’'on n’y arrive pas.
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Having ) ; pi be a nice, round number is not strictly necessary, but it helps me check
that I have copied the numbers correctly on my spreadsheet. In any case, tell me what
> piis supposed to be, so that it can serve as a checksum of sorts.

Note: ce score ne doit pas étre ajusté par le groupe pour prendre en compte des excuses, valides
ou non. Si A et B ont objectivement moitié moins avancé que la moyenne (notée a
100) alors tous deux doivent avoir un score de 50. Le fait que A a passé la moitié du
semestre a jouer a Minecraft alors que B a passé la moitié du semestre a I’hopital suite
a une attaque de Vélociraptor (non-provoquée) ne doit pas intervenir. Les excuses
valides d’ordre médical ou autres sont prises en compte par le corps enseignant a divers
niveaux; en ce qui concerne l’auto-évaluation, ce n’est en aucun cas votre probléme.

Note: this score must mustbe computed with respect to the whole group, not wrt. subgroups.
For instance, one group was broken into 3 pairs with different tasks, and each pair was
given an equal number of points to distribute between them. This is not valid, as it
bypasses the hard work of evaluating the value and difficulty of each task.

Note: Consensus # Vote:

A way some groups have “achieved consensus” in previous years is by averaging or
summing scores given (sometimes anonymously !) by all members to each member.
This has a chance of being a meaningful metric only if everybody is very well-informed
about every other member’s contributions. Otherwise it tends to produce noise, which
tends to yield poorly differentiated scores. You may use such techniques if you wish,
but it must be a mere starting point that is then discussed by the group until nobody is
shocked by any mark.

I consider vote-based methods a bit of a “cheat code” when it comes to achieving
consensus. Votes are a conflict-breaking tool, not a truth-finding tool. The only
consensus truly achieved by taking a vote about X is the meta statement “the outcome
of the vote about X, whatever it is, holds value.” This actually says nothing about X or
whether that outcome is correct.

That’s fine if the question is “what colour should the bike shed be”, because to the
extent that there might be a right answer here, it’s probably “whichever colour most
people want” anyway. Even if many (or even all ®) people dislike the result, the most
important thing is not to waste more time on the issue, and to avoid fighting over it.

Let’s just pick a colour and move on.

The situation is quite different when matters of fact must be decided, with real stakes
and decidedly right (correct, accurate,. ..) or wrong answers. The scientific method
does not proceed through votes.

Votes should only be used when there is a conflict to break, not before, and this only
if there is a pressing need to coalesce to a decision. Whenever possible, a consensus

®If you average the result of a vote on colour, you'll probably get a vomit-inducing khaki nobody wanted :-)
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obtained through rational discussion of all available evidence must be preferred.

Do not use voting as a clever tool to circumvent rational, possibly heated, discussion,
and avoid having to actually formulate, defend, and change your opinions.

I want a consensus on the quality of the work of each, obtained through thorough discussion —
and I know it can be hard — not a consensus on a hack to avoid really having said discussion.

The last thing I want is for a group (I take an extreme theoretical case) where everybody
wants all the points to average anonymous votes and come up with the same score for
everybody. ..

Sila pondération donnée par le groupe est manifestement fausse, c’est tout le groupe
qui sera pénalisé.

Par exemple si le groupe dit “ben tout le monde a travaillé pareil, 100 a chacun”, alors
que pendant la soutenance on voit bien qu’il y a une personne qui sait répondre a
toutes les questions, que ce soit sur la vue d’ensemble ou sur le fonctionnement du
code, et une autre qui découvre la sujet et le logiciel le jour de la soutenance, ¢a va
mal se passer. Soit tout le monde était tellement a la masse pendant le projet que
personne n’a remarqué les grosses différences entre membres, soit le groupe est trop
disfonctionnel pour avoir une conversation bilan honnéte entre ses membres.

Les étudiants se plaignent souvent — et a raison ! — que les notes des travaux de groupe
sont injustes; c’est I'occasion de rectifier le tir et, les enseignants n’ayant pas le budget
pour une boule de cristal ou de chevaux de Troie dans vos ordinateurs, vous étes
encore les mieux placés pour le faire.

Si un consensus ne peut pas étre atteint au sein du groupe (essayez, quand-méme,
parce que ¢a n’amusera personne de gérer ¢a et risque de pénaliser le groupe globale-
ment) proposez plusieurs pondérations (e.g. celle soutenue par A, B, D, et E, selon
laquelle C et F sont des glandeurs, et celle soutenue par C et F, selon laquelle ils ont
tout fait) et nous en discuterons calmement.

Si le groupe atteint tant bien que mal un consensus mais qu'un (ou plusieurs) membre
(ou sous-groupe) n’est pas satisfait, mais pas tout a fait au point de refuser entierement
le consensus (i.e. “J’accepte, mais pas content !”, versus “Je refuse ! Révolution !”), ce
membre peut joindre au rapport, sous le consensus, une opinion dissidente expliquant
ce qui le chiffonne un peu dans le consensus tel qu'il est.

Le rapport peut également mentionner si le consensus a été obtenu facilement ou s'il a
été difficile a négocier.
FAQ : comment la pondération donnée par le groupe affectera-t-elle la note indi-

viduelle, exactement ? Y a-t-il une formule ?

Nous noterons au mieux, dans un monde imparfait, avec les informations dont nous
disposons.
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There is indeed a formula that is being (somewhat) systematically applied. Following
Goodhart’s law ®), T will not share it.

I would just note that in 2018-2019, the maximal difference between the worst and best
marks within a group was 9 points out of 20. (The minimal intra-group difference was
0.1 points. The average intra-group difference was 4 points.)

The upshot is that you should not expect to get a good mark merely because other
people are working and the end product is good. You have to contribute to it.

Conversely, if you are unlucky and end up in a disfunctional group, this does not
automatically mean your mark will be terrible, so long as you can show meaningful
contributions.

Overall, this system, while imperfect, proved much better, meaning much fairer, than
handing out the same mark to everybody in each group, as was the case previously.

The cost is to force the group to confront and to evaluate the very real differences of
skill and investment within the group, and confront one’s autoevaluation to that of the
group, which are very socially difficult exercises, without a doubt, but necessary ones.

73  The defence

Il y aura une journée de soutenances a la fin du semestre, ott chaque groupe présentera tres
rapidement ses travaux, en fera une démonstration, et répondra a des questions.

Les modalités exactes sont comme suit:

73.0.1 Horaires de passage
Le planning sera en ligne sur Celene.

Deux salles seront réservées pendant les soutenances: c’est le jury qui passe d'une salle a
I'autre.

De cette maniere chaque groupe peut s’installer tranquillement pendant que le groupe
précédent soutient dans l’autre salle.
73.0.2 Timing

Each group will have a 30min slot. You will have 15min to talk without interruption. The
remainder of the time will be for questions / remarks.

Your talk will spend

®Y)When a measure becomes a target, it ceases to be a good measure.
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¢ 2 minutes max on slides — In the next paragraph I'll tell you exactly what your slides
are going to be. You will open with this.

¢ 13 min of live demonstration.

Be extremely strict on time. I shall interrupt you mercilessly the instant you go overboard
either on the slides of the global duration.

You will be ready to switch back and forth between the slides and the demonstration during
the questions.

73.0.3  The slides
Each slide will have your group number somewhere.

There will be no animation or slide transition, or generally anything that does not perfectly
translate into a two page PDFE.

You will have exactly the following slides:

(1) A synthetic table of requirements met (green/yellow/red), like in the short report, but
with fewer details so that it all fits on a single slide.

You will speak for about 1m30 maximum to summarise the important points, espe-
cially to make us understand the scope of the limitations regarding the yellow/red
requirements.

(2) A single slide with a recent photograph of each member, their name, their individual
score (as in the report — the scores must of course be the same as in the report !), and a
few keywords as to the nature of their contributions.

About 30s maximum will be spent on this; the aim is the have a rough idea how
uniformly (or not) the work was allocated before beginning.

We may use the slides as support during the questions phase.

73.0.4 The live demonstration

The demonstration must convince the jury that every requirement you claim to have met is
indeed met.

Prepare it and rehearse it well in advance, like a theatre play, using functionalities of your
project to help you, such as save and load. In your discourse, use the same keywords as in
the requirements list, and quickly state the corresponding requirement number, to make it
clear what requirement(s) you are demonstrating.

The demonstration must be live, we will not accept prerecorded videos or screenshot slide
shows.
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During the questions phase, you must be ready to let the members of the jury interact
directly with your project.

While every member of the group must be present and answer direct questions from the
jury, not every member needs to talk equally (or indeed at all) during your 15min. Again
there is no mark for the defence itself; the aim is to convey the scope and quality of your
work. Apportion the presentation time among your group in order to maximise the clarity
of the defence.

Les démonstrations peuvent se dérouler soit sur I’ordinateur de la salle (celui connecté au
vidéo projecteur), soit sur votre ordinateur portable personnel.

Dans tous les cas, évitez les temps morts dus a des contraintes techniques. Do everything
on a single computer rather than spending time fighting the video projector each time you
switch machines.

Vérifiez aussi la connexion de l’ordinateur servant a la démo avec le vidéo-projecteur avant
le jour J.
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Part VIII

Archived Python Project 2024-2025: Alge
of EmpAlres

Short version: Implement a bare bones “Age of Empires”-style RTS engine for Al-vs-Al battles.

74  Whatis an RTS / AoE?

The astute reader might notice that this projet is related to, though distinct from, Part XIjp44:
“Archived Python Project 2021-2022: Age of Cheap Empires”. If you are not familiar with
Real Time Strategy (RTS) games, especially in the Age of Empires (AoE) series, you are
invited to get some idea of the general principles.

It should go without saying that you do not need to buy or play any of these games. You
can get all relevant information by watching videos of AoE I and II on the internet, and
consulting the wiki or the official site:

o https://ageofempires.fandom.com/wiki/Age_of_Empires

For a more hands-on look on that genre, you can install 0 A.D., a game originally made as a
mod for Age of Empires II, now entirely free software. You can install it on most modern
Linux distributions with a single command; for instance:

sudo apt install ®ad # Debian-based

sudo pacman -Syu Oad # Arch-based

0 A.D. is its own thing, with its own unique mechanics, but remains extremely similar in
look and feel to AoE I and II, so it can give you a general idea of how a game like that plays.

For large screens, you may want to create a file ~/.config/0ad/config/local. cfg contain-
ing a line of the form gui.scale = "1.875", to scale up the GUI elements, including the
fonts — here by a factor of 1.875, to replace by what works for you.

The remainder of this document assumes basic familiarity with the concepts of those games.

75  Scope of the Project

Unlike the 2022 project, the aim is not to implement an RTS game. I want to avoid giving
too much focus to technically uninteresting aspects such as user interface and gameplay
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mechanics. We shall have the bare minimum of buildings and units, and focus entirely
on Al-vs-Al matches, with no direct input from the user during the matches. Your main
tasks will therefore be to (1) develop a game engine, and (2) fine-tune various Al profiles
(defensive, aggressive, etc).

You will demonstrate the quality of the final product by showing large battles between
multiple Als deploying sophisticated strategies.

75.1  List of Requirements
AoE2 is my reference point, and we shall take a minuscule subset of rules from it.

(1) The game takes place on a map, which is a grid of size N x M tiles. The absolute
minimum size you must be able to handle is 120 x 120, which corresponds to a “tiny”
map in AoE2.

(2) The maps will be randomly generated — a fact that you must be able to demonstrate.

(3) You will support at least two different types of randomly generated maps, each with
strategic and tactical implications: for instance one with generous resources dotted
across the map (take the Arabia map from AoE2 as reference for what that looks like)
and one where all the gold is at the centre of the map.

(4) Population limit = maximum number of units per player: 200.
Actual limit in play determined by houses and town centres, within that maximum.
(5) The following resources:
a. Wood (W), 100 per tile (tree)
b. Food (through farms only) (F), 300 per farm
c. Gold (G), 800 per tile
(6) Units:

a. Villager: v
Cost 50F, 25 HP, Training time 25s,
2 attack (1 attack per second for all units), speed 0.8 tile/second.

Can build buildings.

The nominal building time t of a building given below is the time required for one
Villager to construct a building alone.

If n Villagers are used, and t is the nominal building time remaining, the actual
building time will be 25

Can collect resources at rate of 25/minute, can carry 20.
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b. Swordsman: s
Cost 50F+20G, Training time 20s,
40HP, 4 attack, speed .9.

c¢. Horseman: h
Cost 80F+20G, Training time 30s,
45HP, 4 attack, speed 1.2.

d. Archer: a
Cost 25W+45G, Training time 35s,
30HP, 4 attack, 4 range (Euclidean distance; norm 2), speed 1.

(7) Buildings:

a. Town Centre: T
Cost 350W, Build time 150 seconds,
1000 HP, 4x4, Spawns Villagers, Drop point for resources
Population: +5.

b. House: H
Cost 25W, Build time 25 seconds,
200 HP, 2x2, Population: +5.

c. Camp: C
Cost 100W, Build time 25 seconds,
200HP, 2x2, Drop point for resources

d. Farm: F
Cost 60W, Build time 10 seconds,
100HP, 2x2, Contains 300 Food.
Note: this is the only walkable building, cf. AoE2.

e. Barracks: B
Costs 175W, Build time 50 seconds,
500HP, 3x3, Spawns Swordsmen

f. Stable: S
Costs 175W, Build time 50 seconds,
500HP, 3x3, Spawns Horsemen

g. Archery Range: A
Costs 175W, Build time 50 seconds,
500HP, 3x3, Spawns Archers

h. Keep: K
Costs 35W, 125G, Build time 80 seconds,
800HP, 1x1,
Fires arrows: Attack 5, range 8
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(8) Starting conditions:

a. Lean: 50F, 200W, 50G,
Town Centre, 3 Villagers

b. Mean: 2000(EW,G)
Town Centre, 3 Villagers

¢. Marines: 20000(EW,G)
3 Town Centres, 15 Villagers, 2 (Barracks, Stable, Archery Range)

(9) Agile implementation.

Do not try and implement all units and buildings in one go, before starting work on
the systems that depend on them.

First implement only villagers and town centres, give them large starting resources
and implement villager wars.

Then, once the game loop is shown to work, go back and implement more variety of
resources and units.

If at the end of the day you do not have a complete product in the sense that some units
and buildings are missing, but you can otherwise demonstrate that what you have does
work as expected, that won’t be ideal, but the outcome will still be honourable. You'll
indeed have made a game Al, albeit a limited one.

On the other hand, if you tell me that you have, technically, implemented every unit
and every building, but none of them actually moves of builds or fights, then you
don’t actually have anything of any worth.

(10) Bare-bones main “menu”.

Do not spend much time implementing a sophisticated game menu with a pretty
background and music etc. I could hardly care less.

I care about functionality. You must be able to create a new game with various
parameters, save and load a game efficiently. Whether you do this through a GUI or
entirely through command line options, it must be easy and fast to use during the
demonstration.

I would not accept, for instance, that your game can only have one (or three, or five)
save file(s) because of limitations in your menu GUIL. If you must have a menu GUI,
use the standard file open dialogues for such purposes. Tkinter is fine for that type of
tasks.

(11) Map visualisation: terminal

Just like the game of chess is independent of the gameboard you use — wooden or
glass pieces? on the table or on a computer or purely via chess notation through email
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(12)

or snail mail or ...— the logic of your game must be independent of its graphical
visualisation.

This is extremely important to understand, with far-ranging consequences on develop-
ment time, quality and reliability of code, etc.

To force you to separate the logic of the game (the rules, its state in the abstract) from
how it is visualised, I ask you to provide two visualisations.

The first one is a terminal view. It does not need to show everything, but should still be
sufficient to get a general idea of what’s going on for small games on very small maps.

You will use the letters given for each building / tile to represent the map. For instance

s s W WWWWWW

WWWW  WWWW
VFTTTT W W WWWW
FFTTTT
TTTT GGv CC
TTTT GGvCC K
Hv v
H

represents a small village with a Town Centre, a gold mine to the east, guarded by a
Keep, woods to the north-east, two soldiers to the north-west, a farm to the west, with
a villager walking on it (presumably building it or farming), and two other villagers to
the south-west, next to houses (presumably building the houses).

One must be able to pause the game with P, to scroll the map using ZQSD and
directional keys (+Maj to go fast).

Pressing TAB will pause the game and open a webpage (generated HTML file) listing
all units in the game and their stats (HP, position, etc) and current tasks, as well as any
relevant data on the states of player Als. (This is purely a snapshot of the current state;
it need not be regenerated as the game progresses!)

For instance, one could learn that the soldiers have lost HP, and the farmer is currently
building the farm.

You will not spend too much time making the page look pretty, but do give some
thought to making it readable and searchable (collapsible sections) etc.

Map visualisation: 2.5D

Separately from the terminal visualisation, you shall provide a graphical, top-down
2.5D (isometric, sprites-based) visualisation of the game map, in the style of AoE.

That means you can start or load a game either in terminal of GUI mode, or even
switch between them on the fly, using the F9 button.
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You may the use the sprites of AoE or other games, if you can extract or download
them. It's a programming project, not an art class.

You will need a graphical framework for this task. Various possibilities include:

o PyGame, https://www.pygame.org is the most common choice among students
for this type of projets.

¢ the Arcade Library https://api.arcade.academy
https://learn.arcade.academy.
Very fresh, but active; a few groups used it and had a good experience.

o TkiInter,
o PySimpleGUI (with TkInter backend only; simpler to begin with)
o PyQt5 or PyQt6 (more powerful, more complex, external requirements )

o wxPython, https://www.wxpython.org
Bindings to wxWidgets, similar to PyQt.

¢ PursuedPyBear, https://ppb.dev
This one seems very fresh out of the oven, and not documented.

o Kivy, https://kivy.org

o or anything that works with Python, really, I'm not picky, what matters is the
result.

Test the different possibilities, and choose wisely.
Do not attempt to do this in full 3D.
(x3) Minimap (2.5D):

The 2.5D view should include a minimap for fast navigation — this will be of great use
during the demonstration.

This can take the form of an actual minimap always present in the corner as in AoE, or
be a global, zoomed-out view activated through the M key. You can also have both, if
time allows.

(14) Resources visualisation:

One should be able to see the stored resources (Food, Wood, Gold) for all players at all
times. Additional information such as number of each unit types, etc could be useful
as well. If all this obscures too much of the screen, use F1 through F4 to activate /
deactivate some or all of the displayed information.

®Dhttps://pypi. org/project/PyQt5/; cf. http://doc.qt.io/qt-5/examples-graphicsview.html pour
de la documentation C++. C’est a adapter a la version Python, car PyQt5 est juste une bibliothéque de liens
(bindings) vers Qt5.
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(15) Save and load.

Those games can be long. You must be able to save the game state whenever you want,
and load it without loss of information. Note that,if you have an Al, that includes
what the Al knows about the world, and more generally its state of mind (planning an
attack, game plan, etc).

You must be able to handle an arbitrary number of saves, manipulating them as
standard files.

This will be extremely important for the defense, as you will not have time to play
several full games during the demonstration. Instead you will load saved games, taken
at interesting points of various games, to show off big battles, AI gameplan, etc.

F11 = quick save
F12 = quick load

Part IX

Archived Project 2019-2020 & 2023-2024:
Evolutionary Game of Life

76  Generalities

The aim is to create a “Game” @ centred around a visual and interactive simulation of
natural selection.

The serious purpose behind the game is to provide a refresher on evolutionary mechanics,
both as a matter of general culture and as a prelude to the study of Al and metaheuristics in
general.

In particular, genetic — and, more broadly, evolutionary — algorithms are a vast class of
approaches simulating aspects of Darwinian biological evolution for the purpose of solving
complex problems for which brute force or analytic approaches are unsuitable.

The results thus obtained can be very good, but are often a bit “alien-looking”, as evolu-
tionary processes, whether “real” or simulated, often defy human intuition, aesthetics, and
engineering principles. (A look at deep-sea creatures should convey that quite well.)

(] couldn’t come up with a fun name for it, preferably with a pun or a gratuitous insersion of “INSA” in it,
so I'm just calling it “the Game”, for now.
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For instance, the NASA’s ST5 antenna in Fig. 7 was obtained by evolutionary processes. It
performs quite well compared to human-designed antennae. The figure actually shows the
second version of the antenna: the first was more tree-like. A minute change in mission
parameters resulted in two completely different antenna layouts, where humans would
come up with more incremental changes.

Of course, no human intervention was really needed to adjust the design the second time:
the simulation was already set up, so entering the new constraints and pressing a button
was all that was needed (plus a few days of computing time on a supercomputer).

A challenge with evolutionary processes (from both the points of view of computer science
metaheuristics and biology) is how difficult it is to accurately predict the effects of a change
in parameters, and how easy it is to come up with plausible-sounding “just-so” stories that
don’t pan out in the end.

The Game should provide a fun experimental platform to play with populations by altering
several aspects of the creatures and their environment, and seeing how they react and evolve.
It should generate high-quality graphs showing the evolution of those characteristics over
time.

To be clear, while the process of programming the Game is in itself a way to teach evolutionary
processes to INSA students, the final product should be a good tool to help present those
notions to, say, high school students and such.

Compared to the related Clockwork (Part XIV p451): “Archived Project 2017-2018: Mon(s)tres”)
and Automata (Part XIIIjp0: “Archived Project 2018-2019: Automata GUI”) projects, this
one is rather less open-ended and ambitious, as you are not required to actually design, set
up, and deploy metaheuristics on a given open problem, but merely to simulate some very
specific traits in a very specific simulation.

However, I shall be a bit more demanding when it comes to feature-completeness, stability,
and usability of the final product. Furthermore, there is room for the more ambitious groups
to considerably expand the scope of the project once they have covered the basics.

I give in this document some design choices that must be respected, so as to make it easier
to compare the projects of different groups.

77  Specifications

The Game simulates a world. Since our divine powers are quite limited, our worlds shall be
quite modest: a grid of size N x M, with N = M = 100 by default (but this should be an
easily modifiable parameter; every numerical value I give should be so; the values will be
tweaked as your groups progress and experiment with them, so that they yield relatively
stable populations.).
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The Game should represent this world graphically, at the very least with a view from the top.

I strongly recommend setting up a terminal-only graphical engine first — take full advantage
of the fact that the terminal can display colours and special characters. This should be fast
and easy to make.

For the final product, additional support for a 2.5D isometric view — in the style of “old”
games like Diablo I & II, Age of Empires I & II, etc — is also strongly recommended.

It should be reasonably cool-looking, without taking you too much time to make.

It is probably not a good idea to try and support full 3D rendering, unless some members of
your group already have strong experience in that domain. I'm not even sure what a good
library for that would be. Perhaps Panda3D?

The Game should of course have a GUI allowing the user to play with all the parameters of
the simulation.

Here are a few possible choices of framework:

o PyGame, https://www.pygame.org is the most common choice among students for
this type of projets.

¢ the Arcade Library https://api.arcade.academy
https://learn.arcade.academy.
Very fresh, but active; a few groups used it and had a good experience.

o Tkinter,
o PySimpleGUI (with TkInter backend only; simpler to begin with)
o PyQt5 or PyQt6 (more powerful, more complex, external requirements )

o wxPython, https://www.wxpython.org
Bindings to wxWidgets, similar to PyQt.

¢ PursuedPyBear, https://ppb.dev
This one seems very fresh out of the oven, and not documented.

¢ Kivy, https://kivy.org
¢ or anything that works with Python, really, 'm not picky, what matters is the result.

Note that the execution of the simulation should be independent from the rendering, as
rendering takes a lot of processing power. Thus not only should the two run in separate
threads, but it should be possible to simply activate and deactivate rendering at will while a
simulation is running. Specialised “game-oriented” frameworks should take care of this
fairly straightforwardly, without requiring you to do much system programming.

(Cb)https ://pypi.org/project/PyQt5/; cf. http://doc.qt.io/qt-5/examples-graphicsview.html pour
de la documentation C++. C’est & adapter a la version Python, car PyQt5 est juste une bibliotheque de liens
(bindings) vers Qt5.
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In the world, there live creatures; they are all named Bob. There are initially P = 100 of them.

Bobs should be graphically represented by sprites that present as clearly as possible their
individual attributes (speed, size, memory, etc). The representation should be as user-
tweakable as possible to allow emphasis on whatever characteristics they are interested in at
the time. For instance, I should be able to set things up so that faster creatures are bluer, and
bigger creatures are redder, resulting in various hues of blue, red, and purple. Then I should
be able to change it completely. Bobs’ size should at least support a representation acting on
the size of the sprites.

Each Bob spawns in a random cell in the world grid at the beginning of the simulation.

The simulation proceeds by time increments, or ticks: at each tick all Bobs perform an action,
for instance walking to the next cell.

How complex their tasks and actions are depends on the number of characteristics which
will be simulated.

77.1  Basic level: food hunting

Let’s say that a day amounts to D = 100 ticks. Each day, a total quantity F = 200 of food
points spawns randomly in the World, each containing Er = 100 energy. There is nothing
preventing several instances of food from spawning in the same cell, in which case the
energy values add up.

Any food left uneaten disappears at the end of the day, just before the new food is spawned
in.

Each Bob has an energy level, starting at Eqpawn = 100, when they spawn, and capping out at
Emax = 200.

This energy goes down by 1 each time they move, and they move at random each tick, going
to an adjacent cell. Diagonal moves are not allowed (because they are at a greater distance;
we’ll talk about that later).

When a Bob finds food (is in the same cell as food), it instantly eats as much of it as it can,
gaining all its energy. If its energy caps out in the process, there are leftovers. It can then stay
stationary so long as there is food, but each tick spent stationary still consumes 0.5 energy.

If two Bobs access the same food at the same tick, one of them gets all, arbitrarily.
If a Bob’s energy level ever falls at or below zero, it dies.

If a Bob’s energy level caps out, it reproduces via parthenogenesis, spawning a new Bob in
the same cell (several Bobs can occupy the same cell). The new Bob spawns at Epirn, = 50
energy, while the “mother” Bob loses Emotmer = 150 energy (putting her at Epax — Emother = 50

energy).
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Experiment with this and tweak the values to see what effects the different parameters have,
until the values yield a stable population with interesting rates of births and deaths.

77.2  Velocity

At the basic level, all Bobs were identical. Let’s change this, and start introducing individual
characteristics that can be acted on by natural selection.

Let’s start by adding velocity to the simulation.
The default Bobs all had a velocity of 1, moving 1 cell in 1 tick, at a cost of 1 energy.

Now, each Bob B has its own velocity, initially B, = 1, but each Bob that spawns may mutate
a bit in that respect: say that C is born of B. Then C, should fall uniformly in the range
[B, — Mut,, B, + Mut,], where Mut, = 0.1 is the mutation rate for velocity. (B, = 1 for
initial Bobs)

Note that since velocity is not an integer quantity, handling it properly is not trivial. Ateach
tick, the fastest moves first, and eats all it can. If a Bob has a non integer movement velocity,
say, 1.6, then there are two ways to handle it:

o partial actions: ©© on the next tick, it will move through an entire cell (eating all), and half
a cell, eating 60% of the food energy there. On the next tick, it will eat the remainder
(if nobody beat him to the punch), and move through another whole cell.

o speed buffer: Y on the next tick, it will act with a velocity of [1.6] = 1, and store the
excess 0.6 into a “velocity buffer”. On the following tick, the buffer will be consumed
and added to the velocity before the process is repeated: thus this Bob will functionally
have velocity 1.6 4- 0.6 = 2.2 for this tick, acting as though it were of velocity 2 and
storing 0.2 in the buffer for subsequent ticks.

The buffer proposal is probably the best, as it avoids having to attempt giving a meaning to
all partial actions: what is “partial reproduction”, for instance?

Speed has a cost, however. We are going to follow physics roughly, here. The kinetic energy
of an object is given by

1T 5
—mv-,

2
so, following that, on each tick, B will consume B, = B2 energy to move. For instance,
double the speed means quadruple the energy cost. (It’s a bit more complicated in real
life, because that only accounts for the cost of acceleration, but this formula is sufficient to

introduce clear, intuitive trade-offs in our simulation.)

To avoid Bobs becoming immortal simply by virtue of not moving at all, we say that a Bob
consumes, at a minimum, E;, = % energy per tick. The actual energy consumption is

(€9This was the original proposal.
(dThis is the revised proposal after discussions with students.
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therefore
B! = max(Eumin, Bc)
This applies for all other versions of B, below.

Run the simulation and see how speed evolves over time.

The impact of each of characteristics such a this should be configurable in real time — for
instance if I want to remove speed from the equation I should be able to set Mut, = 0
whenever [ want.

77.3  Mass

Now let’s add the possibility for Bobs to evolve some serious muscle mass. Mass will be,
like velocity, a genetic characteristic. Our default Bobs had mass B,,, = 1. Like velocity, mass
is genetic, and mutates in the same way. We do not model a cost on birth, however, mass
has a cost on mobility. Following the kinetic energy model, mass multiplies the movement
cost on each tick: a Bob will therefore consume

B. = B.B2
energy on each tick for movement.

Mass should be reflected in the size of the sprites in the graphical representations. Note that
mass is proportional to volume, and volume is proportional to the cube root of mass, so the
size of the sprites should scale like v/B,.

What is the benefit of being bigger? You can eat (much) smaller creatures. If Big Bob B and
small bob b meet (are in the same cell at the same tick, even if one of them is only “partially”
there due to non-integer speeds), and the difference in size is important (g—: < %) then, Big
Bob can, and will, eat small bob. Small bob dies. Big Bob’s energy level B, is updated
according to the equation

1bm 1 1 bm
Be = Be—iabe—i—zbe = Be—i—zbe(]—a)

The idea is that the fight takes some energy out of Big Bob, although less and less the bigger
is he in proportion to small Bob, and he gains up to half of small bob’s energy level. In this
model, he always gains some energy from eating another Bob.

It should be easy to change this model within the code.

If 11;_:11 > 2, they ignore each other.

774  Perception

Now that there are predators and prey in the world, it help to be able to avoid the ones and
pursue the others.
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Each Bob initially had a perception score B,, = 0 meaning that they are blind as bats — but
without any cool echolocation either. B, measures of course the distance at which they
can determine whether a cell contains noting, food, or Bobs. It is the radius of the circle of
detection.

This is a genetic characteristic. Unlike speed and mass, we are going to keep that value
integral, and mutate it by 0 or £1, equiprobably.

Since we are in a discrete world, some care will have to taken to compute those circles
properly. Given that diagonal moves are disallowed, the notion of distance that matters is
not actually that of the standard Euclidean geometry (£ norm), but the Manhattan distance
(¢! norm); in dimension 2, which is what we shall work in, it is computed as

di(A,B) = [xg —xal+ys —yal

Compare to the Euclidean distance:

d2(A,B) = /(xg —xa)2+ (ys —ya)2

Circles in Manhattan geometry actually look like squares do in Euclidean geometry — with a
7 rotation, so, pointy-end up.

At B, =1, all adjacent cells are detected.

Up till now, The Bobs’ decisions have been purely random. Now, whenever they detect
food, they make a beeline for it. Unlike in Euclidean geometry, there are many different
shortest paths to take. Take the algorithm: so long as you're not there, reduce either your x
or y-distance, with same probability.

Of course, if at any time Bob detects a new food source, while on its way to another, it should
reevaluate its plan and make a beeline towards the closest one. If it detects several food
sources, it should favour the bigger ones.

By food sources, we mean both spawned food and unlucky smaller Bobs. Since how good a
food source a prey Bob is depends on its energy level, and that a prey Bob may run away, a
predator Bob will always favour stationary spawned food to other Bobs.

When several prey Bobs are detected, the smallest ones will be favoured.

When a Bob detects a larger Bob, it moves to maximise distance between the two. When it
detects several larger Bobs, it moves to maximise the distance to the closest one, and, ceteris
paribus, to the others.

When a Bob detects prey and predators simultaneously, its prey behaviour overrides its
predator behaviour: survive first, hunt second.

Perception cost is not affected by either mass or velocity. It does require eyes and a big brain,
though, which requires constant energy expenditures. (A human brain consumes about 20%
of the body’s total energy.)

411



Let’s say that for each point of perception radius, there is a flat I penalty (again, the GUI
must allow this to be modified at will) to energy each tick. The consumption becomes:

1
B, = Bm133+513p

77.5  Spacial memory

A big brain has other uses. An important one is to remember the existence of stuff that’s not
visible right now.

Currently, unless they are making a beeline for some kind food, or running away, Bobs
have a } probability of going back where they just came from, which is not optimal to find
spawned sources.

Now, let’s introduce the inheritable characteristic memory space. Each Bob B has currently
Bmem = 0 memory points. Again, this will remain an integral value, and mutate by 0, +1,
equiprobably.

A Bob has several (mutually exclusive) ways to use its memory points:

A Bob can remember the 2 x Bpem cells it visited, and hereafter avoid them, unless doing so
would lengthen a path to food or escape.

With higher priority than that, a Bob can use its memory points to remember a place where
it saw spawned food not currently in its view. This can happen if a Bob detects two food
sources at opposite ends of its perception, and goes towards the one, therefore losing sight
of the other one. Or if it sees food while running away from a predator.

It uses one memory point to remember one food location (therefore forgetting two of its
oldest visited locations). It remembers the respective energy levels of the food.

It only uses this point upon leaving sight of the food. The point is freed the instant a
remembered food comes into sight again.

While not pursuing food currently in its view (that has the priority, even if it remembers a
larger food source farther away), or running away, a Bob will make a beeline for the largest
food source it remembers seeing.

The cost is again a flat penalty per point.

1 1
B, = BnBi+ =By + =Baem

77.6  Other characteristics

Each group should invent, define, and implement a few other characteristics; put your own
spin on the subject. They should be explained in the report, and well-specified.
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What I outline explicitly in this document should be construed as the bare minimum as
expect from each group. Once that basis is assured, be creative. Your features must be
deactivable, so that the jury can compared your projet to other groups under the same
constraints.

The is best achieved in the same style as the features listed above: set things up so that your
features are governed by constants that, for some values (0, 1,. . .) remove the feature from
consideration.

I would be delighted to see additions tackling the evolution of altruism, or aggression
strategies (hawks vs doves), etc.

It would be advisable to plan the more ambitious “freestyle” features somewhat in advance,
and to consult me before investing significant time in them.

77.7  Sexual reproduction

So far, Bobs have reproduced solely by parthenogenesis. Now, let’s add sex to the mix
— though we will consider that Bobs are hermaphrodites, like snails, and not attempt to
distinguish Bobs and Bobettes.

On top of still having the option of parthenogenesis, when two Bobs B and C meet, and
don’t eat each other, and have high energy levels B, C. > 150, they mate, losing 100 energy
each, and creating a new Bob D at initial energy D, = 100.

Note that, compared to parthenogenesis, more total energy is invested into the new Bob,
and it starts out with a higher energy level, but less is required from each parent. This is
meant to model the advantages of shared parenthood.

Of course all those values should be easily modified parameters.

D has all his genetic characteristics set to the average of its parents, and then mutation is
applied as usual.

For those characteristics, such as perception, which are integral, the cleanest way to handle
this is probably to actually store floating point values in the “genetic code” of Bobs, and
round them to the nearest integer whenever you actually use them — but not during
reproduction. That way, if B and B’ reproduce, with B, = T and B}, = 2 then their offspring
C will have, before mutation, C,, = 1.5. In practice, its perception shall be rounded to 2. But
if C then reproduces with B, the offspring D will have perception 1.25; in practice, it will be
rounded to 1. And so on.

Sexual reproduction can be toggled on and off; parthenogenesis as well.

It will be interesting to see the effects of this addition on the speed of adaptation to changing
conditions.
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78  Save & Load

The user must be able to save to file, and load from file,
o the parameters of the game (N, P, etc)

o the state of the game, that is to say, the state of each and every Bob in the game,
including their perception, memory, strategy, etc.

Those two aspects must be handled separately; one may want to change the parameters in
bulk while the game is running. Probably the “state” save should also include parameters.

Part X

Archived Python Project 2022-2023: Avé
INSA!

The aim of the project this year is to implement a city-buildling (CB) game in the style of the
Caesar game series, which I take to include Caesar I, II, and III, Pharaoh, Zeus, and Emperor by
studio Impression Games, published by Sierra at the turn of the millennium.

Specifically, we shall aim to produce little clones of (a subset of) Caesar III with the Augustus
engine, (or maybe, for some groups, Pharaoh, Zeus, or Emperor). We shall endeavour to
keep the subset thereof which is cloned as close as possible to the original.

The features and level of polish expected will vary enormously between the FISA and FISE
versions, with the FISA version being a much shorter project of smaller scope — five weeks
in total, I believe, ending mid-December.

FISE have, approximately, until the end of January.

79  Resources and brief overview of game principles

79.1 Resources
<o Teacher-provided resources: http://files.vhugot.com/Restricted/Caesar3
¢ Game on Steam: https://store.steampowered.com/app/517790/Caesar_3/

¢ Game on GOG: https://www.gog.com/en/game/caesar_3
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¢ The Augustus engine: https://github.com/Keriew/augustus
¢ Fan site: https://caesar3.heavengames.com/

o FAQ on c3_model. txt (modding & game data extraction):
https://gamefaqs.gamespot.com/pc/63635-caesar-iii/faqs/14466

¢ Sprites Extractors:
https://github.com/bvschaik/citybuilding-tools
https://github.com/lclarkmichalek/sgreader
http://pecunia.nerdcamp.net/downloads/utilities (.exe)
Take note that the build instructions need updating.
Fill in TARGET = sgreader in .pro file and use gmake-qt4.

o References for housing levels:
https://impressionsgames.fandom.com/wiki/Housing_(Caesar_3)
https://web.archive.org/web/20060713205809/http://caesaralan.co.uk/strategy/
houselevels.html

o Blog by developers of a similar game, with interesting technical insights:
https://nepos.games/nebuchadnezzar/blog

79.2  Running the game

This game is a bit complex, and I don’t think there is a good substitute to playing its tutorial
missions and reading the game’s manual and the in-game documentation.

After obtaining the game files through whatever means suit you most, note the welcome
presence of the Manuals folder. Then install Augustus following the instructions on github.
We shall use Augustus as the reference implementation.

The sprites used by the game are minuscule on today’s high-pixel-density screens. In the
options, set “Display scale” to something suitably high. On my 1440p display, I set it to
205%; on my 1080p, 155%. Avoid round values like 200%, because that obviates the need for
smoothing, and make everything more pixelated than it needs to be.

Leave all gameplay options on the defaults settings, which are closest to the original game.
We shall focus on the buildings and mechanics from the original game, not those introduced
in Augustus. An exception to that is the Roadblock building (present in later games,
i.e. Pharaoh for roadblock, and Emperor for selective roadblock) and, as you wish, global
labour pool (idem, starting with Zeus).

79.3  Overview of game principles

The general principle is this: they are CB games inspired by historical civilisations. For the
sake of this overview, we shall focus on the Roman civilisation and the mechanics of Caesar
III, which is the main target of this project.
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The player starts with an empty terrain, and can buy buildings to place on the map. The aim
is to build a bustling city.

The challenge revolves around the evolution of houses. When you buy houses, they are not
immediately built. First, the terrain is marked as residential, and if the city is not unattractive,
people will come from outside the map, to erect small tents and live there. “People” manifest
as walkers, that appear at a specific point at the edge of the map, and follow the road to their
destination.

Tents provide room for few people, but those people have few needs, and you can put them
to work. When you place a building that provides a service, it requires a number of workers.
The unemployed in your population, if any, will apply to work. When the building has
enough workers, it provides the service (possibly less efficiently if not fully staffed).

To provide a service, a building usually generates one or several walkers, who follow the
roads randomly for some distance, then go back to base. While they walk, they provide the
service to nearby houses / buildings.

For instance, a market will generate a merchant; when the merchant walks near a house, it
replenishes the house’s stores of whatever they need, and depletes the stores of the market.
Likewise, a doctor’s office generates a walker (doctor) that reduces the probability of plague
in serviced housing, and so on.

There are a few exceptions, where buildings directly influence an area around them, with
no walkers as intermediaries. Gardens positively affect desirability in a small radius; wells
make water available to nearby housing, etc.

The gameplay structure is as follows:

o set some houses, or rather tents; the people populating them can staff a few basic
services.

o once some of those services are available to the houses, they become more attractive,
and evolve, for instance the tent may become a mud hut, which occupies the same
space, but has room for more people.

o those new people can staff new services and the industries they depend upon, thereby
making parts of the city even more attractive, and causing the residences to evolve
again.

¢ the process repeats with a set sequence of needs, until the tents have been replaced by
luxurious and dense residences, assuming all goes well.

All does not always go well. Less than perfect coverage means some parts of the city could
catch fire or fall victim to plagues, or go without some basic resource and regress. If some
crucial industry is disrupted, then a need may no longer be met once stores run out. When
that happens, housing may brutally devolve into lesser states, and evict many citizens for
want of space.
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And if that happens, then suddenly the city may no longer have enough workers to staff
some other essential industry, thereby leading to a second wave of devolution, then a third.
Homelessness favours criminality, which causes more fires and vandalism if the police
coverage is inadequate. All of this makes the city unattractive, causing more citizens to
leave and preventing new settlers from immigrating even if there is the space to do so.

A badly built city may collapse like a house of cards at the first crisis, unless judicious
emergency actions are taken (like shutting down luxury industries to ensure a steady supply
of workers for the necessities).

Building a city well means taking a lot of constraints into account when placing buildings, to
ensure that all required walkers have predictable paths and that there is a level of redundancy.

It would be a shame to see a city collapse because a fireman chose to go left three times
in a row, thereby allowing a fire to kickstart a death spiral for the city. Since the luxury
villas house far fewer people than the high-density housing they replace, even a successful
transition towards a patrician neighborhood, when badly-handled, may kickstart shortages
that may spiral out of control!

And then there is the money; you spend it to make buidings, pay your workforce, throw
festivals, import what you can’t or would rather not produce yourself, and you get it back
through taxes and trade with nearby cities. If you run out of it, it’s bad; if your taxes are too
high, the people will grumble and eventually leave.

There are, in Caesar III, dozens of building types and services.
Quoting from the manual:

To reach its highest level, housing needs access to a nearby market supplied with
four different foods, pottery, oil, furniture and two varieties of wine. Regular
visits by workers from a bathhouse, a doctor’s clinic, a barber’s shop, a priest
of each god’s temple, and representatives of a school, academy, library, theater,
amphitheater, colosseum and hippodrome are also required. If you can supply
all of these goods, and access to all of these buildings, then reaching the highest
values is simply a matter of enhancing desirability. Right- click on housing to
discover why its growth is stagnant. The panel that appears shows what the
house lacks, or the nearest negative influence on its desirability.

Furthermore, there is a sophisticated administration interface (that gets even more sophis-
ticated in later games!) to control the priorities of the various building types in terms of
staffing: who gets the available workers in case of shortage, and in what proportions?
Buildings may also be “paused” on a case by case basis. It all gets rather complex.

This is, in the end, an exercise in Python programming, not in game design. Keep things
relatively simple, at least at first. If you can make the game work with a couple of services
and house types, then you can theoretically make it work with a dozen; the technical
challenge is essentially the same. Only take the time to refine the “game” aspect once the
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technical ones are solid.

Stick with Caesar III and its mechanics, with few exceptions like maybe convenient features
from later games such as selective roadblocks, and implement them in order: basic needs
tirst, and the industries required to sustain them. Use the game’s sprites for graphics. Do
not skip steps in those needs, or oversimplify them. This will simplify the comparison of
how far different groups went.

If I see patrician villas, I should know that you have implemented grapes and wine industries
and distribution, because that is a requirement in the original game.

However, you may simplify or omit things outside of the “main path” of the game, which I
consider to be housing. For instance, the mood of individual gods, or Caesar’s favour, may
be done without. The need for water or oil may not.

The precise needs for different levels of housing are given in c3_model. txt.

80  Expected features

Features marked as A or E are required of FISA or FISE, respectively. Features marked as a
or e are partly required, or optional but recommended.

The main difference between what’s expected of FISE and FISA is the complexity of the
game mechanics. The the game works with just one type of houses and one service, it’s
enough for a good project in FISA, but will be considered the bare minimum in FISE.

The text may offer more nuance on what should be implemented and suggest simple
approaches to satisfy the requirement without too much pain, or more advanced approaches
for those who want to show off their skills.

Both simple, conservative choices, implemented very competently, and more ambitious
ones, even not fully realised in the implementation — but realised enough to showcase their
potential — can result in excellent marks. Choose tactically.

Any feature not marked as required is entirely optional.
(1) AE: Done in Python 3.
In case there was any doubt, this is a Python project. ..

You may need to use some older version of Python (3.7, 3.8,...) for compatibility with
some libraries or dependencies that may not be updated very frequently, like PyGame.

(2) AE: GUI framework of your choice
The game should of course have a GUL

You may choose
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¢ PyGame, https://www.pygame.org is the most common choice among students
for this type of projets.

¢ the Arcade Library https://api.arcade.academy
https://learn.arcade.academy.
Very fresh, but active; a few groups used it and had a good experience.

o Tkinter,
o PySimpleGUI (with TkInter backend only; simpler to begin with)
o PyQt5 or PyQt6 (more powerful, more complex, external requirements ®))

o wxPython, https://www.wxpython.org
Bindings to wxWidgets, similar to PyQt.

¢ PursuedPyBear, https://ppb.dev
This one seems very fresh out of the oven, and not documented.

o Kivy, https://kivy.org

o or anything that works with Python, really, I'm not picky, what matters is the
result.

Test the different possibilities, and choose wisely.

Based on previous experiences, and the nature of this project — especially the RTS
aspect — I think PyGame is the safest choice for this project, in that most groups in
previous years have used it and done satisfactory things.

PursuedPyBear seems too fresh.

PyGame is far from perfect, so I'm exceedingly interested in hearing from you if you
make something else work.

I haven’t seen wxWidgets used in projects, but it ought to be nearly as mature and
usable as PyQt.

(3) AE: Graphical representation of the map.

The map must be represented graphically, ideally in a near identical way to Caesar III
if possible.

The view may be 2D, top-down, using sprites (by far the simplest option — you
can even have a terminal-based one as a fallback and to develop the logic before a
more sophisticated rendering engine is available), isometric 2.5D (as in Caesar III;
similar views have been consistently achieved by most groups year after year in similar
projects, so it is really recommended), or full 3D (do not even attempt this unless you

(Ce)https ://pypi.org/project/PyQt5/; cf. http://doc.qt.io/qt-5/examples-graphicsview.html pour
de la documentation C++. C’est & adapter a la version Python, car PyQt5 est juste une bibliotheque de liens
(bindings) vers Qt5.
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(4)

(5)

(6)

already have considerable experience with a suitable framework. Tests have been done
last year with Ursina and Panda3D, but neither has been found suitable for use in this
project).

If you go the 2D route, note that fan sites have a collection of 2D sprites which can
probably be downloaded and used.

For 2.5D, the original sprites of the game should be used — note that, for copyright
reasons, this severely restricts the diffusion of your project.

aE: Sprite Upscale x2

If you use the original sprites of Caesar 3, you will notice that they are very small by
today’s standards, and can’t really be used at native resolution.

I recommend using an Al upscaler such as waifu2x-ncnn-vulkan, and whatever image
manipulation operations you deem necessary, to double their size.

This has the added benefit, from my point of view, of making sure you cannot simply
use the Julius and Augustus projects as rendering backends, since they won’t work on
differently-sized sprites.

AE: Save and load. Pause.

Those games can be loooong. You must be able to save the game state whenever you
want, and load it without loss of information. That includes the state of every walker
and building etc.

This will be extremely important for the defense, as you will not have time to play
several full games during the demonstration. Instead you will load saved games, taken
at interesting points of the life of your cities, and from those specific points you can
add or remove buildings, shutdown or activate industries, and thus demonstrate the
impact of those actions upon your city.

The quality of your defence plays a huge role in your final mark, not because it is
evaluated as such, but because it determines what the jury understands of your project.
Consequently, you must anticipate features of the game which make showing it off
easy. Save and load is one of those. Being able to pause the game would be another.
You may think of other things in the same vein. Do not hesitate to implement them
and discuss it with me.

AE: Faithful Caesar III mechanics and sprites.

I would really appreciate it if you would all use the same sprites as the original game,
as much as possible, and implement clear subsets of the mechanics of the game. This is
not to stifle your creativity, but to facilitate quick understanding of what you are doing.

If all groups use the same kind of units, buildings, and mechanics, with somewhat the
same balance, it becomes easier to understand at a glance what’s going on, and how
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two groups differ. This is especially crucial during the defence.

You have a very short time in which to show off your work — if much of that time is
spent explaining that your drones need to mine unobtainium to build starships, rather
than mine clay in order to make pottery, in the end that is time not spent showcasing
how many features you support and how fast the game runs, which is probably not to
your advantage.

Instead, if everybody uses the same basic concepts and vocabulary, some level of
background knowledge can be assumed and we can quickly concentrate on the aspects
that truly differentiate the groups. Water and oil and clay all play the same role for
everybody, because everybody copies Caesar III, and we all know what we are looking
at.

That being said, if you absolutely yearn to make a space-themed CB game, or a
fantasy-themed game, or a horror-themed game (please, not that one), I will not
explicitly forbid you from doing so, but be aware that you will need to communicate
your mechanics extremely efficiently, and convince the jury that they are more or less
equivalent what is expected.

Either way, sprites should be as recognisable as possible. I shall try and provide them
in a convenient package.

Of course, as stated before, the point is not to re-implement everything. Itis to implement
a well-chosen subset, avoid having to reinvent game balance from scratch, and facilitate
communication. Start with the basic aspects of the game, following the tutorial, and
taking values (price of buildings, number of workers required, distance walked by the
walkers,...) from gamefiles and wikis. Tweak only when you need to. Again, this is
not a game design course; the game is a pretext for coding.

Do not needlessly deviate from Caesar III mechanics and values: this is a complex
game, whose balance rests on carefully tweaked numbers. Balancing all the constraints
may simply not be possible or fun if some numbers change. Experimenting with many
sets of gameplay parameters is not a tactical investment of your energy.

Again, if that tickles your fancy to be original and go with different units, I'll technically
allow you to do that, in the same sense as I'll allow you to shoot yourself in the foot. At
the end of the day, it’s your foot. I just don’t recommend that course of action.

If you simply must differentiate your project from the other groups, perhaps targeting
a faithful copy of another game of the same series (Pharaoh, Zeus, Emperor) would be
the safest bet.

The main risk I see here is that it is still more explaining to do to the jury, in particular
the “candide”, who might just be getting familiar with C3, but not with the other games.
The second risk I see is that I have fewer resources to provide to help, and there is
nothing equivalent to like Julius or Augustus for those games. Those risks are still

421



(7)

(8)

(9)

manageable overall.

Regardless, if you plan on deviating from C3, please talk to me about it during the lab
classes.

AE: Real-Time Aspects.

Note that such a game is inherently “real time” in the sense that there are no discernible
turns. The many buildings and citizens and walkers of the city live their lives
simultaneously, and the city must remain reactive to any action taken by the player at
any time.

This real time aspect can be tricky to implement correctly. You will need a well
thought-out architecture and probably some form of concurrency (multithreading,
multiprocessing,. . . Sec. 31 p4): “Parallelism and concurrency”) which you will have
to figure out on your own, since that is mostly taught during the second semester.

You can also try doing most everything in one thread, but it has its own difficulties:
if the main game loop is not fast enough, you will have terrible input lag, dropped
inputs, and more.

Libraries like PyGames usually offer examples and propose standard ways of handling
inputs, event queues etc. By starting from pertinent examples, you should be able to
get things working.

I thought this aspect ambitious last year, when I gave my first RT-based project (the
previous ones were either turn-based or radically different types of work), but to my
surprise and delight, no group had much trouble with it.

FISA:

Keep the game very simple and lean so that any architecture can be made to work. For
instance, if animating your sprites becomes a problem, then just don’t animate them.

aE: Walker visualisation

Caesar III offers a variety of views of your city, each focused on one industry or service.
For instance, one view lets you see water coverage, and related walkers, while hiding
all other aspects. You must (FISA: should) implement such a view for each of the
aspects you introduce in your project. Again, this is essential (FISA: useful) for a good
defence, as it is otherwise difficult to quickly showcase one particular mechanic —
especially if you have implemented many of them.

e: Variable Speed

Saved games help you show off specific game configurations, but to really get an idea
of the flow of the game, it is best to see the city evolve. But we don’t have time for that
in a defense.
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(z0)

(x1)

(12)

(13)

(14)

Thus, it would be helpful if the speed of the game could be changed — specifically
increased — so that we can see the town react on fast-forward.

Of course, how fast the game can run when at full speed will depend upon both your
machine and the quality of your implementation. Thus, for the defense, you can also
prepare time lapse videos showing the relevant points.

Note that this can be complex to get right, as it divorces real time from game time. If
you want that feature, you should plan for it from the start; adding it post facto is liable
to break things badly.

No procedural map generation.

Caesar Il has fixed maps, designed in an editor. For that type of game, where one stays
hours on the same map, and the exact shape of the map is an important factor to the
difficulty, this is enough. There is no need to implement procedural map generation.

e: Trading
Have neighbouring cities with which to trade specific goods, as in CIII.
e: Administration

Implement some degree of global control over your city to adjust tax levels, industry
priorities, visualise service coverage (this is the most important part, as discussed
previously), and so on.

Disasters and Invasions/War
There are some combat mechanics in CIII; you can implement them if you want.
Gods and favour of Caesar

Beyond providing services, temples also serve to appease the gods, who might send
a disaster your way if they feel neglected. Likewise, Caesar may attack you if you
mishandle your treasury too much.

It would be interesting to implement those aspects, but they are not at all essential.
Focus first on more visible services and industries, and their walkers.
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Part XI

Archived Python Project 2021-2022: Age of
Cheap Empires

The aim of the project this year is to implement a strategy game in the style of the Age of
Empires game series — specifically, the first two. The first one being simpler, it seems a better
starting point.

The features expected will vary enormously between the FISA and FISE versions, with the
FISA version being a much shorter project of smaller scope — five weeks in total, I believe,
ending mid-December.

FISE have, approximately, until the end of January.

81 Resources and brief overview of game principles

81.1 Resources

If you are familiar with those games, splendid. If not, it should go without saying that you
do not need to buy or play any of these games. You can get all relevant information by
watching videos of AoE I and II on the internet, and consulting the wiki or the official site:

¢ https://ageofempires.fandom.com/wiki/Age_of_ Empires
¢ https://ageofempires.fandom.com/wiki/Buildings_(Age_of_Empires)
¢ https://ageofempires.fandom.com/wiki/Units_(Age_of_Empires)
o https://ageofempires.fandom.com/wiki/Technology_(Age_of_Empires)
¢ https://www.ageofempires.com/tech-tree/greek/
The wiki shall serve as a reference document on technologies, unit types and statistics, etc.

For a more hands-on look on that genre, you can install 0 A.D., a game originally made as a
mod for Age of Empires II, now entirely free software. You can install it on most modern
Linux distributions with a single command; for instance, for any Debian-based system,

sudo apt install Oad

will do the trick. 0 A.D. is its own thing, with its own unique mechanics, but remains
extremely similar in look and feel to AoE I and II, so it can give you a general idea of how a
game like that plays.
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For large screens, you may want to create a file ~/.config/0ad/config/local.cfg contain-
ing a line of the form gui.scale = "1.875", to scale up the GUI elements, including the
fonts — here by a factor of 1.875, to replace by what works for you.

I am hoping that enough students will have played an AoE game before — or at least some
similar RTS game — that I can affect one per group, and that they can serve as “RTS experts”
within the group. If not, too bad, but it should not be much of a problem.

81.2  Overview of game principles

The general principle is this: they are real-time strategy games (RTS) inspired by historical
civilisations and battles, where players control units on a map. Several players share a map;
the last one standing wins.

You start with villagers and a Town Center.

Villagers can acquire resources: they can forage, hunt, fish, or farm for food, fell trees for
wood, and mine for gold or stone — all of which takes time. Once they drop resources at the
town center (or other compatible drop points), the player can use them.

For instance, for 50 food, the town center can create a new villager — a process that takes
20D to 25(8) seconds, and during which the town center cannot create other units or research
technologies. A technology is researched at a building, and changes some aspect fo the
civilisation, generally for the better: given access to new buildings or types of units, improve
existing units, etc.

Villagers can also build new buildings Y — which costs wood, and even stone for things
like castles. They are poor fighters, though. If you want a fighting force, build a Barracks,
and train soldiers there. They cost food, along with wood for archers, pikemen etc, and some
gold. The more powerful units are usually more gold intensive. Cavalry units (the horse is
not treated as separate) are also quite food-intensive. There is a kind of rock-paper-scissors
relationship between the different unit types. For instance archers are generally good against
infantry, that tends to die before getting to them and be vulnerable to shoot and run tactics,
but weak against cavalry. Some units have special bonuses against others; for instance, in
AoE1II, the dirt-cheap Pikemen infantry line has massive bonuses against cavalry, reflecting
the historical fact that cavalry charges fare poorly against rows of long, pointy sticks.

There is a population cap: 50 in AoE I, 200 in AoE II — and I believe it can be set up to 500
in AoE II Definitive Edition, but I never heard of anybody plays with those settings. The

DAOEI
() AoE I
(Mn AoE, military units cannot build anything — with the exception of the Sicilian Serjeant, a unique unit
introduced in 2021.
In 0 A.D., from what I have seen, military units are also builders — and only they can build military buildings.
I'd prefer sticking with AoE villagers in your game.
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difficulty of the game is to balance your economy (villagers gathering resources) and your
army.

There are limited resources on the map — how much exactly depends on the map type
and on random generation. Most maps include a gold and a stone mine not far from your
starting position. Others you find by exploring the map; or other players find them before
you. They contain a fixed quantity of the resources; when they are depleted, that’s it. Tree
don’t regrow — though there are a lot of them, — nor do the berry bushes, or the animals.

Farms can be planted, that generate a lot of food (though still a fixed quantity) for a modest
wood investment. They are the main source of income starting midgame.

In a typical game, stone and gold run out late-game. Wood doesn’t, typically, and if wood
doesn’t, neither does food. But it may on some map type: in a map comprised of very small
islands, there may not be a lot of wood available, which constrains the use of a large navy. ..

The games offer a fairly large number of civilizations. They are, however, symmetric RTS,
since the all civilisations share the same units and technologies, with only minor variations
(and one or two unique units in AoE II). This is opposed to asymmetric RTS like Starcraft,
with fewer factions, each with entirely different building, units, resources, and strategies. (¥

In our small project, we can pretty much ignore the “multiple civilisations” aspect. One is
enough, provided it has access to enough unit archetypes — e.g. infantry, cavalry, archery,
siege, priests/monks 9, perhaps a navy — to enable different strategies. At least two of those
would be nice.

The most important technology available to a player is “going up an age”. AoE I for instance
has the Stone Age (starting age), Tool Age, Bronze Age, and Iron Age. Moving up the ages is
expensive, but essential, as in unlocks a large number of buildings, units, and technologies,
as well as upgrading existing buildings and units.

You may include such a mechanic if you have time, but it is not absolutely essential. This is,
in the end, an exercise in Python programming, not in game design. Keep things relatively
simple, at least at first. If you can make the game work with one age and two military unit
types, you can also make it work with four ages and five types: the technical challenge is
essentially the same. Only take the time to refine the “game” aspect once the technical ones
are solid.

(DAOE IV is not released yet, but it seems to be designed as an asymmetric RTS, to a large extent. Which I
approve, because having the same “armored guys with two handed swords” as infantry in European, Arabic,
and Mesoamerican civilizations was a bit jarring. It was not a problem in the original release, with only
European civilisations, but twenty years and twenty-two new civilisations later, it looks a bit weird (even if the
Unique Units help in that regard).

(@They can convert enemy units. . .
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82  Expected features

Features marked as A or E are required of FISA or FISE, respectively. Features marked as a
or e are partly required, or optional but recommended.

The text may offer more nuance on what should be implemented and suggest simple
approaches to satisfy the requirement without too much pain, or more advanced approaches
for those who want to show off their skills.

Both simple, conservative choices, implemented very competently, and more ambitious
ones, even not fully realised in the implementation — but realised enough to showcase their
potential — can result in excellent marks. Choose tactically.

Any feature not marked as required is entirely optional.
(1) AE: Done in Python 3.
In case there was any doubt, this is a Python project. ..

You may need to use some older version of Python (3.7, 3.8,...) for compatibility with
some libraries or dependencies that may not be updated very frequently, like PyGame.

(2) AE: GUI framework of your choice
The game should of course have a GUL
You may choose
¢ TkiInter,
o PySimpleGUI (with TkInter backend only; simpler to begin with)

o PyQt5 or PyQt6 (more powerful, more complex, external requirements )

o PyGame, https://www.pygame.org

o wxPython, https://www.wxpython.org
Bindings to wxWidgets, similar to PyQt.

¢ Kivy, https://kivy.org

¢ the Arcade Library https://api.arcade.academy

https://learn.arcade.academy

¢ PursuedPyBear, https://ppb.dev
This one seems very fresh out of the oven, and not documented.

(Ohttps://pypi.org/project/PyQt5/; cf. http://doc.qt.io/qt-5/examples-graphicsview.html pour
de la documentation C++. C’est & adapter a la version Python, car PyQt5 est juste une bibliotheque de liens
(bindings) vers Qt5.
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o or anything that works with Python, really, I'm not picky.
Test the different possibilities, and choose wisely.

Based on previous experiences, and the nature of this project — especially the RTS
aspect — I think PyGame is the safest choice for this project, in that most groups in
previous years have used it and done satisfactory things.

PursuedPyBear seems too fresh, and I have never had any group try Kivy or the Arcade
— but then again, I have never explicitly proposed them before.

PyGame is far from perfect, so I'm exceedingly interested in hearing from you if you
make something else work.

I haven’t seen wxWidgets used in projects, but it ought to be nearly as mature and
usable as wxWidgets.

AE: Graphical representation of the map.
The map must be represented graphically.

The view may be top-down, using sprites (by far the simplest option), isometric 2.5D
(ala Baldur’s Gate; an ambitious choice, though not too complex compared to 2D if
done well), or full 3D (do not even attempt this unless you already have considerable
experience with a suitable framework. Tests have been done last year with Ursina and
Panda3D, but neither has been found suitable for use in this project).

AE: Save and load.

Those games can be long. You must be able to save the game state whenever you want,
and load it without loss of information. Note that,if you have an Al, that includes
what the Al knows about the world, and more generally its state of mind (planning an
attack, game plan, etc).

This will be extremely important for the defense, as you will not have time to play
several full games during the demonstration. Instead you will load saved games, taken
at interesting points of various games, to show off big battles, Al gameplan, etc.

ae: AoEl-adjacent “antique” theme and units.

I would appreciate it if you would stay with roughly the same theme an units as AoE 1.
This is not to stifle your creativity, but to facilitate quick understanding of what you
are doing.

If all groups use the same kind of units, buildings, and mechanics, with somewhat the
same balance, it becomes easier to understand at a glance what’s going on, and how
two groups differ. This is especially crucial during the defense.

You have a very short time in which to show off your work — if much of that time is
spent explaining that your drones need to mine unobtainium to build starships, which
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are weak to laser attacks but strong against Psykers, ... in the end that is time that
is not spent showcasing how smart your Al is and how fast the game runs, which is
probably not to your advantage.

Instead, if everybody uses the same basic concepts and vocabulary, some level of
background knowledge can be assumed, we can quickly concentrate on the aspects
that truly differentiate the groups.

That being said, if you absolutely yearn to make a space-themed game ?, or a fantasy-
themed game, or a horror-themed game (please, not that one), by all means do so, but
be aware that you will need to communicate your mechanics extremely efficiently, and
convince the jury that they are more or less equivalent what is expected.

Either way, sprites should be as recognisable as possible. If you can find AoE I or II's
own sprites somewhere, whether from the original or “Definitive” editions , that’s
perfect.

You can and should also dip into the wiki, linked above, for ideas as to units and
technologies.

Of course, the point is not to re-implement everything. It is to avoid having to reinvent
game balance from scratch. Pick a few units, lift the health, attack values, cost, creation
time etc from the wiki, and start from there. Tweak only when you need to. Again,
this is not a game design course; the game is a pretext for coding.

You can go nuts with game design when your engine is solid; spending too much time
pondering how many hit points and armor your hoplites should do is not a tactical
investment of your energy.

Again, if that tickles your fancy to be original and go with different units, I'll allow
you to do that. Ijust don’t recommend it.

(6) aE: Human vs. AI match.

This is a game of war. What is war without an opponent? Since multiplayer is an
entirely different kettle of fish (cm) you will need to implement some kind of AL

For FISE, it is expected — or at least hoped — that an Al can take control of a civilisation,
exactly as the player does — preferably without cheating, but if you must, you can
give it extra resource or a discount. . . If you do, however, you must include an option
or difficulty setting to disable that.

Regardless, it must have a recognisable game plan: gathering resources, building stuff,
researching technologies, training units, mounting assaults.

(DStar Wars Galactic Battleground (2001) is precisely AoE Il with a Star Wars skin.
(emTt is quite possible that you will be called upon to add multiplayer functionality to the game during the
next semester, as part of the Network Project. I haven’t talked to Mr. Toinard about this yet.
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To understand what it means to have a game plan, you can learn from good AoE
players: there is a general consensus on what you should do at the beginning of a game
to ensure a good position — a concept similar to overtures in Chess. What should the
villagers gather in priority, what should they build and when, to optimise the early
economy. For instance, this video covers the beginning of the game for AoE II. You can
try and do something similar for your own game, and implement it as an Al strategy.

For FISA — or for FISE who are in over their heads — you should probably keep things
simpler, and have an opponent that plays by different rules. You could have savages or
raiders or demons or what have you spawn from special buildings — let us call them
Hell Gates — at an increasing rate, and from time to time they all converge upon your
buildings and kill everything in sight, then, for a change, burn everything in sight. No
resource management needed, nor any particular intelligence beyond untrammelled
aggression — and maybe the good sense not to leave to Gates undefended.

The aim of the game becomes to find and destroy the Gates before being overwhelmed
or running out of resources.

In what follows, we shall speak of “Al” only if the computer emulates a human player,
playing by the same rules (+/- mild cheats).

ae: Real-Time Strategy.
FISE:

The real time aspect can be tricky to implement correctly. You will probably need
a good architecture and some form of concurrency (multithreading, multiprocess-
ing,. .. Sec. 31 px4): “Parallelism and concurrency”) which you will have to tigure out
on your own, since that is mostly taught during the second semester.

You can also try doing everything in one thread, but it has its own difficulties: if the
main game loop is not fast enough, you will have terrible input lag, dropped inputs,
and more.

That is not to say it is impossible for you to get an RTS working, only that it seems
ambitious. Libraries like PyGames usually offer examples and propose standard ways
of handling inputs, event queues etc. By starting from pertinent examples, you should
be able to get things working.

However, let us note that it is in fact the first time I propose a Python project that is not
intrinsically turn-based. That makes you pioneers, boldly going where no third-year,
tirst semester STI student has gone before. That, or guinea pigs. Depending how you
look at it.

If you fancy yourself neither a pioneer nor a lab rat, you may want to adapt the game
to be somewhat turn-based.

FISA:
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Keep the game very simple and lean so that any architecture can be made to work. For
instance, if animating your sprites becomes a problem, then just don’t animate them.

Or, you can go with a barebones turn-based adaptation of the game, played with much
fewer units on a much smaller map; a bit like a chess game.

Variable Speed — if RTS

Saved games help you show off specific game configurations, but to really get an idea
of how your Al works, it is best to see a game in full. But we don’t have time for that
in a defense.

Thus, it would be helpful if the speed of the game could be changed — specifically
increased — so that we can see the Al build its town, mount its assaults, and react to
your own, all at a reasonable pace.

Of course, how fast the game can run when at full speed will depend upon both your
machine and the quality of your implementation. Thus, for the defense, you can also
prepare time lapse videos showing the relevant points.

Note that this can be complex to get right, as it divorces real time from game time. If
you want that feature, you should plan for it from the start; adding it post facto is liable
to break things badly.

ae: Procedural map generation.

AOE generates its maps randomly, following a set of constraints regarding starting
positions, resource allocations, terrain and elevation, etc.

You should probably do something like that. That said, it is not essential, so you should
start by creating a single map, and getting things working on it first.

Map generation is not essential, but is a nice addition and should be very simple to
implement and integrate, while adding spice to the game — especially combined with
fog of war. Thus it is recommended, if you have time.

e: Fog of War

AOE uses a fog of war: the map is revealed by your units, and enemy units are only
visible while in the line of sight of one of your own.

This is nice to have, but not essential to the game.

Note that if it is implemented, then the AI must obey the same rules as the player,
and not gain any information from what happens outside its visibility. This is not
trivial to implement correctly, and even less so to assess in a defense — how does one
differentiate between Al knowledge and guesses? .. .especially while the Al is itself
hidden under our fog of war.

Replay games

431



(12)

(13)

(14)

(x5)

Likewise, beyond save games, that preserve the state of the world at a given time t,
you could try saving “replays”, that save the game at every time, and enables us to
replay it like a video, but in the game engine.

Of course, the implementation would not make 100 normal saves a second. The idea
instead would be to save the commands sent by each player during the course of the
game, and resend them with exact timing.

That relies on the game engine being entirely deterministic. Not such a simple
assumption, especially combined with real time aspects. Even if perfectly implemented,
such recordings break at the slightest change in game logic — notice that nearly
every game offering such features announces with each update that old replays are
incompatible with the new version — AoE II and Tekken 7 are examples of such games.

That means that if you fix a bug in, say, the Al, just before the defense, your replays
may — and likely will — break.

For those reasons, pursuing this feature is not recommended.
e: More than 2 players.

The minimum that must be implemented is Human vs Al, and since we eschew
multiplayer, there is at most one human player. AoE games support up to 8 players.
You can do the same if you wish. Human vs 7 Al can be fun.

If you do so, implementing diplomacy to create factions would be relevant.
https://ageofempires. fandom.com/wiki/Diplomacy

If you do that, you will probably need to have different map sizes.

e: Al vs. Al Let them fight!

Gaming is hard work. Sometimes, you just want to watch a good war, but leading an
army is too much work.

If you have a working Al, there should be nothing preventing you from creating a
game with only Als, and watch them duke it out.

Civilisation variety.

AoE games implement a great many civilisations, each with different technology trees,
bonuses, and unique units (in AoE II).

As discussed in the overview, I do not advise emulating that. One civilisation is quite
enough, provided it is a bit versatile.

ae: Ages.

“Aging up” is the most important technology in the AoE games. Gameplans revolve
around the trade off of aging up now for a power boost, at the cost of resources and
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time, or using the resources to mount a raid against your opponent, in the hope of
ruining their economy and delaying their own capability to age up.

Having something like that would be nice, but is not absolutely essential for the project.

If you do implement ages, just go with two of them rather than four or more. At least
that is my advice unless you already have an extremely solid engine.

aE: Starting resources.

You should be able to start a game with varying quantities of resources, not just the
default. Ideal, you could even tweak this per player, making this a very cheap, but
very effective way to control game difficulty.

Letting the Al start with lots of resources can be a good way to showcase its game plan.
AE: Cheats and AI commands.

AoE has many fun cheats. Cheat codes in games are not just there for the benefit of
players, however. They are useful to test the game. Here are the cheat codes that you
should implement (lifted directly from AoE I and II)

o NINJALUI: get 10000 of each resource.
o BIGDADDY: spawn very powerful unit at town center.

o STEROIDS: training, building, research, foraging, farming, and mining times are
instantaneous. . . for all players, not just you.

o REVEAL MAP: Reveal the entire map, exactly as though you had explored it,
which means that enemy units are not revealed, while trees, and stone and gold
mines are. Enemy buildings are not revealed. Issuing the command again toggles
effect.

o NO FOG: Remove the fog of war. Any explored part of the is therefore fully
visible as though under the line of sight of your units. Issuing the command again
toggles effect.

Additionally, you should have a few commands to influence the Al, force it to launch
an immediate attack, check its state of mind, put your civilisation on autopilot, or
simply exchange the civilisations you and the enemy Al control.

The idea is that you should have commands that enable you to debug and show off
your Al. What commands those are will depend on your Al
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Part XII

Archived Python Project 2020-2021:
Dungeons & Dunces

83 Overview

The aim is to create a Computer Role-Playing Game (cRPG) loosely based on an extremely
simplified version of the D&D 3.5 or Pathfinder first edition ruleset, in the style of games
such as Baldur’s Gate, Neverwinter Nights, Pathfinder: Kingmaker, etc.

The following links offer exhaustive references to the rulesets in question.
https://www.d20srd.org/index.htm
https://www.d20pfsrd.com/

The Pathfinder system is preferred where these differ, but the DnD page is linked as well
because it is a bit simpler to read and navigate in my opinion. They are very similar in any
case.

If you are completely unfamiliar with those systems, or with RPGs in general, take a few
minutes to read up on the general principles, or better yet talk with a fellow student with
experience in such games before reading on.

The focus will be on a dungeons crawling for a small (3 max), low level (level ~ 1-5) party,
with classes covering at least the three archetypes: Fighter, Mage, Rogue.

84  Features, Required and Optional

Any feature not marked as optional is required.
(1) Done in Python 3.
In case there was any doubt, this is a Python project. ..
(2) GUI framework of your choice
The game should of course have a GUL

TkInter (simpler to begin with) and PyQt5 (more powerful, more complex, external
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requirements (V) are two possibilities for building it. I hear good things about PyGame
as well.

(3) Graphical representation of the map.
The maps must be represented graphically.

The view may be top-down, using sprites (by far the simplest option), isometric 2.5D
(ala Baldur’s Gate; an ambitious choice, though not too complex compared to 2D if
done well), or full 3D (do not even attempt this unless you already have considerable
experience with a suitable framework).

(4) Grid or no grid, that is the question.

The game will need to solve whether two units are in contact, how much space they
occupy, whether they are in range of some effect or ability, and how they move.

To do so, you can use a grid, which can traditionally be square or hexagonal, or simply
compute the Euclidean distance within a floating point Cartesian coordinate system.

The latter is recommended. Grids are only used in tabletop games because gamers are
not keen on computing squares and square roots by hand multiple times every round.
With the help of a computer, this is no longer a problem.

(5) Level / Campaign editor.

The user must be able to build his own dungeons / maps, possibly involving multiple
levels and connectivity between them, and them play them.

It is not required that the user can implement complex logic in the campaign, e.g. set
triggers, handle quests etc.

It is required that levels can be built, connected to one another, and populated with
enemies, NPCs, traps, and treasure, fixed or random to some extent. In that case, the
campaign is simply a dungeon crawl.

(6) Save and load

Of course, the player must be able to save his game — at least outside of combat —and
load the game later.

(7) Random level / maze generation. (Optional but strongly recommended)

One approach can be to build a fairly impressive, static campaign to show off the game
engine’s capabilities.

Another would be to generate levels randomly, Roguelike-style.

@https://pypi.org/project/PyQt5/; cf. http://doc.qt.io/qt-5/examples-graphicsview.html pour
de la documentation C++. C’est a adapter a la version Python, car PyQt5 est juste une bibliothéque de liens
(bindings) vers Qt5.
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The two approaches can be mixed as well; for instance, a campaign could well be static,
but include, at some point, a maze that is procedurally-generated, to catch returning
players off-guard.

Exploration and line of sight.

Maps can be pre-explored, under fog of war, or completely unexplored when the party
first enters it. The unexplored map is revealed as the party moves, taking into account
the lines of sight of all.

Mobile units are only visible if a member of the party can see them.

Of course, you need to provide a map / minimap of the current level to the player,
respecting fog of war rules.

For bonus points, allow the player to consult the maps of previously visited levels the
party is not currently in, and to put their own notes and points of interest on the map.

Last known position (Optional).

If the party loses sight of a mobile unit, there may be an option to display a “last known
position” marker for that unit on the map.

If you go for “advanced Al”, you will need at least enemy units to remember where
they last saw the party, so as to mount ambushes etc.

Note that, for all intents and purposes, the player party is treated as a single unit for
the purpose of line of sight, knowledge of the map and enemy positions, etc. That is to
say, for instance, whatever the Fighter knows or sees, the Mage is aware of as well.

Talking NPCs and merchants. The game will be focused on dungeon-crawling, but it
must be possible to talk to and trade with some NPCs.

Turn-based or RTWP.
It is strongly recommended to make the game Turn-Based.

Implement at least standard and move actions; preferably full-round attacks as well, if
your game supports classes or levels with more than one attack per round.

If you are feeling adventurous, you can attempt to go with Real Time With Pause
(RTWP), but it can get more messy.

Area of effect imprint.

Some spells and abilities, such as Fireball, affect a wide area; the game should let you
see the "imprint" of the spell before you cast it, so you can position it exactly.

Single player + Al

The game must support a single player mode, facing off against Al-controlled enemies.
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Those enemies must be able to detect and engage the player party, making use of their
basic attacks and abilities, even if they may lack good judgment in applying them, and
display no sense of self-preservation.

If one creature detects the player, it may be acceptable that all of them immediately
shares that knowledge.

(Sadly this describes the Al of most cRPGs. .. )
Advanced AI (Optional).
It would be great if the AI could be more sophisticated.

In that case, each monster should have its own knowledge of the party and other allied
monsters, and be able to run away from the party to alert its friends — possibly bringing
an army back on its heels! This necessitates modeling at least basic communication
between enemies.

It should use discernment in avoiding dangerous Areas of Effect, whether the party’s
or his own.

This intelligence can be conditional on the creature having a high enough INT stat;
some creatures may be designated as leader of a group of its lesser kin or subordinates,
and coordinate their actions so long as it as able to communicate with them, making it
a priority target.

Different creatures may have different level of aggressiveness and courage or morale,
leading them to either fight to the death of flee as the slightest hint they are outmatched.
This of course may be influenced by the presence of a designated leader or of powerful
paragons of their race on the battlefield.

Classes.
Of course the point is not to implement 50 classes or esoteric D&D mechanics.

Just pick the main features of Fighter or Barbarian, Sorcerer or Wizard (henceforth
called "Mage), and Rogue.

You will implement all attributes (STR, DEX, CON, INT, WIS, CHA), and their basic
effects on attack and damage rolls, armor class, etc. Use your common sense and do
not try to implement every feature in the rule set. Start with those features which are
most important for combat: Hit Points, armor, attack rolls, saves, etcetera.

Each class should support a few levels with one or two feats, and two or three spells
for the mage. Of course XP gain must be implemented. XP may be granted by killing
monsters or by reaching deeper levels of the dungeon.

Rogues should implement Sneak Attack.

Mages should preferably be modelled after Sorcerer rather than Wizard due to simpler
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casting mechanics and higher usefulness in dungeon-crawls. Their spell-casting
progression can be copied from Wizard, on odd levels instead of even ones, so as to
boost their usefulness at low level. (Spellcasters are weak at low levels and shine at
higher levels; since this game will stay at low level, Mages need all the help they can
get). Cantrips shall follow the pathfinder model and be at-will.

If you introduce diseases, poisons, curses, or other mechanics, implementing Cleric as
well is a must.

Enemies may have custom classes, or they may simply use the same ones as player
characters, just with different attributes and bonuses.

Multiclassing. (Optional)

You may allow multiclassing; that it to say, to take levels in more than one class, for
instance, the first level as Rogue, and the second as Fighter, the third as Rogue again,
etc.

Note that this may complicate the character sheet, so if you choose to implement this,
plan ahead rather than trying to add the feature after the fact.

Races. (Very optional) You don’t need to implement multiple races. Humans will
suffice. But of course you can provide other races if you want, and there is nothing
more urgent to do.

Skills.

Only a small subset of available skills need be implemented. Among them are Stealth,
Disable Device, and Perception (as in Pathfinder), essential for the Rogue class.

Everything else is very optional. If you implement poisons, you will need Heal as well.

Use Magic Device is not necessary; assume the Mage and maybe the Rogue can use
the wands they find.

Of course, the full complexity of each implemented skill need not be present; the basics
will suffice.

Skill points per levels will need to be adjusted depending on how many skills you
implement.

Resting mechanics.

Of course, resting mechanics must allow characters to regain HP and spells. To simplify,
have characters regain everything in a single rest.

There must be a risk of being attacked during the rest if enemies are nearby. This can
be handled as new enemies spawning out of nowhere or as enemies making their way
from other parts of the level to attack you, the latter being more advanced.

Items.
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There should be a few items available in the level or and/or from vendors: swords, and
other weapons, armors, robes, wands, potions (in particular healing potions), rings,
amulets, etc.

Just one or two different items for each category will suffice.
Customisable hotbars and keyboard shortcuts

The GUI must provide hotbars where each character may organise their abilities, spells,
etc.

The player must be able to customise the keyboard shortcuts used to access those
abilities.

Combat logs.

The game must provide extensive combat logs. For instance every attack must show
what attack score was rolled against what AC, and it must be possible to find out
where the attack and AC scores come from. That is to say, if I see my Fighter is rolling

against an AC of 19, I must be able to find out how much of this AC comes from a
Dexterity bonus, how much from an amulet, what kind of bonus it is each time, etc.

This will be crucial to debugging the game and checking that abilities and items work
as intended.

Detailed character sheet.

Likewise, the player’s character sheets must detail the computations involved in the
character’s AC, Attack bonus, saves etc.

Inventory management.

The inventory management may be based solely on weight, or on weight and grid
geometry, with larger objects occupying more slots (in the style of Diablo or Neverwinter
Nights).

Multiplayer (Optional)

If you are *really* in need of a challenge, you can implement a multiplayer mode so
that your friends can connect to your game and take control of some characters in the
party from their own machines.

85
(1)

For apprentices

There is much less time dedicated to that project: 5 weeks in total. (end: at the end of
december).
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(2) The level editor need not be fully functional. Do whatever you need so that you can
use it to create a few levels, but it need not be usable by the end user.

(3) The DnD aspect can be toned down considerable, or even done away with entirely, as
you will not (edit a year later: I never finished that sentence and somehow nobody noticed)
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Figure 7: NASA's ST5 satellite antenna, designed via evolutionary algorithms to meet the stringent
and very specific requirements of the mission. It is the first such object to have been sent to space
(2006).
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Part XIII

Archived Project 2018-2019: Automata GUI

86 Vue d’ensemble

Le but du projet est de réaliser une application — avec interface graphique — pour la
construction de graphes orientés et de diagrammes sagittaux > d’automates d’états finis,
avec des facilités automatiques et semi-automatiques pour produire des diagrammes naturels,
plaisants, et lisibles, exportés au format IXTEX/TikZ. Voyez les figures émaillant ce document
pour quelques exemples. P)

Cette application a pour vocation de venir en aide a la minorité peu considérée des professeurs
de théorie des langages, qui ont tres envie d’illustrer leurs diapositives et polycopiés avec
de nombreux et beaux diagrammes, mais qui n’ont pas le luxe de passer a chaque fois une
heure a se reconnecter avec leur artiste intérieur afin de d’imaginer comment I’automate
devrait étre disposé pour étre “joli”, et encore une heure a se battre avec EKTgX et TikZ pour
coder une version approximative de cette vision.

Ce document donne des pistes quant a ce qui est attendu, mais ne doit pas étre abordé
comme une spécification exhaustive. Posez des questions !

Ceci est a réaliser en Python 3; le choix est ouvert pour la partie graphique, PyQt5 étant le
choix par défaut9,

Un prototype, réalisé dans le cadre du projet d’application en fin d’année par vos prédécesseurs,
est mis a votre disposition pour démarrer — mais rien ne vous empéche de recommencer a
zéro. C’est méme fortement recommandé.

87  Qu’est-ce qu’un automate ?

On abordera le module de théorie des langages en seconde période. Pendant la premiére
moitié du projet, on verra donc les automates purement comme des diagrammes, et je ne

(c0)j e. diagrammes avec des ronds et des fleches. Méme racine latine, sagitta, “fleche”, que le signe Sagittaire...
ici dans un contexte plus scientifique.

(€P)Sources: mes polys, http://www.texample.net/tikz/examples/feature/
automata-and-petri-nets/, https://www3.nd.edu/~kogge/courses/cse30151-spl8/Public/
Assignments/tikz_tutorial.pdf, https://tex.stackexchange.com/questions/148158/

make-a-tikz-automata-edge-pass-outside-the-automata,...
(Def. http://doc.qt.io/qt-5/examples-graphicsview.html pour de la documentation C++. C’est a
adapter a la version Python, car PyQt5 est juste une bibliotheque de liens (bindings) vers Qt5.
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donnerai (a I'oral) qu'une vague intuition de leur sémantique — ce qu’ils “veulent dire”.

On aura malgré tout besoin de la définition formelle de la structure, afin d’avoir le vocabulaire
nécessaire pour communiquer.

Un automate fini non déterministe est un 5-uplet A = (£, Q, I, F, ) ou:
o Q: ensemble fini d’états
o X: alphabet fini
o I € Q: états initiaux
o F C Q: états terminaux

© & C Q x (XU{e}) x Q: relation de transition
notation

(pya,q)€d = p>q  Sp,a)={qlp=>q}

Voici un petit diagramme sagittal d’automate, illustrant les différentes conventions de
représentation:

a 2 >

L’alphabet est 'ensemble des étiquettes de transition, i.e. les lettres lues par 'automate. Le
symbole ¢ ne fait pas partie de %, il est utilisé pour une transition qui se déclenche sans rien
lire. On a

r = {a,b,c}

Les états sont les ronds:

Q = {1,2,3}
Les états initiaux sont indiqués par une fleche entrante déconnectée:
I ={I}

Les états finaux sont indiqués par un double cercle ou par une fleche sortante déconnectée:
F=1{1,3}

Notons qu’il n’est pas du tout classique d’utiliser ces deux conventions dans le méme
automate; ou méme dans le méme document. L'automate ci-dessus commet donc une faute
de goftt.
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Restent les transitions:

6 ={ (1)b»2)) (1) £>3)) (2’ (1,2), (2) (1,3), (27 C’?’)}

Faites le méme exercice avec les automates suivants:

1
1
—(a0)——()——
0
0 1
0
—~(a)—
0,1
" b
~ &m0

88  Partie graphique / manuelle

Difficulté modérée; progression incrémentale; programmation objet; algorithmique simple; travail de
documentation bibliothéques Python, BIEX, TikZ. Groupe de 3 recommandé.

Réaliser un diagramme sagittal d’automate est largement une activité de dessin, régie en
partie par des considérations purement esthétiques et en partie par des conventions et
habitudes liées au domaine scientifique et favorisant la lisibilité des diagrammes.

Le point de départ de l'application est donc in fine un logiciel de dessin vectoriel assez
ordinaire, grandement simplifié par le faible nombre de figures de base dont on a besoin:
fleches, droites ou incurvées, cercles simples et doubles, étiquettes en langage mathématique

(entrée en KTEX), et c’est tout.
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Le logiciel utilisera le vocabulaire “automates” et non le vocabulaire “dessin”, par exemple

“état” et non “cercle”. Si un jour il nous vient I’envie d’avoir des états rectangulaires, cela
doit étre possible...

Placer des états et définir des transitions doit étre aussi simple et rapide que possible pour
l'utilisateur .

Notons que, bien que les noms des états soient arbitraires, on voudra parfois les nommer
par des formules. Par exemple, I'automate suivant est obtenu via un algorithme de

déterminisation, et il est essentiel de pouvoir faire apparaitre les sous-ensembles dans les
états afin d’illustrer la démarche:

De méme, dans l'automate suivant, ce sont les transitions qui portent des étiquettes un peu

“compliquées”, et pas seulement une seule lettre — pour ceux que ¢a intéresse il s’agit ici en
fait d"'une machine de Turing;:

1,1,L

o~

—( qa s
1,0,R \g

Il n’est pas totalement nécessaire que les formules mathématiques soient rendues correctement
dans l'interface graphique — le code ETEX peut étre conservé tel-quel jusqu’a I’export vers
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IXTEX/TikZ. Ce serait toutefois appréciable si les formules pouvaient étre rendues directement
dans l'interface. Si c’est le cas, il faut toutefois que l'utilisateur puisse désactiver cette
fonctionnalité, car le rendu dépend du contexte d’évaluation (IXTEX est essentiellement un
langage de programmation) et le code de 1'utilisateur peut donc ne prendre sens qu’au sein
de son document.

Ceci peut poser certains problemes au moment d’évaluer la taille des états, par exemple.
A vous de proposer des solutions pour gérer ces cas de la maniere la plus automatique et
flexible possible.

Ces briques de base, ronds et fleches, doivent pouvoir étre manipulées a la fois finement et
semi-automatiquement.

Par “semi-automatiquement”, j'entends par exemple l'alignement sur une grille — ou
plusieurs grilles — et la disposition de tout ou partie des états selon certains schémas; par
exemple, voici un automate contenant plusieurs sous-figure régulieres: deux en disposition
linéaire, et deux en cercles (ou pentagones en I'occurrence).

\
13

SH2H3—>4 \ / \ / e ol ol ol oA ad

L'interface doit permettre a 1'utilisateur de réaliser semi-automatiquement ce type de figure.
Spécifiquement 1"utilisateur doit étre capable de sélectionner des groupes de noeuds et de
les arranger selon des figures géométriques réguliéres telles que des lignes, des cercles, et
cetera.

Les arrangements faisant partie d"une telle figure géométrique — que 1’on appellera un groupe
— doivent pouvoir étre sélectionnés et déplacés collectivement. On doit aussi pouvoir régler
les parametres de chacun; par exemple le diameétre d"un groupe déja défini doit pouvoir étre
modifié par la suite. De plus, plusieurs groupes doivent aisément pouvoir étre uniformisés
— par exemple, leur donner le méme diametre, placer leur centre de gravité a des endroits
alignés horizontalement ou verticalement, etc.

Les éléments doivent aussi pouvoir étre manipulés finement; par exemple, on a finement
déformé la transition de 3 a 10 pour éviter le premier pentagone; dans I’automate suivant,
on doit pouvoir déformer la transition de q;/0 a q5/1 de maniere a éviter le croisement,
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obtenant ainsi la nouvelle transition en rouge.

qs3

89  Import et export

L’application devra pouvoir sauvegarder et restaurer ses diagrammes dans un format au
moins partiellement lisible par I’étre humain et proche du formalisme A = (%, Q,I,F9) -
avec bien sur quelques informations supplémentaire d’ordre cosmétique, telles que couleurs,
courbure, localisation (x,y), etc.

Au dela de cela, il est absolument essentiel qu’elle soit capable d’exporter au format TikZ. La
qualité de 'export TikZ est un facteur important, car l'utilisateur aura peut-étre envie de
retoucher le code généré.

Comme exemple de code TikZ, 'automate

est codé par

\begin{tikzpicture} [fst]

\node[state, initial above, accepting] (1) {$1$};
\node[state, below left of=1] (2) {$2%$};

\node[state, below right of=1, accepting right] (3) {$3%};
\draw
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(1) edge[above] node{$b$} (2)

(1) edge[below, bend right, left=0.3] node{$\eps$} (3)

(2) edge[loop left] node{$a$} (2)

(2) edge[below] node{$a, c$} (3)

(3) edge[above, bend right, right=0.3] node{$a$} (1);
\end{tikzpicture}

qui est assez lisible et descriptif. Le paramétre fst (pour Finite-State Transducer) est un
style personnalisé défini dans ce document.

Il y a bien d’autres fagcons de coder cette figure, telle qu'un matrice, ou des positions (x,y)
dans le plan explicites. Une grande flexibilité au niveau de la génération du code final est
attendue.

A vous de vous documenter sur ETX et TikZ pour voir les différentes possibilités offertes par
ces langages. L'application doit en tirer parti autant que faire se peut, afin que le diagramme
final puisse étre ajusté le plus finement possible avant I’export, et minimiser les besoins en
retouches au niveau du code généré.

Au dela de la figure, on doit aussi pouvoir exporter du code ETgX pour la définition formelle
de 'automate sous forme A = (X, Q, I, F, §). Les transitions doivent pouvoir étre générées
sous forme d’ensemble, comme plus haut, ou sous forme de tableau de transition.

90 Partie automatique

Difficulté élevée (pour obtenir de bons résultats); algorithmique poussée; recherche documentaire;
réflexion poussée. Groupe de 3 recommandé.

Méme avec une bonne interface graphique, tous ces choix et ajustements esthétiques prennent
énormément de temps. Du point de vue de l'utilisateur final, la partie “dessin manuel” de
I'application est donc a réserver pour les figures importantes, qui doivent étre réalisées avec
une qualité parfaite.

Dans la plupart des cas, 'utilisateur veut juste définir son automate “en vrac” et en quelques
clics, appuyer sur un bouton et obtenir instantanément une (ou plusieurs) proposition
de diagramme, calculées programmatiquement, qui soient d"une qualité passable. Ceci
implique de minimiser les croisements (pas toujours possible a éviter entierement — on verra
au second semestre la notion de graphe planaire, et le fait que tous les graphes ne sont pas
planaires), de disposer les états a intervales réguliers de facon a assurer un “niveau de gris”
homogene dans la figure, etc.

Il existe de nombreuses techniques spécifiques au dessin automatique de graphes, ainsi
que des métaheuristiques générales potentiellement applicables, telles que les algorithmes
révolutionnaires / génétiques, le recuit simulé, et les colonies de fourmis, pour n’en citer que
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quelques-unes.

Mettre en oeuvre ces méthodes nécessitera un gros travail de recherche documentaire et de
réflexion poussée pour comprendre des concepts difficiles au niveau 3A.

A ceci s’ajoute une difficulté supplémentaire: il ne s’agit pas de n’importe-quels graphes,
mais d’automates; les conventions de dessin ne sont pas les mémes; utiliser un algorithme
de dessin arborescent ou fractal donnerait généralement des résultats peu appropriés, méme
s’ils peuvent étre “jolis”. On voudra généralement partir de 1’état initial, aller plutot de
gauche a droite et de haut en bas, disposer les états sur une grille, sauf certains cycles et
autres motifs a détecter et a mettre en exergue, et ainsi de suite.

IIn’y a pas (ou peu) de littérature disponible sur le sujet spécifique “comment dessiner des
automates”. Les dessins sont faits par les scientifiques “au feeling”, influencés par 1'habitude
et le mimétisme sans que les conventions soient verbalisées.

Dans cette partie du projet, il vous appartiendra d’inférer une partie de ces conventions a
partir d’exemples, de les verbaliser, et de les programmer.

Un mode interactif, permettant a 1'utilisateur de fournir certaines informations sémantiques
a l'application pour guider ses choix (par exemple, ce groupe d’états va ensemble, cet état
est important, etc), ou bien de choisir entre plusieurs alternatives (algorithme évolutionnaire
avec sélection (semi-)manuelle, est a considérer.

De plus, ces outils doivent pouvoir étre appliqués semi-automatiquement au cours de
"utilisation de l'interface pour faciliter la vie de 1'utilisateur — par exemple, en détectant
automatiquement quand une nouvelle transition est créée si elle croise quelque-chose, auquel
cas elle sera créée courbe et non droite, ou bien en offrant des suggestions d’agencements
dans la marge, applicables en un clic, etc.

La partie du rapport consacrée a ces réflexions doit étre assez détaillée.

91 Répartition des taches

Il est conseillé de procéder par groupes de 6, par exemple en deux trindmes, un pour la partie
manuelle et I'import / export, et I’autre pour la partie automatique.

Dans ce cas, les trindmes doivent évidemment communiquer et intégrer leur code au projet
commun de fagon tres réguliere — les taches ne sont pas indépendantes et la répartition
ci-dessus n’est qu’une suggestion.

Il a été noté que 1 es deux partie sont de difficultés et de natures différentes, la partie manuelle
étant colorée “développeur” et l'autre “recherche”.

Choisissez bien la partie sur laquelle vous travaillerez en fonction de vos gotts et de vos
capacités.
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La partie automatique peut potentiellement déboucher sur une tres bonne solution (et donc
une note stratosphérique) en deux semaines de réflexion et 200 lignes de code,. .. mais vous
pouvez tout aussi bien passer un semestre a pondre 10 000 lignes de code produisant une
bouillie infaAme et inexploitable, de valeur 0.

En revanche, la partie manuelle est difficile a rater si on travaille réguliérement, (mais il
faudra pondre beaucoup de lignes que I'on ait les bonnes idées ou pas).

Pour minimiser le risque d’avoir une mauvaise note individuelle sur la partie automatique
en cas d’échec, il serait une bonne idée de contribuer un peu a l'interface graphique. Les cas
simples comme la détection de croisement sont idéaux pour cela.

I est bon également que tout membre du groupe ait une vue d’ensemble de I'application,
méme des parties écrites par les autres.
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(1m0}

Figure 8: De droite a gauche: remontoir, roue de couronne, rochet et son cliquet, barillet,
diverses roues, certaines portant des aiguilles, roue d’échappement, ancre de balancier, bal-
ancier et son ressort. Voir I’animation sur https://scratch.mit.edu/projects/26004123/
#fullscreen, et la vidéo https://www.wimp.com/1949-how-a-watch-works/.

Part XIV

Archived Project 2017-2018: Mon(s)tres

92  Vue d’ensemble

Le but de ce projet, a réaliser en Python 3 par groupes de 4 a 6, est de réaliser un générateur
automatique de mécanismes horlogers pour montres mécaniques doté, de plus, d'une

Figure 9: Une alternative au balancier: I'échappement a ancre, utilisant un pendule.
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fonction de visualisation.

La génération se fera au moyen d’algorithmes évolutionnaires, une classe de métaheuristiques
qui imite I"évolution biologique pour résoudre des problemes complexes pour lesquels une
approche directe (résolution d’équations) n’est pas faisable, et ou 'espace de recherche
est trop grand pour une approche par force brute. Plus spécifiquement, on utilisera des
algorithmes génétiques.

Le principe est le suivant: nous générons aléatoirement une population de montres... ou
plutot de monstres, car un mécanisme généré aléatoirement a peu de chances d’étre utile
pour savoir I'heure... Cette population est ensuite soumise a des conditions de sélection,
telles que les monstres qui sont de meilleures montres —i.e. qui sont plus utiles pour mesurer
le passage du temps, ou plus efficaces — ont de meilleures chances de se reproduire, et moins
de périr. Quelques mutations peuvent aussi avoir lieu. Apres de nombreuses générations,
on doit obtenir d’excellentes montres.

93  Les sous-problemes

93.1 La modélisation des monstres

On impose une abstraction au niveau des pieces d’horlogerie: nos monstres évoluent dans
une soupe primordiale de remontoirs, roues dentées (faisant office de rochet, couronnes,
etc. On considére que toutes les roues ont entre 3 et 1000 dents, identiques pour toutes les
roues sauf I’échappement @), roues d’échappement (si ’on veut la considérer séparément,
ce qui est conseillé), ancres, balanciers, ressorts (on pourra considérer un ressort comme
un ressort moteur ou un ressort de balancier), tiges (pouvant faire office d’aiguilles ou de
tiges de pendule). Le boitier est considéré comme une piece toujours présente. On ignorera
totalement les frottements.

Selon les ambitions de votre groupe, vous pourrez choisir d’ignorer totalement les consid-
érations d’espace:

93.1.1 Mode connexion libre

Chaque piece peut se connecter a n'importe-quelle autre piece a certains points de connexion:
par exemple, une roue dentée peut se connecter sur son axe, et sur ses dents. Si une roue
dentée se connecte a une autre sur leurs dents, on s’attend a ce que 1'une entraine 1’autre; si
elles se connectent sur leurs axes, on obtient un pignon. Rien n’empéche une troisieme roue
de se connecter sur le méme axe.

)On pourra tout de méme aussi considérer la roue d’échappement comme une roue dentée ordinaire dans
un premier temps, pour simplifier.

452



Une tige peut se connecter aux deux bouts; par exemple, une tige connectée au boitier a un
bout et a n'importe-quel autre objet, par exemple une roue, a 'autre bout, forme un pendule.
Une tige connectée a un axe de roue dentée d'un co6té, et libre de 1'autre, fait office d’aiguille.
En revanche, connecter une tige aux dents d’une roue stoppe le mécanisme.

Une ancre peut se connecter aux dents (a une roue d’échappement), et sur son axe, par
exemple a un balancier ou a une tige.

Un ressort spirale peut se connecter en son centre et a son extrémité; par exemple, un ressort
connecté a deux roues dentées coaxiales, 'une par le centre, I’autre par les dents (on imagine
que le ressort se connecte sous les dents), forme un début de moteur.

Un remontoir peut se connecter sur 1’axe ou sur les dents d"une roue, avec les mémes effets.

A vous de définir le reste des regles de connexion entre les pieces, et de prévoir leurs effets.

93.1.2 Mode 2D3:

Le mode précédent ignore un certain nombre de problémes. Il n’est en réalité pas immédiat
de connecter n'importe quelle piece a n'importe quelle autre. Par exemple, les roues dentées
ne sont pas de taille arbitraire: comme les dents doivent étre compatibles pour les roues
connectées entre elles, le nombre de dents est proportionnel a la circonférence, et il n’est
donc pas possible d’en varier la taille arbitrairement. Pour connecter deux roues distantes
entre elles, on doit souvent avoir recours a des pignons fous. Le mode précédent, ignorant
de tous ces aspects, va donc résulter en des constructions dignes d’Escher, impossibles a
mettre en oeuvre sans rajouter des composants pour assurer les liaisons.

En mode 2D7, les piéces posséderont des dimensions largeur/hauteur, et on les placera sur
un plan; on aura également besoin d'une dimension de profondeur, discréte. Par exemple,
une roue avec pignon occupe deux plans superposés: un pour la roue, et un pour le pignon.
Un moteur occupe au moins trois étages, un pour chaque roue et un pour le ressort. Les
connexions se feront lorsque les piece sont situées approximativement au bon endroit pour
se toucher.

93.1.3  Que choisir ?

Le premier mode sera a priori plus aisé a mettre en ceuvre du point de vue des algorithmes
évolutionnaires — il y moins de possibilités — mais obtenir des visualisations intéressantes
sera nettement plus difficile.

93.2  Mutation, sélection, reproduction

Pour utiliser des algorithmes génétiques, il ne suffit pas de savoir comment représenter
les monstres eux-mémes (le phénotype), mais il faut aussi décider d"un codage génétique
de cette représentation: le génotype d’un monstre. C’est ce génotype qui est 1’objet des
croisements et mutations qui donnent son pouvoir a la méthode.
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La choix du génotype vous est laissé. Pour des connections libres, une simple matrice
d’adjacence peut faire I'affaire. Dans tous les cas, on peut aussi avoir une représentation en
chaine binaire, éventuellement découpée en chromosomes — c’est la méthode classique.

I1 faudra ensuite définir comment fonctionnent les accouplements (enjambements en un
point, en deux, uniformes, semi-uniformes ?), les mutations, et la sélection (par rang,
proportionnelle,... taille de la population, etc).

Il est tres fortement conseillé d’implémenter vos propre algorithmes plutot que d’utiliser
une bibliotheque toute faite. Tous ces choix de modélisation devront étre faits quoi qu’il
arrive, et vous devrez savoir les argumenter dans tous les cas.

Il est essentiel que le phénotype puisse étre calculé assez rapidement a partir du génotype, car
il faut bien 1’évaluer (section suivante), et ce de trées nombreuses fois. Il s’agit la d"une étape
de calcul qui peut gagner énormément a étre parallélisée (sur machine multi-processeur;
faire ¢a sur de multiples machines est hors cadre ce semestre).

93.3 La mesure d’un monstre

La survie d'un monstre dépend de son utilité en tant qu'instrument de mesure du temps. Il
s’agit de simuler un environnement hostile aux monstres qui ne sont pas ponctuels; c’est ici
que nous allons injecter quelques connaissances d’horlogerie et nos conceptions subjectives
de ce qui fait une bonne montre. On doit écrire une fonction — utilité, ou fitness — attribuant
un score a chaque monstre, qu’on cherche a maximiser.

I est important que ce score soit assez fin pour détecter de petites améliorations.

On supposera toujours la présence d"un boitier, mais un boitier seul ne sert strictement a
rien.

Une roue dentée, connectée au boitier sur son axe, est un peu meilleure. On peut lui donner
une impulsion et attendre qu’elle s’arréte pour mesurer un intervalle de temps. C’est pénible
mais trés légérement mieux que rien.

Un ressort tout seul peut jouer un role similaire; on attend qu’il finisse de vibrer.

Un pendule est nettement mieux: on peut compter les secondes tranquillement, pendant un
temps raisonnable.

Un moteur avec un systeme d’échappement est nettement mieux qu’un pendule, car il va
durer beaucoup plus longtemps (durée a calculer). Il est aussi moins encombrant, et peut se
déplacer.

Mais tout ¢a est limité, car il faut garder 'ceil sur le dispositif, seconde apres seconde, et
c’est peu lisible. Si une aiguille tourne avec, c’est mieux. Si plusieurs aiguilles tournent
a des rythmes différents, c’est mieux. Si leurs rythmes se rapprochent d’une rotation par
minute, heure, et jour, c’est encore mieux. Si en plus on a aussi semaine / mois, etc, c’est
encore mieux.
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Figure 10: Antenne ST5 de la NASA, obtenue via algorithmes évolutionnaires; premier objet
créé de cette maniere a aller dans "espace (2006).

Si on a moins de piece, ceteris paribus c’est mieux. En particulier, on ne veut pas 50 moteurs
a remonter. Mais attention, ceci doit rester un critére secondaire, sinon aucun mécanisme
complexe n’aura le temps d’évoluer.

De méme, si le mécanisme est plus compact, ceteris paribus c’est aussi mieux (en particulier
pour la représentation 2,5D) — une roue a 1000 dents n’est pas indiquée pour une montre-
bracelet.

Et ainsi de suite.

En revanche, on ne trichera pas en récompensant des étapes intermédiaires pour des
engrenages complexes qu’on a déja en téte. La NASA n’aurait pas obtenu I’antenne ST5
(cf. figure) s’ils avaient dressé leurs algos a imiter leurs ingénieurs.

L’exercice consiste donc principalement d"une part a simuler le comportement d"un mé-
canisme donné (calculer la vitesse de rotation des piéces), et d’autre part a détecter les
configurations qui nous plaisent et déplaisent, en choisissant judicieusement les poids pour
chaque critere.

Ce calcul va étre réalisé de tres nombreuses fois; il est donc impératif qu’il soit trés efficace.
Encore une fois, on va négliger les frottements et 'usure.

93.4  Stockage des populations

Les calculs étant longs, il est nécessaire de pouvoir les interrompre et les reprendre sans
crainte. Il faudra donc pouvoir sauvegarder (et charger) la population en cours et quelques
statistiques pertinentes des générations précédentes. Par exemple, les stats de fitness au
cours du temps, et les meilleurs individus de chaque génération.

I serait aussi bon de pouvoir fusionner des populations enregistrées pour former une
nouvelle population initiale.
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93.5 Visualisation graphique des monstres

Il va bien falloir jeter un ceil aux monstres pour évaluer et exploiter les résultats produits, car
personne ne va s’amuser a lire une matrice d’adjacence ou un code binaire. Ce n’est donc
pas du tout optionnel.

Un graphe indiquant la connexion entre les pieces est un strict minimum, mais 1’on attend
plutot un schéma ou un dessin décrivant le mécanisme de fagon aussi claire et proche de la
réalité que possible; cf. les deux premieres figures. Ceci est bien plus aisé dans le mode 2.5D;
on peut imaginer un découpage niveau par niveau. Si on peut faire ¢a en vraie 3D, encore
mieux. ) C’est interactif ? Mieux. Animé ? Encore mieux.

La visualisation doit absolument étre capable d’indiquer la vitesse de rotation de chaque
composant, et ce de maniere claire et lisible; cette fonction doit pouvoir étre activée et
désactivée.

93.6  Interfaces graphique et ligne-de-commande

Il faut absolument avoir une interface ligne de commande claire, robuste et bien documentée
permettant de lancer, sauvegarder, et charger des évolutions, ainsi de de visualiser les
meilleurs individus d"une population (en ouvrant une fenétre graphique et/ou en générant
un fichier graphique).

Il est aussi bon que le programme ait une GUI®) permettant de visualiser en temps réel

I’évolution de la population et ses meilleurs individus, et si possible d’ajuster les poids de
certains critéres en temps réel, tels que I'importance de la compacité du mécanisme.

94  Répartition des taches

Il est conseillé de procéder par groupes de 6, par exemple en trois bindmes focalisés sur les
trois parties principales:

o Algos génétiques (choix de géndme, mutation, crossover, parallélisation des calculs
(multi-processeurs)...),

o Evaluation des monstres (horlogerie / simulation, fonction de fitness)
¢ Interface graphique, interactivité, et visualisation.

D’autres taches annexes sont a répartir entre les membres: e.g. stockage et gestion des
populations, ligne de commande. ..

(©)Uniquement si on n’a rien d’autre a faire. VPython est une bonne bibliothéque, mais n’est pas compatible
avec les dernieres versions de Python3. On ne s’engagera dans la 3D que si on a déja une bonne visualisation
par ailleurs, ou alors si on a déja beaucoup d’expérience de la 3D en Python.

(©OPyQt, PyGTK, Tkinter,. .. au choix
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Les bindmes doivent communiquer et intégrer leur code au projet commun de fagon tres
réguliere — les taches ne sont pas indépendantes et la répartition ci-dessus n’est qu'une
suggestion. Le choix de modélisation des monstres doit étre fait au plus tot, et concerne tout
le monde.
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