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About this document:

This is your main work document for the course. It contains lecture notes (somewhat
of a misnomer, as there will be only two lectures, properly speaking), exercises for
lab classes and autonomous work (time slots are reserved specifically for that), and
exercises for homework and exams. I shall probably cobble up the exam, at least
partially, from leftovers, as there are more exercises here than we can handle in the
alloted class time.

Dead tree version:

This document is quite large, and undergoing constant modification, so it will not be
systematically printed and distributed to students.

Language:

This document is under construction and, currently, written in an unholy mixture
of English and French. Why? There is a general impetus, which I take to heart, to

*Exceptions: IUT de Belfort-Montbéliard, UFR ST de l’Université de Franche-Comté (Pierre-Cyrille
Héam), DIU EIL Orléans.

move some courses to English, both to better prepare our own students for work in an
international setting and to make it easier to host international students in the future.
In that spirit, new course material should of course be written in English. However,
some of the material here was already written in French before I began working on
these lecture notes this summer, and translation is hardly my priority at this time.

The spoken language in class will remain French, for now.

Typographical, orthographic, & grammatical errors:

The paint being very fresh still, this document is undoubtedly riddled with typos and
sundry other infelicities. Do not hesitate to point them out to me. I may even consider
offering a negligible bounty in terms of points, marks, and credits to any student pointing
out a significant number of errors — preferably in one go.

If you wish to contribute a paragraph or two, let me know.

Trigger warnings:

Contains long digressions, sweeping personal opinions, attempts at humour, and traces
of nuttiness.
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General organisation

1 Types of classes

1.1 Lab classes

TD = TP = “travaux dirigés” = “travaux pratiques” = “lab class”. There are 11.

You work on various exercises on a machine. I hover behind your back, look at your
code, and offer biting commentary when you write nonsense. Sometimes I debug your
code, but only if you have been nice.

I may ask you to hand out your answers to some exercise at some point, which I then
may or may not mark. When that happens you will be informed that the work may be
marked at the beginning of the class. In that case, the work can be done in groups of 2.
No more, no less. 3 is right out.

I may also give you a small surprise exam at any time; probably in the form of a few
multiple choice questions. Those are always individual. Again, they may or may not
be marked.

Attendance is mandatory.

1.2 Autonomous lab classes

There should be three of them in toto, all before the second and last lecture.

No teacher is present (b), but the lab room is reserved so you can finish up your work,
read, test, and discuss the lecture notes, or anything else relevant to the course.

They are usually placed right after a TD or two.

Attendance is not mandatory, but strongly recommended.

1.3 Lectures / question sessions

CM =“cours magistral” = lecture, in an amphitheatre. There are 2.

I won’t actually give lectures in the classical sense, explaining Python in a linear way. I
wrote the lecture notes to avoid having to do that, as neither the students nor I were
overly fond of that system.

(b)In theory. I may or may not linger in practice.

Instead, the “lectures”, of which there are only two, are there to give everyone a chance
to ask questions on the material. This can mean re-explaining a concept that was
unclear to you in the lecture notes, or offering and discussing a solution to an exercise.
Note that I shall not distribute proposed solutions to TD exercises in written form; only
explain or show them when asked during lectures.

Whenever you have questions, take note of them; whichever ones remain unanswered
by the time the next lecture comes, ask them then. This is an experimental way of
organising the class. The aim was to have more time with the machines, and less sitting
on benches, listening to me speak. Hopefully, the questions-based system means that,
whenever I do speak, at least one person in the amphitheatre (presumably the one who
asked the question) is interested in what I am saying.

In the event that there are no questions, mayhap I shall cut the lecture short. . . Or,
more likely, I shall avail myself of the remaining time to give you a “surprise” exam.

Exceptionally, if I see some specific type of mistake too often during lab classes, I may
spontaneously elect to berate you about it during a lecture, even in the absence of
related questions.

Attendance is mandatory.

1.4 Project presentation & project lab classes

You can read this year’s Python project in Part VI[p198].

We shall begin in an amphitheatre, in which I shall answer general questions you may
have about the project.

When that is done, the remainder of the project time (not counting personal homework,
of course, and you will need some of that to get to the end of the project) will take place
in labs. The lab rooms are reserved on those occasions, in contiguous slots of at least 2×
1h20.

I shall usually be present, going from group to group to get an idea of the general state
of progress of each, and to answer questions. I leave when the questions run dry, or
time runs out, whichever comes first.

Attendance is morally mandatory, but neither really controlled nor enforced, as some
students are prompt to notice every year. Thus, if you want to stay in bed while your
classmates work on the project, I suppose that is, de facto, your prerogative, insofar
as I shall not fight to prevent it. However, it may interest you to read Section 71[p202],
concerning the project’s final report and individual marking scheme, to see why that
might prove to be a rather poor tactical choice on your part.
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2 Final examination

The final is an on-table, on-paper exam, lasting 1h20.

The only document allowed is your personal “memento”, a two-sided, handwritten
A4 sheet of paper which you should prepare ahead of time.

Of course, no computer, smartphone, smartwatch, R2D2 unit, etc, is allowed.

The paragraphs that follow were written with a coding exam in mind, of the same
style as the lab class exercises. I have since moved away from that style, and towards
Multiple-Choice Questions. Beyond direct questions of the form “Is this type mutable?”,
I ask you to show that you understand how Python works, by asking you the result of
the execution of various snippets of code, some trivial, some not.

This favours people who actively worked with the lecture notes and practised Python
regularly, intelligently confronting bugs and figuring out their nature.

You will find on Celene an example of what the MCQ exam looks like, and instructions
to follow.

2.1 On the virtues of coding on paper

The “on-paper” aspect of the examination is regularly contested by students. My usual
answers follow:

I want to enforce the habit of thinking about your code before executing it. Actually,
you should think about your code before writing it.

On paper, you don’t have the luxury of writing nonsense code, running it, changing
something semi-randomly in the hope that it works, and iterating until it does — or
appears to.

On paper, you need to actually understand what you are doing, and do it right the first
time — or at least the second time: you can use a draft.

“But. . . when I program, I always have a computer; so what’s the point?”, says the disgruntled
student.

The point is that if you need the computer as a crutch for relatively simple things, such
as the kind of things I ask in an exam, you are wasting time, you don’t actually know
what you’re doing, and you will fail entirely on more complex problems, which involve
juggling several subproblems.

Code written by test-mutation-iteration also tends to be far too long and complex
– for lack of a global vision of what is actually going on – and thus much more
time-consuming to write and fertile ground for bugs, even after the endless fiddling.

Write simple code fast, short, and right the first time, and you have more energy left
over for the complex parts that really demand your attention.

To train, pretend you are on paper, even if you are not. Think, then write the code.
When you’re quite sure it is correct, and only then, run it. Every time you were sure it
was correct, and it turns out to be wrong, take it personally, find out what you thought
wrong, and get better.

2.2 Degree of lenience with respect to syntax

Note: this is not really applicable to the current multiple-choice main exam, but may apply in
other circumstances.

Coding on paper makes it easier to commit syntax errors, and you don’t have access to
help(..) to check builtin functions’ syntax, argument order, etc. . .

How lenient will I be when marking you exam?

Clearly, I shall be more lenient than the Python interpreter, but not by much. By the
time you get to the exam, you should be practiced enough in Python to have a good
grasp of its syntax.

The rule is: whenever your syntax errors introduce an ambiguity, and I can interpret your code
in several ways, I shall mark the code according to the worst way in which it can be interpreted.
Any other tactic would give weak students some degree of incentive to be as vague as
possible.

Mistakes which I will not penalize are, for instance, writing

for e,k in enumerate(l)

in a context where it is clear that you mean k to be the index and e the element. (It
should be k,e) Having well-chosen variable names helps identifying what you mean.
Unless you do strange things with e and k later, this kind of mistake is not a problem
for me.

Likewise, writing for k in mydict.keys instead of for k in mydict.keys() is un-
likely to bother me, because it does not usually matter for the logic of your code whether
the keys are an automatically updated attribute or returned by a function, and what
you are doing is clear.

Contrariwise, if you write
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return l.sort()

in a context where I expect you to return a sorted list, I will not assume that you meant
to use sorted(..), because understanding the difference between a procedure and a
function, a side-effect and a return value, an in-place modification and a fresh value,
and the role of None, is something that you are tested upon, along with everything else.

Perhaps you understand all this, and your use of l.sort() in that context was pure
absent-mindedness. Or you don’t understand any of this, and you confuse l.sort()

and sorted(..) precisely because you never really understood how they differ or why
that should matter. In the presence of this ambiguity, I shall assume the worst.

Very rarely, I may use knowledge from how you answered other questions to influence
my interpretation. For instance, if other questions make it very clear that l.sort(),
in your head, has sorted(..)’s behaviour, then I may apply a moderate, flat penalty
instead of marking every question using it as wrong. I shall not use any knowledge
external to the exam: nothing that you did in class, or talked with me about, will
influence the mark; only what is written on the paper. For all practical purposes, I
don’t even pay any mind to the names on the paper.

If you do understand the difference between l.sort() and sorted(..), but are not
sure which is which, or even have completely forgotten their names, no problem. Just
write me a short note along the lines:

I call "sort(l)" the builtin that returns a fresh sorted

version of l (not in-place!) -- I forgot its real name!

So long as you are clearly referencing a builtin that actually exists and is licit in the
context of the question, you will not be penalised for it. All I need is sufficient evidence
that you understand what you are doing. (What you are doing still needs to be correct,
of course. . . )

However, whatever you do still needs to be in Python! If you write using C syntax (or
that of any other language), attempt to “declare” variables, etc, you will be harshly
penalised even if the intent is clear. This is a Python exam; if you blatantly advertise to
me the fact that you have hardly ever touched Python, then of course I shall take a dim
view of it, regardless of how well you solve the questions in another language.

Those are just a few examples out of thousands of possibilities — but they should
sufficiently illustrate the general boundaries of what I consider admissible.

2.3 Memorising methods

The exam will not require you to know or use methods (in the Object sense) that are not
discussed in this document, or explained in the exam. For instance, you are expected
to know about list.sort, sorted, sum, any, all, str, dict.values, dict.keys()
etcetera, because they are discussed in the document at some length. At least know
they exist and what they do, even if you forget the exact name. (And if you do forget
the small ones, like sum, any, and all, you can reimplement them in one to a few lines
anyway.)

You are not expected to know about list.insert, list.index (although we use
this once, for permutations), list.count, dictionary.fromkeys, or others like that,
because they are not fundamental and are not discussed in the document. If a somewhat
obscure method is useful for a question, I’ll either give it in the exam, or reimplementing
it from scratch will be the object of a question.

Students sometimes go out of their way to use obscure methods which they remember
or understand only partially; this rarely plays out in their favour.

2.4 When in doubt, ask!

Unless I am indisposed or otherwise unavailable, I am always present during my
examinations. Therefore, if anything about the exam seems ambiguous to you, or you
are unsure whether something you have in mind is permitted, do not hesitate to ask.

The worst that can happen is that I might refuse to answer. To avoid that, formulate
your query in a way that is as independent from the exam’s question as possible.

For instance, if the question asks to return a sorted version of some list, you may ask
“Is it licit to use list.sort() in this question?”, and I shall probably answer “yes” or
“no” (for instance if I require you to implement your own sorting function). If I answer
“yes”, that does not necessarily mean that it is the right tool for the job. If your query
betrays a misunderstanding of the question, I shall take the opportunity to clarify, either
privately or as an announcement for everyone.
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Part I

Lecture notes: Linux shells & Bash
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4 What is a script? 12
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16 About the exam 25

Though this course is ostensibly about Python, we shall spend one session on an
introduction to Linux Shells, and on Bash in particular.

“What’s the connection between Bash and Python?”, you may well ask. Don’t hurt
your brain trying to find one, there is none – none worth drawing, at least.

Some might say that they are both scripting languages, which may well be true, but
only if you take so loose a definition of scripting as to render the word nearly useless.
Some might say that they are both interpreted, as opposed to compiled, but – even
politely disregarding that this is a property of implementations and not of languages
– that’s only sort-of-true, as Python’s default implementation actually compiles to
byte-code, and then interprets that. Even were it absolutely true, it would still be a
terrible reason to lump two languages together.

The real reason there is some Linux and Bash in this course is that several other courses
depend on students having at least minimal competence on a Linux machine, but there
is not enough relevant material to justify making Bash a course onto itself. Thus, you
may consider this Bash class as an independent mini-course, and a prerequisite for
most future lab work in other courses.

Note that only the bare minimum is covered here; you will have to experiment, ask
questions, and find other sources to go further.

(0) � During the first lab class, look for boxes similar to this one: they contain
the instructions for the class. The aim is to get familiar with shell and the Linux
machines.

When you have done everything – or if everything is trivial to you because you
have experience in shell already – move on to the part on Python and start reading
the lecture notes or jump straight to the Python exercises.

The shell lab class is not marked.

3 What is a shell?

A shell is an otherwise perfectly ordinary interactive command-line program whose
purpose is to serve as an interface to the machine’s other programs. Thus it receives and
interprets the user’s commands, usually directly typed into the console, and executes
them.

Oftentimes, this boils down to calling another program with the provided arguments,
and letting it take over. For instance, nano text.txt just calls the external program
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nano – a barebones text editor found on most machines – with argument test.txt.

Shells can also receive commands from files, and support programming structures such
as variables, arithmetic and Boolean operators, functions, tests and loops, et cetera,
though of course the features available and their syntax vary from shell to shell.

Thus, one typically uses them to write some small scripts serving as “glue” between
others, more sophisticated programs. Shell languages are well-suited for this purpose,
as calling other programs is extremely easy, and there are convenient syntactic shortcuts
for nearly every situation. Once you have memorised them, at least.

4 What is a script?

I have used the word several times already, and will many times again; it is worth
defining. The first caveat is that not everybody agrees what that means. If you search
for a definition, you will likely find something along the lines of (the first result of my
search engine):

A program or sequence of instructions that is interpreted or carried out
by another program rather than by the computer processor (as a compiled
program is).

– TechTarget.com

This cannot immediately be said to be wrong, in the sense that there is no consensus or
central authority against whose definition this can be compared, but I put it to you that
this definition is useless.

It is useless because it carries no information about the program/script itself, only about
the language used to write it, and that information is “it is an interpreted (c) language”.
We already have perfectly good words to express this – I just used them – so with this
definition the word “script” carries no new information. Every script is an interpreted
program; every interpreted program is a script; we now have two different ways of
saying the same thing. Great.

The notion of “interpreted language” itself is not terribly useful, because many
interpreted languages, Python among them, compile to bytecode behind the scenes.
That still matches the definition above, but then. . . so do Java and C#. And what to
make of languages like OCaml, which support interpretation, byte-code compilation,
and native code compilation for multiple processor architectures?

(c)And it is a rather crummy definition of “interpreted”, as well, but let’s not get into this.

Being “interpreted” is mostly a property of a language’s implementations, not of the
language itself — only mostly because of course some language design choices dictate
what kind of implementations make sense in practice.

Here is the definition I propose:

A script is a source code file written either directly by the end-user or with
the reasonable expectation that the end-user may alter it according to his
needs.

– Me

That is the important distinction between a script and other types of programs. If it’s
meant to be casually tinkered with, it’s a script. If it provides some sort of interface
(CLI, TUI, GUI, configuration files,. . . ) within the bounds of which you are expected to
express what you want, and if you can’t, you’re out of luck, it’s a regular old program.

Other characteristics of scripts, which some sources will use as definitions, stem from
this:

⋄ Scripts are almost always executed via an interpreter because altering compiled
programs is tedious. But some scripts may be compiled. For instance, in the
game editors for Skyrim and Neverwinter Nights, the scripts (in domain-specific
languages Papyrus and NWScript) are compiled (to specialised byte-codes), either
implicitly or explicitly. They’re still scripts, because the end-user of the game
editors is supposed to deal with them directly.

⋄ Scripts are often short and sweet; the longer and more complex a program becomes,
the less you want to casually tinker with it, unless you like pain.

⋄ Scripts often, but not always, deal with automating tasks, or customising a system,
because that’s the sweet spot where you can’t just toggle an option somewhere to
get what you want, but you don’t need to invent something completely new, just
gluing together exiting functionalities will do.

Shell languages, such as Bash, are very-well suited for system automation and customi-
sation.

5 Syntax (in)sanity warning:

The basic syntax for most common shell operations was decided a half-century ago, or
thereabouts. In those days (d) “spirits were brave, the stakes were high, men were real

(d)and in the immortal words of Douglas Adams
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men, women were real women, and small furry creatures from Alpha Centauri were
real small furry creatures from Alpha Centauri.”

In other words, accessibility, consistency, and legibility were not popular buzzwords
yet; conciseness was much more highly valued. The shell syntaxes are chock-full of
one-character modifiers with non-obvious effects, and the parsing rules are not always
straightforward — the clear “formal (context-free) grammar + lexer + parser” approach
to language design which we shall study in the “Formal Languages Theory” course this
semester was not used to design those languages. Perhaps it is because that method
was not yet as widespread and well-tooled when the initial design choices were made
as it has been these last few decades.

The Posix shell committee wrote a grammar attempting to formalise the Bourne shell;
many rules in the grammar are context-dependant. You will understand what “context
dependant” means in more detail after studying formal languages. For now, let’s
just say that this means that shell syntax is intrinsically “more complex”, in a very
important sense, than that of languages like C, Java, or Python. Even then, the grammar
does not exactly capture the behaviour of parser implementations.

One of the additional difficulties is that pretty much everything is handled as strings. . .
which quickly becomes nightmarish when you have several layers of parsing and want
to be robust against whitespace and special characters.

None of this means that simple tasks are necessarily complicated in shell. But complex
tasks that go against the grain can become quite tricky fairly quickly.

For these reasons, among others (such as runtime efficiency and portability), it is
not advisable to use those languages for anything other than “glue” scripts, though
the languages are complete enough that you technically could, were you masochistic
enough to try. If you have non-trivial algorithms to write, it is probably best to write
them in some other language and call them from shell if you must, unless there are
overriding constraints at play.

Things are even more chaotic with the naming conventions of standard Unix programs
that you might call from a shell or within a shell script. Those are not technically part
of the shell languages but in practice you will always need to use some of them to get
anything done.

Nobody ever sat down and decided upon a coherent set of basic programs and naming
conventions. New programs were added higgledy-piggledy by different people as
time went on, under the only constraint of never reusing an existing program name.
Those that proved very useful became more or less standard. . . and never changed
names.

For instance, if you want to display the contents of a text file, do not expect to find

a command named display_text or anything equally descriptive. That would be
unimaginative and pedestrian. The relevant commands are actually named cat, more,
and less. Of those, of course, less is the most flexible. More than more. Because of
course.

There is little logic behind those names, only a history. cat is actually short for
concatenate, and quite unrelated to the allegedly cute feline freeloaders that, for
unfathomable reasons, old ladies like keeping as pets.

For instance, cat f1 f2 sends the contents of the two files, one after the other, to the
standard output, which can be redirected to a new file, thus concatenating the two
initial files into a third. So far, so good. Since the standard output is displayed by
default, the command is also (almost accidentally) suitable for displaying text, and was
used for that purpose.

When the text is too large to fit in a single screen, with cat, you only see the end of it, as
everything else scrolls out of view at breakneck speed, so somebody wrote a command
to stop at the first screen of text, and display --More-- on the last line until the user
chooses to read the rest of the document. That command was called more, after that
prompt. (Okay, that almost makes sense).

Then somebody wrote a version of more with even more features. And they called it
less, because they thought they were being funny. HA. Ha. ha. (more could not scroll
backwards, which was the main new feature, so “backwards more = less”. Get it?
Instant hilarity.)

My advice: take a deep, relaxing breath and just memorise the commands that you
need. After a while you won’t even notice how infuriating it all is anymore.

Additional good news? There is no universal convention regarding the syntax of the
arguments that each program or command takes. That would be too easy. (Though
there are Posix and GNU conventions, which are fairly well respected).

When faced with a new command, especially a non-standard one, always read the
manual or the help page. thecommand --help usually displays the help page. But of
course nothing prevents a given program from ignoring that argument outright and
doing whatever it wants.

man thecommand will display the manual page, if installed. Since the man program
itself is safe, you don’t run the risk of running an unknown program by using it.
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6 Choose your shell:

Here are a few among the most common shells, by family:

⋄ Microsoft: cmd.exe, Windows PowerShell

⋄ Bourne : sh, ash, bash, ksh, zsh

⋄ C : csh, tcsh

⋄ Perl : perlsh, zoidberg

⋄ Plan9 : rc, es

⋄ Secure / Restricted: ibsh, rssh, scponly

sh is the historic (Bourne) shell for Unix systems, and has been present on nearly every
variant of Unix since the eighties. bash (Bourne-Again Shell) is a strict superset of
sh, in extremely common use. That is what you will be using here; when you launch
a console on the machines, a bash session is opened by default. Bash is indeed the
default on more Linux distributions and on MacOS (which is a Unix).

7 Bash: builtin commands and reserved words

Recall that commands fall into either of two categories: builtin shell commands, and
external programs.

For reference, the following are builtin commands for Bash 4.2:

: command eval jobs read times
. compgen exec kill readarray trap
[ complete exit let readonly type
alias compopt export local return typeset
bg continue fc logout set ulimit
bind declare fg mapfile shift umask
break dirs getopts pushd shopt unalias
builtin disown hash popd source unset
caller echo help pwd suspend wait
cd enable history printf test

Everything else is an external program.

Examples include cat, less, more, cp, mv, rm, ls, mkdir, find, grep, sed, cut, ps, chmod,. . .

The following words are reserved by Bash, and thus cannot be used as variable names,
among other things:

! time

[[ ]] { }

if then elif else fi
case esac
select in
while until for do done
function

8 The command prompt

When stating a bash session, you find yourself faced with a command prompt (FR: invite
de commande) which, by default (it is highly personalisable), looks like this:

vhugot@Khepri:~/Documents/3A-Python$

(1) � Start a computer under Linux (via dual-boot or a virtual machine), and
locate a terminal or console application, so that you are ready to work with a
prompt.

It can be broken down into the following parts:

vhugot username of current user
@ separator

Khepri name of the current machine
: separator

~/Documents/3A-Python current working directory
$ status indicator; # for root, $ for peasant.

~ stands for “user’s home directory”, in my case, /home/vhugot.

In the remainder of this document, I’ll usually just use $ and omit the rest of the prompt.

The appearance of the prompt is dictated by the variable PS1 (for Prompt String 1),
which can be modified. On my system, it has the value

$ echo $PS1

\[\e]0;\u@\h: \w\a\]${debian_chroot:+($debian_chroot)}\u@\h:\w\$
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There is some magic going on there; let’s just mention that \u stands for username, etc,
and show the effect of a simple modification of this value:

vhugot@Khepri:~/Documents/3A-Python$ PS1=coucou

coucouecho $PS1

coucou

coucou

(2) � Do the same thing on your machine. Quit and start the terminal again.
What happens?

9 Profile files

Prompt modifications, along with aliases and other tweaks to the behaviour of bash,
are best put in the adequate configuration files that bash runs at the beginning of each
session.

Those are generally ~/.bashrc or ~/.bash_profile.

(3) � Find those files and see what’s in them. Don’t modify them for now.

If possible, use an editor with syntax highlighting. Note that the symbol #
comments out everything that follows; syntax highlighting is particularly useful
to see at a glance which lines are commented out.

It is common for Linux distributions to provide bashrcs with a lot of lines
commented out, which the user can simply uncomment to activate a nonstandard
but useful feature. In particular, we shall come back to aliases later on.

Note: we are focusing on the Shell, but that does not entail that you can’t use anything
else; in particular, you don’t have to edit config files with nano or vim. You can use the
file browser and whatever graphical text/code editor you have available or prefer.

Knowing how to do everything in the terminal is extremely convenient when connected
in ssh to a remote server. When working on a local machine with a graphical
environment, there are usually better tools available.

Use the right tool for the task at hand.

10 Common commands and assorted tricks

You must know all these commands.

(4) � Take some time to test each of these commands and skim through their
manual and help pages, even is there is no specific question next to them.

Here are a few of the most useful commands. For more information about their
capabilities and usage, see the help and man pages.

man <cmd>:

display the manual page of external program <cmd>, if one is installed. Most, but not
all, programs come with a somewhat detailed manual page.

cd <path>

Change the current working directory. <path> can be an absolute or relative path.
/home/vhugot is an absolute path. Documents/stuff or ./Documents/stuff ( . means
“current directory”) are relative paths, as well as ../otherstuff (.. means “parent
directory”).

If the prompt displays the current working directory, which it should, you should see
it updated with each cd command.

pwd

Print current working directory, as an absolute path. In case you forget where you are.

cd without argument will put you into your home directory. cd - will restore your
previous location.

ls <locations>

List files and directories at current location, if no argument, or at provided locations.

ls -a <locations>

Same thing, but list all files, including hidden files (files whose name begins with . are
hidden).

(5) � Move around a bit. Go to your home directory, your Desktop, and
Documents folders, and display the list of files there.
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Special characters: * is a wildcard character standing for any string (including an
empty string). For instance ls *.c will list all C files at current location. ? stands
for a single character. Character intervals can also be defined, and various patterns
can be chained: [0-9]*?[A-Z]*[0-9a-zA-Z] would test for names beginning with a
digit, followed by anything (at least one character), with at least a capital letter in the
“middle”, and ending with an alphanumerical character.

echo <string>

Displays the provided string. Note that the string need not be within quotes. If it is
not, wildcard will be expanded. Thus, echo can be used as a cheap ls. Both are useful
for testing your patterns before using them with dangerous commands, such as rm.

Note that the terminal can display colours, thanks to special escape sequences. This
applies not only to echo but to any program or script that prints to the terminal. See
this page.

printf <string>

Same as echo, but more flexible and has a well-defined behaviour across all shells,
which can be important for the portability of scripts. It is an external command,
whereas echo is internal, and thus printf is more expensive.

mkdir <newdirname>

Make a new, empty directory at current location.

(6) � Create a nice “test” directory for the purposes of this class, somewhere
convenient,like your desktop. Do so entirely with shell commands, of course.
Make sure it becomes your working directory.

nano <textfilename>

Create or edit a text file. Nano is a minimalist command-line text editor. Notations like
^X in nano mean “CTRL+X”.

(7) � Create a text file mytext.txt. Quit and save. Edit it again.

Note: Linux does not rely on file extensions to the same extent that Windows does, but
it’s still a good idea to use them regardless.

cp <src> <dest>, mv <src> <dest>, rm <src>

Copy of move file from source to destination, or remove it. As with all file-manipulation
commands, be very careful not to overwrite something by mistake. I would advise

to almost always use the interactive mode, to receive a prompt in case the destina-
tion file already exists. The flag for interactive mode is -i. Thus you would type
cp -i toto tata. This is the kind of things you should create an alias for.

To act on all files within a directory, at arbitrary depth, for instance to copy or remove a
whole directory and all its files, use the -R, or -r, or --recursive flag (the three forms
are synonyms). Avoid typing rm -rf /, as that means “force removal of all files on the
system”. Here -rf is equivalent to -r -f, where -f means “force”. Flags can often be
combined this way, though not all programs support this.

Advice: if you’re planning on using non-trivial wildcard patterns with those commands,
it may be prudent to test them with ls or echo, first.

Aliases are pretty convenient ways of enforcing certain flags; I have the following in
my configuration:

alias rm=’rm -i’

alias mv=’mv -i’

alias cp=’cp -i’

Thus, whenever I type cp as a command, it is as though I typed cp -i. I no longer
have access to the original commands, but in that case -i can be overridden by -f or
-n. I could of course have defined the aliases under different names, but here redefining
the commands is deliberate, so as to avoid accidents with them.

(8) � Check whether those aliases are already defined for you. If that’s not
the case, add them to your .bashrc, unless Danger is your middle name.

Note that it is also possible those aliases are already present in the bashrc, but
commented out. In that case, simply uncomment the relevant lines.

(9) � Remove the text file you created earlier.

rmdir <dir>

removes an empty directory. Refuses to do anything if the directory is not empty. More
or less redundant with rm -R, but safer.

(10) � Remove your test directory, which should be empty now.

chmod <mode> <file>

Changes file access permissions. For instance chmod u+x s.sh makes the file s.sh

executable for its owner.
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top, or ps

Displays running processes. Most desktop environment offer a GUI equivalent as well.
On KDE, for instance, it is accessible via Ctrl+ESC.

There are many options depending on what you want to see. Generally, a call to ps aux

will show most of what you would ever need.

kill <processnumber>

Kill the selected process; the process number is provided by the previous commands.

killall <processname>

Kill all processes bearing <processname> as part of their name.

w

Displays who is currently logged in, for how long, and current processor load.

last

Shows a recent history of logged users.

history

Shows the last run commands.

11 More complex commands that can be very useful

It is good to know these commands exist, but you will certainly need to spend some
time wrestling with their man pages before getting them to do exactly what you want.

grep

A powerful tool to search for patterns / regular expressions in files, of filter the output
of other commands.

rsync

Probably the best tool to reliably transfer files between computers and create mirrors
and backups while detecting redundancies and minimising network traffic.

wget

Download files and websites from an URL.

12 Pipes and redirections

In Unix parlance, file is a general term designating both what we usually think of as a
file and more abstract constructs such as peripherals and data streams.

Each open file is assigned a number, to keep track of it, call a file descriptor (or sometimes
file handle).

In particular, there are three files that are always open: the standard input, correspond-
ing to the stream of keyboard inputs (stdin, 0), the standard output, corresponding to
what’s printed in the console (stdout, 1), and finally the standard error (stderr, 2), also
printed in the console, but meant specifically to be used for error messages, as opposed
to the usual output of a command.

These streams can be manipulated and redirected in various ways. For instance, the
output of a command can be fed as input to another, or to a file. This is fundamental to the
philosophy of Unix, which consists of having many small, specialised commands which
can be glued together in myriad ways as need demands, resulting in a sophisticated
specialised processing pipeline.

Here are some of the various operations that can be done:

(11) � Create and edit files and folders as necessary to test each of the
constructs presented in this section. (And answer any specific questions along the
way).

Pay attention to what you are doing and replace obvious placeholders or examples
like filename, contents, or PythonNotes.tex with something more pertinent.

ls > filename

The character > redirects the standard output of a command (here ls) to a file.

(12) � Using a command seen in the previous sections, create, in a single line
of shell, a new file containing the line “Hello world!”. Now create an empty file.
(An alternative in that last case is touch).

If a file named filename does not exist, it will be created and filed with the relevant
contents – it will be kept open until the command finishes its output. If the file already
exists, its contents will be erased and replaced by the output. There will be no warning.

ls >> filename
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Has the same effect as above, but if the file already exists the output is appended (added
at the end) to it, instead of overwriting the file.

grep contents < PythonNotes.tex

Here, the contents of PythonNotes.tex – the source file for the document you are
reading – is redirected by < into the standard input of the command grep someword –
the combined effect is to display all the lines of the file that contain the word “contents”.

grep contents < PythonNotes.tex > results.txt

Here, input and output redirections are combined: instead of the selected lines being
diplayed on the standard output, they are written in the file results.txt.

cat PythonNotes.tex | grep contents

The pipe operator connects the standard output of the command on the left, here cat,
which outputs the contents of the file, to the standard input of the command on the
right. Thus, the above has the same effect as grep contents < PythonNotes.tex.

(13) � Run the command “sleep 9999 &” to put a sleep process in the
background. (see section on background processes)

With ps aux, you can find its process number and kill it, but it’s a chore. Use grep
and a pipe to find the right line easily, then kill the sleep process.

How many lines of ps aux where displayed? Why?

Is there another way you could have used to do that without needing the process
number? (That’s a rhetorical question. Of course there is. What is it? Does it have
any drawback from a general standpoint?)

Of course, the selling point of the pipe operator is that you can chain not just two but
arbitrarily many commands together to achieve complex results:

cat *.txt | sort | uniq > sortedlines.txt

produces a file containing all lines appearing in all text files, sorted in alphabetical
order and with duplicates removed.

Each process in such chains plays the role of a filter. When writing programs, especially
in a Unix environment, it is advisable to pay attention to what their behaviour should
be wrt. stdin and stdout, so that they can be used as filters.

13 Execution modes: sequential, background; jobs

(14) � Test what follows on your computer.

By default, commands are executed sequentially, in the foreground. Several commands
can be executed in the same line, and in sequence, by using the ; operator.

Commands can be grouped in two ways: via (...) or {... ; } – note the mandatory
; in the second case.

In the first case, the commands are executed in a sub-shell, and so any variable
assignment will be discarded at the end of the group’s execution, and the group cannot
modify the current context.

In the second case, the group will be executed in the current shell context.

$ { date ; ls ; } > resultat.txt

$ cat resultat.txt

vendredi 17 janvier 2014, 09:48:34 (UTC+0100)

Fichier.txt

GG.txt

resultat.txt

A command can be run in the background by putting & at the end of the line:

$ sleep 5 &

[1] 7691

$

This created a process (number 7691, job number 1) running sleep 5, that is to say,
a process that runs for 5 seconds, doing nothing, and immediately gave us back the
command prompt, whereas we otherwise would have needed to wait for sleep to
terminate before doing anything else.

jobs -l

Lists currently running jobs, their job numbers, their statuses, and process numbers
(thanks to the -l flag).

Suppose you just launched a long process, say, sleep 500, in the foreground, and want
to kill it. You can do that with Ctrl+C.

Suppose now that, while you want the prompt back, you don’t want to kill the process.
You can use Ctrl+Z to pause it and put it in the background.
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$ sleep 500

^Z

[1]+ Stopped sleep 500

$ jobs
[1]+ Stopped sleep 500

From there, you can bring it back to the foreground or run it in the background with
the commands fg and bg, respectively. They expect the job number as argument, not
the process number.

$ fg 1

sleep 500

^Z # I put it back to sleep

[1]+ Stopped sleep 500

$ bg 1

[1]+ sleep 500 &

$ jobs
[1]+ Running sleep 500 &

14 Quotes

Like Python, bash supports both simple and double quotes for strings. Back quotes
also exist, but serve an entirely different purpose:

Single quotes are called “strong” quotes. Every character between the two quotes lose
any specificity they might have had, and they are treated as a string.

$ echo ’This contains "double" and ‘back‘ quotes’

’This contains "double" and ‘back‘ quotes’

$ echo "This contains ’single’ and ‘back‘ quotes"

back: command not found

This contains ’single’ and quotes

Double quotes, on the other hand, are “weak”. Some characters retain their specificity,
and that includes $(..) structures and back quotes.

$echo ’This contains "double" and ‘back‘ quotes’

’This contains "double" and ‘back‘ quotes’

$ echo "This contains ’single’ and ‘back‘ quotes"

back: command not found

This contains ’single’ and quotes

Back quotes execute the string inside them as a command, and produce, as a string, the
contents of that command’s standard output. Of course, this works better with a valid
command:

$ echo "It is ‘date‘ and all is well."

It is samedi 17 aout 2019, 10:28:35 (UTC+0200) and all is well.

interlaces the written text with the output of the date command.

The same result is obtained with the $(..) structure

$ echo "It is $(date) and all is well."

It is samedi 17 aout 2019, 10:28:35 (UTC+0200) and all is well.

If fact, backquotes are considered deprecated in favour of $(..). Just don’t use them.

$ echo $(echo this $(echo is $(echo easier to nest)))

this is easier to nest

(15) � Create a few .txt files through whatever method you find most
convenient.

In one line of shell, display a sentence of the form “BEGIN <list of all text files
here> END”. Without manually writing the names, of course.

Note that both kinds of quotes can simply be concatenated:

$ echo "’"’"’

’"

Also note that, in some contexts, there is no need to use any quotes at all to be working
with strings – unless you need to deal with special characters or something like that. By
default, pretty much everything is a string. There are a few caveats, however. Consider
for instance

echo This is a sentence

This is a sentence

Can you spot the problem ? There were two spaces between “is” and “a”, but only
one was printed. Why ? Because the shell parsed each word as a separate argument to
the command echo, as spaces are argument separators. Echo then printed each of its
arguments, separating them with spaces, but it has no way to know how many spaces
were originally used to separate them. The string needs to be quoted if whitespace is
to be preserved.
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Thus if something is “morally” a string, it can be helpful, to systematically quote it as
such. At the very least it does not hurt, and is probably better for reasons of legibility
and consistency,

15 Programming in shell / Bash

This is the part where we put our Hazmat suit on and touch very briefly on shell
programming. We concentrate on features present in the basic shell, and avoid
Bash-specific features, for reasons of portability.

One can program directly in the interactive shell, yes, but generally one wants to write
a script in a file and execute it when needed.

Let’s say that you have written s.sh; then you can execute it with sh s.sh or bash s.sh

depending on what you want to execute it with (the smaller Bourne shell, or the larger
Bash).

Scripts are usually made executable via, e.g. , chmod u+x s.sh, so that you can run
./s.sh directly.

In that case, the first line should be of the form

#!/bin/sh

or, if you want Bash

#!/bin/bash

so that the shell know which program (here another shell) to use to run the script.

(16) � Create and run a script that displays “Hello World”. That not very
original, but originality is overrated anyway.

15.1 Variables

Variables are all of type string, and do not need to be declared, just initialised. They are
local to the current shell process.

varname=value is the syntax for initialisation.

The value of a variable can be extracted using ${varname} or $varname.

$ x=Hello

$ echo "x=’$x’ y =’$y’"

x=’Hello’ y =’’

Here we note that “Hello” has been treated as a string automatically, and that all
uninitialised variables contain the empty string.

This is where the joy of Bash programming beings. There must be no space around
the = sign.

$ x=Hello world

world: command not found

$ x = Hello

x: command not found

$ x= Hello

Hello: command not found

15.2 Interaction

(17) � Follow the instructions and test the scripts below. Modify them a bit
as inspiration strikes you.

You can prompt the user for answers by using the command read <varname>. Let’s
see it in action in our very first script:

#!/bin/sh

echo "My very first script. Huzzah."

echo "Current date: $(date)"

echo Dear user, what is your name?

read name

echo Please to meet you, $name.

echo In what year are you? What department?

read year dept

echo So, $name, you are in the $dept department , year $year.

echo Am I correct?

read answer

Note that you can read several variables at the same time. As usual, whitespace is used
to separate the answers. Let’s run the script.

./script1.sh

My very first script. Huzzah.

Current date: samedi 17 aout 2019, 11:38:45 (UTC+0200)

Dear user, what is your name?

Toto # my answer

Please to meet you, Toto.
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In what year are you? What department?

3A STI # my answer

So, Toto, you are in the STI department , year 3A.

Am I correct?

Yes # my answer

Let’s play with pipes to automate the answers. Recall that everything I type goes in
stdin. Let’s prepare the answer ahead of time and pipe them into the script:

echo -e "Vincent\n3A STI" | ./script1.sh

My very first script. Huzzah.

Current date: samedi 17 aout 2019, 11:36:24 (UTC+0200)

Dear user, what is your name?

Please to meet you, Vincent.

In what year are you? What department?

So, Vincent, you are in the STI department , year 3A.

Am I correct?

Since we needed a line return to validate the first question, I needed to use the -e flag
so that echo interprets backslash escapes. (e)

Note: the above is a fairly useful construct in lab classes. You will sometimes have to
write interactive programs and test them on a given input. Often, you test the program
on the same input repeatedly, until you manage to get it to work as intended. Do not
waste time typing the same test input over and over again: automate it with a pipe!

15.3 Return values

(18) � Test the following on your machine.

All commands and functions return a numerical value at the end of their execution.

This value is usually 0, indicating a “normal” execution. Non-zero values usually
indicate an abnormal execution, but can also be used to convey some information about
the execution. Each command has its own policy in that regard.

Here are two predefined commands which do noting except returning 0 or 1 ($? show
the last return value, see next section on special variables)

$ true
$ echo $?

0

$ false
$ echo $?

(e)Depending on the shell, some echoes interpret backslashes by default. This is the case in zsh, which I
use at home.

1

Note that this convention is the reverse of the usual True/False ≡ 0/1!

The operator && chains commands, like ;, but breaks the chain as soon as a command
returns a nonzero value, and returns that value.

true && echo Always # prints and returns 0

false && echo Never # does not print, returns 1

return 123 && echo Never # does not print, returns 123

The operator || chains command, stopping at the first command that does not fail. It
always returns 0.

true || echo Never # does not print, returns 0

false || echo Always # prints, returns 0

15.4 Functions and special variables

Functions can be defined simply

functionname () {

commands

}

or

function functionname {

commands

}

Like scripts, they receive arguments and return a numerical value. Use the command
return to return a non-zero value. Call them as any other commands, once they are
defined.

All functions are variadic. It is up to them to deal with however many arguments they
receive as they see fit.

A number of special variables are used to deal with return values, function arguments,
etc.
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$_ the last word / argument of the last executed command
$? return result of the last executed command
$$ current process number
$! process number of the last process put in background
$0 name of the current command
$# in a script or function: number of received arguments
$* in a script or function: list/string of arguments
$n in a script or function: nth argument, n ∈ 1..$#

(19) � Test the following on your machine.

Let us test all that in a new script script2.sh:

#!/bin/sh

f () {

echo nb args $#

echo current command name $0

echo current process number $$

echo args list $*

echo arguments: $1, $2, $3, $4, $5.

return 123

}

f a "b c d" e f

echo return value $?

echo process $$: same as in function!
sleep 5 &

echo Last process in background: $!

jobs -l

and execute it:

$ ./script2.sh

nb args 4

current command name ./script2.sh

current process number 15031

args list a b c d e f

arguments: a, b c d, e, f, .

return value 123

process 15031: same as in function!
Last process in background: 15032

[1] + 15032 Running

15.5 Conditional branching

(20) � Shell programming aspects, including conditional branching and
loops, are not essential.

Continue reading and testing those constructs if you have the time and inclination to
do so. At least skim through the last few sections, so you know that the constructs
exist and can come back to them when you need to brush up on the syntax.

You can also continue familiarising yourself with the more basic aspects of the
shell for the remainder of the class, or move on to Python right away.

Boolean tests in shell are done through the test command. For instance, and without
forgetting that, in shell, the usual True/False ≡ 0/1 convention is annoyingly reversed:

$ test toto = Toto; echo $?

1 # false !

$ test toto = toto; echo $?

0 # true !

$ test toto != toto; echo $?

1 # false !

The = and != operators are string comparison, and case sensitive as the example shows.

There are other operators, given by flags (when in doubt read the manual page for
test.) For instance, -f tests whether a regular (non-directory) file exists, and -ge

stands for “greater or equal”, and serves for numerical comparisons:

$ test -f script1.sh ; echo $?

0 # true

$ test -f noscript.sh ; echo $?

1 # false

$ test 21 -ge 20 ; echo $?

0

$ test 21 -ge 22 ; echo $?

1

$ test 21 -ge tata ; echo $?

test: integer expression expected: tata

2

Tests can be combined with Boolean operators -o OR and -a AND. Imbrication can be
specified by parentheses, but be careful to escape the parentheses and to separate them
from the rest with spaces. Likewise for the operands of =; each operand or operator is
simply an argument of the test command, and must stand as its own string argument.

$ test \( \( 0 = 0 -a 0 = 1 \) -o 0 = 0 \); echo $?

0
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This is rather prodigiously ugly. Fortunately there are other syntaxes for tests, which
are slightly less execrably repugnant. Nobody with even a shred of sanity recommends
using -o and -a anymore.

The syntax for conditional branching is:

if <test>
then

<commands >

elif <test>
then

<commands >

else
<commands >

fi

and there is a special syntax so that you can replace

test <your test>

by

[ <your test> ]

Note that there again, [ and ] must be separated from anything else by spaces.

Each “test in brackets” is a command, exactly as though written with the original
syntax. This enables us to use the “boolean operators for commands” && || to combine
test commands rather than using the Boolean operators internal to the test command.

Crucially, this also enables us to use command groupings, which goes a long way to
making things just a tad more civilised.

For instance:

# if [ 0 -ge 1 ]

# if true

# if { true && false || false ; } || true

if { [ -d . ] && [ -f nothere ] || [ 0 -ge 1 ] ; } || [ 1 -ge 0 ]

then
echo This

else
echo That

fi

And that is about as sexy as it gets for the standard shell (/bin/sh). If you’re willing to
use Bash (/bin/bash) instead, you get extra features, such as the double bracket syntax

[[...]] for conditional expressions, which can make writing complex logic in scripts
almost tolerable.

Note, however, that this luxury is only available on desktop systems, and not quite all
of them at that. You cannot count on an embedded system having Bash; pretty much
everything that runs Linux at all, or any version of Unix, really, probably has a Bourne
shell, though.

So for portability reasons it’s probably best to bite the bullet and deal with the barebones
syntax. A fatalistic way of seeing it is: “if you need complex logic, you probably
shouldn’t be doing it in a shell script anyway”.

Let’s mention in passing that && || change precedences between the single and double
brackets syntaxes. They are of equal precedence in the first, and && is higher precedence
in the second. Moral of that story? Don’t rely on precedences; use explicit groupings,
always.

15.6 Arithmetic

The expr command is basically a command-line calculator, and enables the use of
arithmetic computations in shell scripts.

A small example, sufficient for our purposes:

$ i=$(expr $i + 10)

$ echo $i

10

Arithmetic and Boolean tests involving only arithmetic can have their own syntax in
Bash: $((..)) and ((..)). Let’s not get into that.

15.7 Switch case

Long sequences of elif are best replaced by a case structure. The case structure has
the following form:

case <variable > in
<pattern 1>)

<commands >

;;

<pattern 2>)

<commands >

;;

<pattern n>)

<commands >

esac
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It executes the first branch such that the pattern matches the value of the variable.

Patterns can be simple strings or use wild card: for instance in a daemon’s code, you
might find:

case $1 in # $1 is the script or function’s first argument

start)

echo starting

;;

restart)

echo restarting

;;

stop)

echo stoping

;;

[a-zA-Z]*42*)

echo secret number!

;;

*)

echo bad argument

;;

esac

Any string beginning with a letter and containing 42 will trigger the “secret number”
clause.

Note that the last clause functions as else because * will match everything. Any clause
appearing after that would never trigger.

15.8 While loops

While loops are similar in syntax to conditional branching, and the same remarks apply
to tests in this context:

while <test>
do

<commands >

done

Example:

k=0

while [ $k -lt $1 ] # lt -> less than (strict)

do
echo $k

k=$(expr $k + 1)

done

predictably, prints 0..9 when given 9 as argument.

Until loops have the same syntax – and the semantics you would obviously expect:
the body is executed repeatedly until the test becomes true. until C is equivalent to
while ¬C.

until <test>
do

<commands >

done

I have seen it written – unironically and in all seriousness – that the presence of the
quasi-redundant until construct in the shell language was a matter of elegance, because
sometimes statements are more legible with “until”. It is certainly true that, verily, shell
scripts are the place where programming elegance – nay, grace, dare I say! – reaches its
most stratospheric levels of refinement. That last part was sarcasm..

15.9 For loops

Finally, for loops:

for <variable > in <list>

do
<commands >

done

Here, a list simply means a string, with whitespace being the list separator:

adjectives="convenient ugly widespread old"

for adjective in $adjectives

do
echo Shell is $adjective.

done
--------------------

Shell is convenient.

Shell is ugly.

Shell is widespread.

Shell is old.

Conveniently, none of the strings contained whitespace.

adjectives="Convenient ’but(t?) ugly’ widespread old"

would get you:
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Shell is Convenient.

Shell is ’but(t?).

Shell is ugly’.

Shell is widespread.

Shell is old.

To deal with this, you could use a Bash array. I’m not getting into this.

Wildcards are a frequent usecase, and provide usable lists:

for f in *.sh

do
echo -n "[$f] "

done
-----------------

[pre.sh] [script1.sh] [script2.sh] [script3.sh] [x.sh]

Note that in that case, spaces are correctly handled:

$ touch "space name.sh"

$ for f in *.sh

do
echo -n "[$f] "

done
-----------------------

[pre.sh] [script1.sh] [script2.sh] [script3.sh] [space name.sh] [x.sh]

There is a convenient command to generate numbers in a range: seq

for value in $(seq 0 2 10)

do
echo -n "$value "

done
----

0 2 4 6 8 10

The middle argument is the step, and is optional.

15.10 Break and continue

The commands break and continuehave their usual roles: breakwill exit the innermost
loop outright, while continue will jump to the next iteration of the loop.

15.11 Select statement

Finally, Bash offers a convenient form of loop for the frequent user interaction where
the user is required to select one of a number of options, and is prompted repeatedly

until he does so.

select <variable > in <list>

do
<commands >

done

However, this construct does not exist in the barebones shell.

16 About the exam

You will not be tested on shell or Bash during the final exam of this Python class.

However, note that if you are not at least minimally proficient in shell, you will waste
time in lab classes and tests, which will indirectly and severely penalise you in C
programming, system programming, and any class using a Linux environment.
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17 What is Python, again?

Python is a programming language. Let’s go through a few buzzwords to describe it
briefly:

⋄ General-purpose: Python is not designed with a specific, specialised purpose
in mind. Whatever it is you want to do, unless it is something very niche, like
kernel/driver writing or something similar, you can do it in Python, in principle.
It has some serious weaknesses, like performance (which can be mitigated to a
large extent, as we discuss below), and there are plenty of specific kinds of tasks
for which other languages are better-suited (for instance I find that algorithms on
trees and other inductive structures are ever so much cleaner in languages with
algebraic data types and pattern-matching, such as OCaml and Haskell), but there
is no “non-niche” task for which Python is ill-suited to the point of tin-foil–hat
absurdity, like writing a website in assembly would be.

Python can be and has been used for projects of all sizes, from small scripts to
Instagram’s entire infrastructure (serving 400 million active users per day).

As for the ecosystem around the language, while of course not all areas enjoy
the same level of support, whatever you are trying to do, there is usually a fairly
decent library for it.

⋄ Popular: Python has been around since the end of the eighties. It is studied in
most places where programming is studied – most universities, most “classes
préparatoires”, and all French high schools offering computer science options as
of the coming years.

It is extremely popular in the fields of data science and machine learning, in
particular, both in academia and industry.

It is used intensively by many companies including Instagram (quasi exclusively
Python + Django), Spotify (at about 80%), Amazon (for Big Data), SurveyMonkey
(migrated from C#), Dropbox (client is 106 lines of Python), Facebook (all image
processing back-ends), Google, YouTube, PayPal,. . .

While evaluating the popularity of languages in a meaningful fashion is tricky, it
is clear that Python has been in the top ten of most popular languages for over a
decade, and is currently ranked third, behind Java and C, by the TIOBE index.

Love it or hate it, you are probably going to run into Python code during your
career. Repeatedly.

⋄ Multi-paradigm: Like pretty much all of modern languages, Python combines
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elements from multiple programming paradigms. Python is object-oriented at
its core (you will have a course on that this semester), naturally supports the
usual procedural programming style, without forcing an overt object-oriented
architecture, and supports several tools of functional programming as well (it is a
subject of great consternation for me that your syllabus does not include a course
on that topic. I strongly invite you to study OCaml or Haskell in your spare time),
although there are a few obstacles to writing primarily in a functional style, such
as the lack of tail recursion optimisation.

⋄ High expressive power: The words “power” and “expressiveness”, when it comes
to programming languages, can have several different meanings. I take this
opportunity to clarify these from a general standpoint, and say a few words about
Python’s position along these metrics.

▷ In the theory of computation: (you can skip this if you’re not curious)

The expressive power of a language is the set of problems that you can solve
by writing a program, regardless of computation time, so long as it remains
finite. Not all problems can be solved by a program / an algorithm.

Those problems which admit an algorithmic solution are called decidable.
Examples include “In: a list of integers. Out: is the list sorted, yes or no?”.

The others are called undecidable. Example: “In: A program’s code. Out:
Are there are no infinite loops in the program? That is, will it terminate for
all inputs?”.

No matter how smart and talented a programmer you are, you cannot write a
(correct) algorithm solving an undecidable problem in finite time.

The fundamental reason is that, though there are both infinitely many
programs and infinitely many problems, there are still considerably more
problems (ℵ1) than programs (ℵ0), so it is unavoidable that some of them (in
fact almost all of them) cannot be paired with a program that solves them.
(Keywords: “(Un)Decidable problem”; “Cantor’s diagonal proof”; “Aleph
numbers”).

In this sense of “power”, it turns out that all general-purpose programming
languages are strictly equal. (Keyword: “Turing-complete”).

The idea is that, as soon as you have conditional branching and either loops
or gotos, you can cobble together a “simulation” of any other structure that
you want by cleverly using what you have – even if it’s horrible to write
and slow to execute. There is no known or even imaginable language or
mode of computation – not even quantum computers – that is fundamentally

beyond the reach of what you can do with those simple tools. (Keyword:
“Church-Turing thesis”).

Thus if you can solve a problem in Python, you can solve it in Java, C,
Brainfuck, TEX, etcetera. Conversely, if you can’t solve it in one of them, you
can’t solve it in any of them.

You will study some elements of this in your fourth year (and, this semester,
the course on formal languages and automata theory is closely related). For
now let’s just say that you can’t compare general-purpose languages that way,
since they are all equal in that respect, and move on from this riveting topic.

▷ Elegance, clarity, conciseness, modularity, robustness, developer speed.

I have this idea for an algorithm. How many lines of code will it take to
implement it in this language, as opposed to that one? How much time will
it take me to come up with these lines? Once written, how clear is it what
they do, and that they do what they are supposed to do? Is the code highly
modular and robust, so that I can reuse solutions to subproblems elsewhere,
or is it a big interconnected mess of spaghetti code held together by duct tape,
creaking and swaying in the breeze, ready to come crashing down on your
head if you breathe a little too hard in its general direction?

In other words, how easy is it to write good code (for several metrics of good)?

Here, Python mostly shines. You can do quite a bit in a single line of Python
code, compared to C or Java, and its syntax and structure are regular and
polished enough that it’s usually quite obvious what that “quite a bit” is, and
it does not take hours to come up with the line.

Thus you can often write complex algorithms in a fairly fast, compact, direct,
and readable way. You don’t have to jump through too many hoops. This
contributes, ceteris paribus, to the chances of what you have written being
correct.

Beyond that, Python is a dynamic language, with very little typing discipline,
and does not intrinsically force you into writing (somewhat) correct code the
way a language like OCaml or Haskell does, so if you want robust code, you
have to put in some extra work.

When learning the language you have to take some care to know what you’re
doing, because the interpreter will accept a lot of nonsense without protest.

Since version 3.6, this can be mitigated with the use of optional type annota-
tions and external static type checkers, such as mypy. This can be invaluable
in large projects.
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Overall, the characteristic of Python which I have seen praised most often in
reports where large companies discuss why they used or switched to Python
is speed of development, which is basically an aggregate of all these measures.

▷ Execution speed and efficiency:

How fast will your program run? Now this is not so much a property of a
language as of the implementation of its interpreter or compiler, and of the
specific way you have written your program.

But still, generally speaking, task for task and mutatis mutandis, Python is quite
a bit slower than C, and even than C# and Java.

And none of that matters in the slightest unless you are limited by very weak
embedded systems, are doing some serious data crunching, writing a kernel,
a driver, or otherwise doing intense systems or network programming, or
other fairly niche activites.

Outside of that, raw execution speed is rarely the bottleneck in any project.
This usually falls on disk access, network access, display update, user
interaction, or, considering the wider context of a project, programmer time
(and cost!). And when execution speed is really a problem, writing smarter
algorithms is usually a better answer than changing language or updating
hardware.

If you can come up with a working Python prototype in a tenth the time
needed to do the same in C or Java, (and in many case, you very well might),
that leaves you a whole lot of time to do some performance testing and
profiling, to find out what the real bottlenecks are, and come up with smarter
algorithms. If absolutely needed, you can always write some critical parts,
and only them, in C or assembly. Python’s numerical computation libraries,
such as numpy, are mostly written in C or Fortran behind the scene.

Let’s also note that some implementations of Python are much (about 5 times
on average) faster than the default one, as we’ll see in the next point.

⋄ Interpreted: Leaving aside that, stricto sensu, this is a property of an implementa-
tion, not of the language itself, the answer is “sort of”. Python is compiled to byte
code (.pyc), which is then executed (CPython backend). This is similar to Java
and .Net. And there are Python compilers targeting both Java (Jython) and .Net
(IronPython) virtual machines. There is also a Just In Time compiler in PyPy. That
is to say, the code is compiled to machine code on-the-fly. PyPy is almost always
faster than the default CPython, with an average speed-up of about 4.5 times —
on certain computationally intensive benchmarks, like AES (cryptography) or
raytracing, the speedup is much higher, about 50 times faster.

At any rate, Python has all the benefits of an interpreted language, such as an
interactive mode (absent from C, Java, and the like), and what happens behind the
scene (bytecode compilation etc) is entirely transparent for the user.

It also has the main drawback of an interpreted language, in that you need an
external interpreter (here at least a bytecode interpreter) to run your program, as
opposed to natively running it on the machine. But then the same applies to Java
and .Net.

If you ever need a single executable file, you can always ship the interpreter (which
is lightweight) with the code as a resource in the executable – the same principle
as self-extracting archives.

The bottom line is that the distinction between interpreted and compiled can get
quite blurry, especially for languages with a rich ecosystem of backends. Modern
languages are rarely purely interpreted – even Lua, a lightweight language
designed to be embedded in applications to provide scripting capabilities, has a
bytecode virtual machine.

⋄ Not just a scripting language, please: Python is often called a scripting language.
This is mostly due to its original purpose, 30 years ago (a scripting language for
the Amoeba operating system). Of course, a lot has changed since then.

There is also an often observed oversimplification along the lines of “interpreted
language = scripting language”, which holds perfectly in the limited ecosystem
{ shell, C }, but falls apart entirely today, even leaving aside that “interpreted
language” can be misleading, as discussed above.

Python happens to be fairly good as a scripting language, because it does not
require writing lots of boilerplate to do simple tasks, and has an interpreter and
an interactive mode.

Having those characteristics in no way takes away from its capacity in other
contexts; they just add to what makes it a fairly good general-purpose language.
Scripting is just one among its many uses. Obviously the existence – and clear
trend towards – large scale Python projects in industry shows that it is a very
realistic choice in realms far removed from the usual scope of “scripting”.

There are other languages that are more clearly geared and specialised towards
scripting, and that you might prefer to Python depending on your scripting needs.

For glue between your programs, most of the times a shell script is all you need.

If you want to add scripting capabilities to a game or something like that, Lua
is very lightweight (about 1 Mb with all standard libraries), and is specifically
designed to be embedded in other applications.
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18 Version 3 versus the world

18.1 Python 3.9 is required, 3.10 preferred

We deal with Python version 3. A very useful feature, fstrings, was introduced in 3.6,
so that is the absolute minimal version. I wrote most of this document under that
version.

3.7 introduces an important change to the behaviour of generator functions. This
change is explained in this document.

There is some cool new stuff in 3.8 and 3.9 but that is relatively anecdotal but nice to
have.

3.9 is therefore the minimum required by the course.

3.10 introduces the match statement, which is awesome, and is strongly recommended
from the onset. Unfortunately,. . . it’s not out yet; not until October 2021.

This does not prevent your from downloading and compiling the source code for
the release candidate from https://www.python.org/download/pre-releases/. See
how to compile in Sec. 19[p31]: “How to install the damn thing without being admin?”.

3.10 will become mandatory as soon as it is officially released.

18.2 Python 2 is right out!

Quite importantly, there are a few key differences between Python 2 and 3, making
them two similar but incompatible languages. This is often a source of bugs and
confusion.

To quickly ascertain whether you are running 2 or 3, try the command print 0. If
it works, you are using Python 2, where print is an instruction, in the same way
that return is, and does not require parentheses around its argument. If it throws a
SyntaxError, you are using Python 3, where print is an ordinary function.

More subtle differences include the behaviour of /, which always yields a float in
Python 3, but whose return type varies with the type of its operands in Python 2.

If your program worked perfectly before, and behaves weirdly on another machine,
odds are you’re not using the right version of Python.

Note that on most setups the python command if for Python 2, and you need to use
the python3 command instead.

19 How to install the damn thing without being admin?

19.1 I’m cool, I’ve got Linux

Unless your Linux distribution provides an acceptably current version via its package
management system, use a local installation to ensure you have the latest version
without needing any administrative right on your machine.

To do so, download the source distribution from https://www.python.org/.

Ensure that you have GCC installed, as well as TK and SSL development packages:
the first is necessary for TkInter GUIs, including Idle, whose source is bundled with
Python, and the second for integration into PyCharm, among other things for which
SSL might be useful.

On a Debian-based system

apt-get install tk-dev libssl-dev

will take care of TK and SSL modules.

Then you can go to the root of Python’s sources and do, as usual:

./configure --prefix=$HOME/Python310 # for instance

make

make install

Add the resulting binaries to your PATH if you like.

19.2 I’ve got Windows

From https://www.python.org/, download the installer; run it from the files manager
(it seems that downloading and running from the web browser sometimes triggers an
admin rights confirmation dialogue on INSA machines.)

During the installation, there is a checkbox about something like “export environment
variables” or something to that effect (f), which is not checked by default. You must
check it, otherwise, while Python will be installed on your machine, you won’t be able
to simply call python3 at the prompt, but will need to use an absolute path, along the
lines of C:\Program Files\...\python3.

Uncheck the box “for all users” (as it requires admin access)

(f)Students: If someone goes through this, please tell me the exact wording, so I can update this.
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20 How to use the damn thing?

From the shell command prompt, python3 launches an interactive mode.
python3 yourcode.py executes your program and exists. If you want to run your
program and open an interactive Python prompt with it, python3 -i yourcode.py

should do the job.

Python source files can be made executable in the same way as shell scripts, by including
as the first line

#! /usr/bin/env python3

and making the file executable

20.1 Python Editors

Like for most if not all programming languages, Python code is just text, with all the
special keywords being ASCII. Thus, you can use any raw text editor to write in Python.

That being said, it is far more convenient to use specialised editors for this purpose.

By default, you can use Idle, which ships with Python in the Windows distribution,
I believe. On a Debian-based Linux system, apt-get install idle3 should do the
trick.

The Spyder editor should be easy to install and use, while being an immense improve-
ment over Idle. apt-get install spyder should do the trick on Debian/buntu, and
pacman -S spyder for Arch. It is my personal recommendation if you can install it
easily and don’t have a favourite editor you wish to use.

For the largest projects, I personally use PyCharm.
pacman -S pycharm-community-edition for Arch.

If nothing else is available, there is also an online editor: https://repl.it/languages/
python3

Be that as it may, the best editor to start with is probably whatever you are used to and
feel most comfortable with, although anything that provides an interactive mode, like
Idle does, is at an advantage.

20.2 Things to do in Idle

Since Idle is the default choice, a few tips:

Idle opens to an interactive Python prompt by default – unless you opened a file with
it – which is fun and useful if you want to play with a calculator, but not great to do
any real programming.

Use the File menu to create or open a file – .py extension please – in which to write
your code. Put the window with the file on the left, and the window with the prompt
on the right (or whatever floats your boat).

Then, you can simply press F5 from the left to clear the session on the right, and execute
all your code again. Note that you can configure F5 to save the code without prompting
you — Options/Settings/General/Editor Preferences.

Note that there is a slight difference between the interactive mode and the normal,
coding mode: values like 42 will be printed automatically from the prompt, but not
when executing the code in the left window. If you want to see the value on the right,
do print(42) on the left.

20.3 Things not to do in Idle

(Also applies to any other editor with a dual prompt / file view)

Do not write complex code in the prompt! It’s just for one-time, throwaway testing, not
directly related to the function you’re writing — for instance, testing how a standard
function works on edge cases, before writing code using it, getting help() etc.

I have lost count of the number of times I have seen students, having defined

long_ass_function_name(with, many, parameters)

testing it (well at least they’re testing it) by writing a truckload of tests with different
input values in the prompt:

>>> long_ass_function_name(0, 0, 0)

>>> long_ass_function_name(1, 0, 0)

>>> long_ass_function_name(1, 1, 0)

...

Leaving aside the incoming carpal tunnel syndrome (sure you can repeat previous
commands to some extent, but it’s still cumbersome), every single test written that way
becomes void the instant the function is modified, and you need to retype everything.

Furthermore, the execution context of your prompt may not be synchronised with your
code, which can fudge up your tests. I am often called for “mysterious” bugs that only
exist because the code Kevin is actually testing is a half-hour older than what he thinks
he’s testing. Or because a definition has been shadowed.
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The decision process on whether to test your function on the left (code window) or the
right (pocket calculator) is simple: either you care to keep the tests for posterity, or you
don’t.

If you don’t care to keep the tests: write the test on the left, press F5 to test, change the
values, press F5, etc. Then remove or comment test.

If you do care to keep the tests: write them on left, copy-and-paste to your heart’s
content until you have all the cases you need. Press F5. Profit. Then either comment
them so you can easily repeat them later, or better yet, man up and turn them into
asserts. (More on that later.) Or unit tests, later on.

Either way: write them on the left. The end.

20.4 A few unkind words on vim

I see a lot of students using vim, which I find mysterious, as most of them don’t use
any of the special features that might justify it. Perhaps it’s like “Creative people use
Mac; peons use PC.” but with text editors? Perhaps just using vim makes you popular
with girls at parties? I really wouldn’t know.

Be that as it may, I don’t use vim, and if you call me on your machine to debug your
code, expect some annoyance if I can’t CTRL+C,V and other stuff. If you are not using
anything vim-specific, please, pretty please, use something else, will you. Not Emacs (g),
though.

This to a large extent is a matter of taste, I’ll admit. Much worse than that, however, is
that a lot of vim users I have seen among our students just have a console with vim,
displaying the code, and. . . that’s all.

When they want to test their code – and crucially, when they call me to debug their
code – they save, exit vim, run python3 theirscript.py, read the errors, and then
run vim again, which hides everything else.

That way, they never have to see the code and the error messages at the same time.
Maybe it’s some psychological defence mechanism to preserve the illusion that their
code is flawless. Maybe. But it drives me ab.so.lutely bananas. If you are debugging
something, it is really helpful to have both the code and the error messages (or the
output, generally speaking) available to your eyes at the same time.

You do what you want on your own time, but if you call me on your machine to sort
your mess out, make it so that code and output sit comfortably in their respective

(g)Sure, Emacs is a great operating system, but what it lacks is a good text editor.
— Everyone who does not use Emacs. Everyone who uses Emacs. Everyone.

windows, preferably side-by-side. And make sure the error messages I see actually
pertain to the code next to it.

I have also seen people do the same “hide the output” setup with nano, of all things,
instead of vim. I. . . presently lack the fortitude to comment further on the matter. Just
don’t.

21 A few basic points of syntax

21.1 Keywords, help()

Python offers an interactive help mode capable of listing and providing help for all
keywords in the language:

>>> help()

...

help> keywords

Here is a list of the Python keywords. Enter any keyword to get more help.

False def if raise
None del import return
True elif in try
and else is while
as except lambda with
assert finally nonlocal yield
break for not
class from or
continue global pass

async await # added in Python 3.7

As usual, any keyword is reserved by the language and cannot be used as a variable
name.

The help function can be called on any function or type, and will display its documen-
tation string:

>>> help(len)

Help on built-in function len in module builtins:

len(obj, /)

Return the number of items in a container.
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The / at the end means the end of positional parameters of the function. This is not
very important in most cases; pretend it is not there.

In the case of types, or “classes”, help displays the documentation of the class and that
of all its methods.

>>> help(int)
Help on class int in module builtins:

class int(object)
| int(x=0) -> integer

| int(x, base=10) -> integer

...

| __add__(self, value, /)

| Return self+value.

...

| conjugate(...)

| Returns self, the complex conjugate of any int.
...

21.2 A few words about Object Oriented Programming (OOP)

Here we need to say a few words about object-oriented programming (OOP), since
Python is object-oriented at its core. Of course you will study OOP properly, in its own
course, this year, and I shall come back to this later in this document; the aim in this
section is merely to put down some terminology and a basic intuition of what’s going
on.

The idea is that an object, in the abstract, has a certain set of properties, and can perform
a certain set of actions. For instance, a car has a weight and an age, and can start;
though how it starts may well depend on, say, its age — if it’s over 30 years, it does not
start.

In OOP, one would define a class Car — the abstract set of all possible cars — stating
that a car has attributes weight and age, and a method start(). An instance of the class
Car, that is, a specific car, yours for instance, is an object of type Car. Let’s call your car
c.

Then your car has its own weight and age, distinct from those of any other car, which
you can access as c.weight and c.age. The method start() is just a function that
implicitly belongs to a given car; you can call it as c.start().

This method call can be thought of as a function call start(c); however, many other
classes may define a start() method, such as an engine or an MP3 player, with quite
different behaviours.

So if you wanted to define a function capable of doing start(c), while also allowing
the other starting behaviours of other types — e.g. start(my_engine) — you would
need to test the type of the argument in the body of the function start, and handle all
possible behaviours accordingly: if it’s a car do this, if it’s an engine do that, et cetera.

At the end of the day, this would result in the code pertinent to a given type being
fragmented in every function that deals with it. Instead, with classes, most if not all
of the code that deals with a given type is neatly grouped, and the type dispatch in
shared methods is implicit. This is a form of polymorphism.

Consider the built-in function len, for instance. There are plenty of types for which
it makes sense to compute the length of instances, which len does. That includes
strings, lists, tuples, but also unordered collections such as sets and dictionaries, which
contain a clear number of elements. In the latter case, len is understood to compute
the cardinality.

If you define a new type and want len to work on it, you do not need to find the
definition of len and extend it. Actually, all len(x) does is call a special method
x.__len__(). If the object x does not implement this method, len raises an error
accordingly. So all you need to do to support len with your new data type — if it
makes sense to do so — is to define __len__ for your class.

The same principle applies for many other things, such as operator overloading.

We shall continue discussion OOP in Sec. 27[p99]: “Object Oriented Programming in
Python”.

21.3 Whitespace

Contrary to most languages, Python uses whitespace as significant syntactic element.
Returns mark the end of a statement, or “logical line”, as would a semicolon “;” in
Algol-style languages such as C, and the levels of indentation – that is to say, how far
you are from the left margin – serve to delimit blocks, as do curly braces “{ ... }” in
C. A physical line can contain several statements, if separated by a semicolon ;.

Of course, there are exceptions, as line returns can be escaped through the use of a
backslash ’\’ to enable a logical line to stretch over several physical lines. There are also
contexts, such as within a list, where line breaks are automatically escaped without a
need for an explicit backslash.

The following are all logical lines in Python:

n = 1 + 2

l = [1, 2, 3, 4]

34



n = 1 + \

2

n = (1 +

2)

l = [1, 2,

3, 4]

Indentation at the beginning of a logical line determines how deeply nested it is.

if C: # outer block

if D: # inner block

pass # inner-inner block

else: # inner block

pass # inner-inner block

else: # outer block

pass # inner black

New blocks, and thus deeper levels of indentation, are always introduced by a colon :,
as in if <test> :, else:, def ... :, try... :, et cetera.

When the block contains only one line, the line return can be omitted:

>>> if True: print("it works")

it works

Be very careful not to mix tabulation and regular spaces in your program. Depending
on how your text editor represents tabulation, some things may look perfectly aligned
which actually are not.

This can make it very difficult to control visually that the code is correctly nested, and
is a common source of maddeningly annoying bugs.

It is recommended to set your text editor to translate tabs into a fixed number of regular
spaces, generally between 2 and 4, the latter being more-or-less standard.

Internally, Python does not convert tabulations into spaces for the purpose of evaluating
indentation, but keeps count separately. Thus the rule it follows is: “two lines are at the
same level if they are indented by the same number of spaces, and the same number of
tabulations”.

21.4 Importing modules

Sometimes you have to import stuff from other modules to get work done. For instance,
I’d like a square root function. There is one in the standard library’s math module,

named, appropriately enough, sqrt.

I cannot use it directly:

>>> sqrt(10)

NameError: name ’sqrt’ is not defined

But what if I import the math module?

>>> import math

>>> sqrt(10)

NameError: name ’sqrt’ is not defined

Still does not work, because I just imported an object call math, which contains a number
of functions, including sqrt. Importing a module executes its code, so as to process all
the definition, and binds the module object to its name. It does not automatically pour
all of its contents into the current namespace. What I can do is get some help on the
module

>>> help(math)

and access the functions in its namespace, for instance:

>>> math.sqrt(10)

3.1622776601683795

>>> math.ceil(math.sqrt(10))

4

We say that math is imported and bound locally.

If the module name is too long, or conflicts with my local definitions, I can bind it
under a nicer name:

>>> import math as m

>>> m.sqrt(10)

3.1622776601683795

If all I am interested in is sqrt, I can just import that, and only that, directly bound
under that name:

>>> from math import sqrt

>>> math.sqrt(10)

NameError: name ’math’ is not defined

>>> sqrt(10)

3.1622776601683795
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The whole module is still executed during the import, even if you only want and bind
part of it. This matters if modules have side effects, like prints, or unit tests, which
shouldn’t be the case in production.

You can also import just a function and rebind it:

>>> from math import sqrt as s

>>> s(10)

3.1622776601683795

Finally, you can import everything into the current namespace:

>>> from math import *

>>> ceil(6.7)

7

There can be modules inside modules, like foo.bar.baz; this does not present any
specific difficulty.

21.5 Defining variables and functions

21.5.1 Variable assignment

Variables in Python do not need to be declared. They do not have any default value,
not even None.

>>> IdontExist

NameError: name ’IdontExist’ is not defined

>>> IdontExist = "And now I do!"

>>> IdontExist

’And now I do!’

Note: assignment uses =; comparison uses ==.

Python is case sensitive. X and x are not the same variable.

Identifiers (i.e. variable names) can contain alphanumeric characters (h) (though that
cannot begin with a number) and _ (underscore AltGr+8 on an AZERTY keyboard).
No whitespace, no other special symbols. No reusing language keywords. This is all
pretty standard.

Avoid redefining identifiers like len, or help.

Variables can be removed using the del statement:

(h)Including Unicode alphanumerics, since version 3.0.

>>> x= 2

>>> x

2

>>> del x

>>> x

NameError: name ’x’ is not defined

This does not immediately remove the structure the variable x points to from memory;
this merely removes the binding, the pointer, from x to that structure. Python’s garbage
collector will free the memory at some point, assuming there is no other pointer to that
same structure.

You will almost certainly never need to use del in that fashion. The keyword finds its
real use in removing elements from lists and dictionaries.

21.5.2 Parallel variable assignment

Assignment can be parallel. Actually this is a special case of some slight pattern-
matching capabilities on tuples, which we shall see later:

>>> x=1; y=2

>>> x,y = y,x

>>> print(x,y)
2 1

21.5.3 Incrementation and similar operators

There is no ++ or -- operator in Python, but you can write

i += 1

as a shortcut for

i = i + 1

and variants %= /= //= -= += *= **= exist for many other operators. Those shortcuts
are always defined on types for which the corresponding operator is defined. In the
presence of mutable structures, the equivalence between x = x+y and x += y may no
longer hold, as we shall see when we discuss lists.

21.5.4 Defining functions; predicates and procedures

Functions are defined with the following syntax (there is more to it; once we have seen
tuples and dictionaries we shall see in more detail, in Sec. 25.1[p92]: “Variadic function
definition”, how to define variadic functions and keyword arguments)
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def <functionname> (<arg1>, ..., <argN>):

"""optional doc string for help(<functionname >)"""

# you do your stuff here

return <something nice> # optional; no return => return None

Note that the colon : opens a block, which is the function body: you must indent, and
keep the indentation consistent.

Procedures are functions that do stuff but return nothing (or, in Python, None).

Predicates are functions that return Booleans (True or False).

def f(a,b,c):

""" My function f

does some cool stuff, dude. """

print("Call f:", a,b,c)

return a + b - c

print( f(1,2,3) )

----------------------------

Call f: 1 2 3

0

>>> help(f)

Help on function f in module __main__:

f(a, b, c)

My function f

does some cool stuff, dude.

21.5.5 Functions are first-class citizens

When we say that functions are first-class citizens, we mean that they should not be
thought of as fundamentally different from any other type of objects in the language.
Integers, Booleans, lists, etc are all types of objects with their own properties, that can
be passed as arguments to functions, and returned from a function.

In Python – and any language supporting some degree of functional programming,
which is to say nearly all modern languages – functions are no different from anything
else, and can be passed as arguments and returned, thus forming what is called
“higher-order functions”.

For instance, let us pass functions as arguments:

def f(x): print("F",x)
def g(x): print("G",x)

def do(x,f):

f(x)

do(0,f)

do(1,g)

----------------------

F 0

G 1

No special syntax is needed. A function f is an ordinary object, just one you can
“call” with f(..) syntax. A “callable”, in Python terminology. If needed, you can test
whether an object o is callable by writing callable(o).

Let us try returning a function, then:

def hFactory(letter):

def my_h(x):

print(letter,x)
return my_h

do(2, hFactory(’H’))

-----------------------

H 2

Note that the version of my_h that is returned still has access to letter. More generally,
a returned function still has access to all local variables. This is called a lexical closure.

Note: Python is still a dynamic language, though, so the resulting behaviour can in
some case differ from that of statically typed functional languages that make heavy use
of lexical closures, such as OCaml and Haskell. Sec. 64.3[p192]: “Foncteurs et décorateurs
de mémoïsation” provides an (advanced) exercise that illustrates that.

21.5.6 Anonymous functions: lambda

When using higher-order functions, it is often convenient to be able to define functions
on-the-fly, as an expression, without having to use a def statement and finding a name
for it. That is the use-case for anonymous functions, using the lambda keyword.

As an aside, that keyword comes from λ-calculus, a formal, universal model of
computation, and the direct inspiration of functional programming languages (LISP,
Scheme, Standard ML, OCaml, Haskell,. . . ).

The syntax is the following:

lambda <arg1>, ..., <argN> : <returned expression>

For instance, continuing the previous examples:
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do(3, lambda x: print("L",x))
-----------------------------

L 3

There is no meaningful semantic difference between lambda-defined functions and
def-defined ones, apart from one intrinsically having a name, and the other not:

def add(x,y):

return x + y

and

add2 = lambda x,y : x+y

are equivalent, for all intents and purposes. Note that the return keyword is implicit
in the second form. They are of the same function type:

>>> add

<function add at 0x7f873ffaff28>

>>> add2

<function <lambda> at 0x7f873ffbf048>

There is actually a syntactic restriction to lambda-expressions. Since they are expressions,
as opposed to statements – see Sec. 22.5[p53]: “Nihilism: NoneType: expression versus
statement” – they cannot contain any instruction, such as if..elif. However, they
can use the ternary operator .. if .. else .. and comprehension expressions, so
this is not a very stringent restriction. (It just serves as a hint that Python is not really a
functional programming language, even though you can do some stuff in that style.)

lambda-expressions are best use for very short, very simple throwaway functions
anyway. For anything more meaty, use def, and name them, even if the name will not
actually be used again.

lambda-expressions can be chained:

>>> f = lambda x: lambda y: lambda z: f"{x}{y}{z}"
>>> f(1)(2)(3)

’123’

>>> ( (f(1))(2) )(3)

’123’

f is a function that takes an argument x, and returns another function. What that
function is and does depends on the value of x; let us call it fx. This function fx itself
takes an argument y, and returns yet another function fxy, which takes an argument z,
and returns a value depending on all three values x,y,z.

This is an instance of a general technique to reduce all n-ary functions to unary
functions, called currying. It is prevalent in functional languages of the ML family
(OCaml, Standard ML, Haskell,. . . ), where all functions are implicitly curried, which is
key to a number of interesting techniques. In Python, however, chaining lambdas like
that should generally be avoided; we have unfortunately neither the syntactic sugar
nor the tooling necessary to make such constructs worthwhile.

21.5.7 Optional arguments

Again, we will come back to that in more detail later, but it is worth mentioning optional
arguments right now, as some common functions, such as print, have them.

A more general pattern for defining functions is this:

def <functionname> (<arg1>, ..., <argN>,

<optarg1> = <defval1>,..., <optargM> = <defvalM>):

Mandatory arguments come first, followed by any number of optional arguments, to
which a default value is passed.

Thereafter, whenever the function is called with some optional argument being passed
a value, the provided value is used by default.

In a call, the arguments can be provided positionally (first, second, etc) or by keyword,
in which case they can be passed in any order.

def g(a,b=2,c=3):

print("Call g:", a,b,c)

return a + b - c

-----------------------------

>>> g(0)

Call g: 0 2 3

-1

>>> g(0,20)

Call g: 0 20 3

17

>>> g(0,20,30)

Call g: 0 20 30

-10

>>> g(0,c=30)

Call g: 0 2 30

-28

>>> g(0,c=30,b=20)

Call g: 0 20 30

-10

>>> g(c=30,a=100)

Call g: 100 2 30

72
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In all cases, positional arguments must come first, and keyword arguments follow:

>>> g(a=1,2,3)

SyntaxError: positional argument follows keyword argument

21.5.8 Order of evaluation of arguments and expressions

In Python, arguments are evaluated in the order in which they are passed, left-to-right:

def x(n): print("arg",n)
print(x(1), x(2), x(3))

------------------------

arg 1

arg 2

arg 3

None None None # see the section on None

This is the case for all kinds of expressions, not only functions; the only real exception
is assignment: z,a = x,y, where x,y is evaluated before z,a, of course.

This behaviour is part of of Python’s specification. Nevertheless, it is somewhat
inadvisable to write code that relies on this.

21.5.9 Scopes: local, global, and nonlocal

The scope of a variable is the context in which such a variable is visible. In Python,
variables are local unless otherwise specified, which means they exist only in the scope
of the function in which they are defined. The scope outside of any function is called
the global scope.

In practice, you will only very rarely need to worry about scope. Simply remember
that the variables inside a function are local to it, and cease to exist after the function
has returned.

Using global variables can be handy in a few circumstances, but it is generally a very
bad idea and strongly discouraged in any language. Likewise, nonlocal can be useful,
but the situations in which that is the case are quite complex (decorators with own
state,. . . ). Furthermore, scoping rules in Python have some rather prodigiously ugly
edge cases.

Thus, you can skip this section until you need it, especially given that, in order to
make the most out of this section, you need to understand some data structures (lists,
dictionaries, strings) and adjacent notions (mutability,. . . ).

21.5.9.1 The global scope

Let us take an example to experiment with different scenarios, to see how Python
handles global and local scopes.

a,b,c,d = 10, 20, 30, 40

l = [1,2]

print(globals())

def fun(a):

a = 12

b = 21

global c

c = 31

global e

e = 51

ee = 61

l.append(3)

print(a,b,c,d,e,ee,l)
print(locals())

fun(11)

print(a,b,c,d,e,l)
print(globals())
print(ee)

------------------------

{’__name__’: ’__main__’,..., ’a’: 10, ’b’: 20, ’c’: 30, ’d’: 40, ’l’: [1, 2]}
12 21 31 40 51 61 [1, 2, 3]

{’a’: 12, ’b’: 21, ’ee’: 61}
10 20 31 40 51 [1, 2, 3]

{’__name__’: ’__main__’,..., ’a’: 10, ’b’: 20, ’c’: 31, ’d’: 40,

’l’: [1, 2, 3], ’fun’: <function fun at 0x7fa8def98dc0>, ’e’: 51}
NameError: name ’ee’ is not defined. Did you mean: ’e’?

There is a lot to unpack, here. First, we declare and initialise a,b,c,d,l in the global
scope. For the next line, we take a peek at Python’s global scope thanks to the built-in
globals function:

>>> help(globals)
Help on built-in function globals in module builtins:

globals()
Return the dictionary containing the current scope’s global variables.

NOTE: Updates to this dictionary *will* affect name lookups in the current

global scope and vice-versa.
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It is not necessary right now, but you can look up what a dictionary is in Sec. 24.4[p78]:
“Dictionaries: class dict” — Python uses this data structure extensively behind the
scenes. We see in that global scope a lot of technical information that we don’t really
need to worry about, along with our variables and their values.

Now, inside our fun function, we manipulate a, which is an argument, and therefore a
local variable: anything we do to it in the function is forgotten afterwards. The global
a is completely shadowed within fun, we never have access to it.

With b=21, we create a new local variable b, and affect a value to it. This new definition
is local, and shadows the global b: it is a different variable. Nothing we do to our local
b has any effect on the global one.

With global c, we declare c as global, meaning that the c in the function is the same
variable as the global c. Any modification done to it in fun is done as well in the global
scope.

With global e, we create a new global variable e, which, unlike c, did not previously
exist.

With ee=61, we create a new local variable, that does not shadow any existing global
variable.

With the local print, we observe that the global variable d is read, though we have
neither declared it as global nor shadowed it locally. Our local scope can read variables
from the global scope just fine, it just cannot rebind that variable in the global scope,
unless the variable is declared as global.

Note that not being able to rebind a global variable does not mean that a function
cannot modify the contents of global scope variables. Take the list l (cf. Sec. 24.2[p71]:
“Lists: class list”). With l.append(3), the value of l is read. That value, however, is
fundamentally a pointer towards an object, and that object can modify its own state, if
asked to do so.

Thus, we can modify the contents of the list. The variable l itself is unchanged: it still
contains the same pointer towards the same zone in memory, but the contents of that
zone have changed during the execution of fun. Thus, at the higher level where we do
not think in terms of pointers, the value of l has changed, by in-place modification.

As you can guess, locals() is the local equivalent of globals(), and tells you the
contents of the local scope. We observe that global variables do not appear in the local
scope at all.

Another (advanced) difference is that locals() is read-only, whereas you can alter
the global namespace by acting directly on the dictionary returned by globals(). It’s

probably not something you should do, but there may possibly be valid use cases for
programmatically defining new variables.

This can’t be done with locals() in Python3 (i), because local variables are not internally
represented as a dictionary, but as an array computed at compile-time, for performance
reasons. The dictionary returned by locals() is merely a view of that static array.
Technically, you can modify locals(), but the changes won’t be passed on to the array
structure, so it is utterly useless to do so.

Again, this (the read-write / read-only behaviour of globals() / locals()) is a rather
advanced point. I don’t expect you to manipulate those structures very often, if at all.
Certainly, no exercise or exam question will require that kind of fine knowledge. The
lesson here is that this sort of introspective structure (that is to say, structure dealing
with the internals of the language itself) can help you better understand how scopes
work and debug your program (if you don’t have a nice IDE to visualise that kind of
things), but please don’t start using them willy-nilly in your programs.

21.5.9.2 The ugly: the scoping heuristic

Let us execute that unassuming little snippet of code:

a = "Am I global or local?"

def f():

print(a)
# a = 2

f()

---------------

Am I global or local?

So far, so good. What could possibly go wrong with code that is so terribly simple? Now
uncomment the a=2 which, morally, should just define a local variable a, shadowing
the global a in the remainder of f, changing nothing to the output. You get

UnboundLocalError: local variable ’a’ referenced before assignment

What is going on, here? Python does not have a notion of “a is global at the beginning
of the scope of f, and is shadowed by a local declaration from <line number> onward”.

To Python, a given variable in a given scope must be local or not, period. It makes that
determination based on a simple heuristic: in that scope, is the variable ever bound? A

(i)it could be done in Python 2 under some circumstances
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variable can be bound by an assignment, simple or in-place or multiple or nested, a
for loop, an import, an as following with or except. . .

Without a=2, a is never bound locally, so Python considers it to be global. With a=2, a
is now bound in the local scope, at some point, therefore it is local, and since there is no
a in the local scope at the time print(a) is executed, you get an error.

21.5.9.3 The nonlocal keyword

The global keyword should be used extremely rarely, in most circumstances. The
nonlocal keyword is rarer still, as it only occurs in nested functions. Whereas global
always gives access to the global scope, no matter where it appears, nonlocal gives a
nested function access to the local scopes of the functions within which it is nested.

Let us take an example:

def f ():

a,b,c,d = "abcd"

print(locals())
def g():

print(a)
nonlocal b

b = b + "g"

d = "D"

def h():

nonlocal b

b = b + "h"

nonlocal c

c = c + "h"

nonlocal d

print(d)
h()

g()

print(locals())

f()

---------------------------------------------------

{’a’: ’a’, ’d’: ’d’, ’b’: ’b’, ’c’: ’c’}
a

D

{’a’: ’a’, ’d’: ’d’, ’b’: ’bgh’, ’c’: ’ch’,

’g’: <function f.<locals>.g at 0x7f5502a54ee0>}

The variable a is not global; nor is is bound locally, so it is not local; nor is it declared as
nonlocal. However, g does have read access to it, same as for global variables.

Unlike that, however, what happens internally is a bit confusing, with locals()
containing copies of nonlocal variables based on the same kind of heuristic discussed
in the previous section. Therefore, the contents of locals() may depend on lines that
have not been executed yet. You can verify this by modifying the beginning of g:

def g():

print(locals())
# print(a) # comment and uncomment

....

a appears in locals() iff print(a) is uncommented. Thus locals() is actually a poor
tool to understand nested scoping. Here you feel that nested scoping was added to
Python long after the initial design phase; it is best not to think too much about how it
is handled internally.

nonlocal b gives g access to the b of its youngest ancestor, here h; it is rebound.
Note that I avoided += to exclude any suspicion that what happens is an in-place
modification — strings do not allow in-place modification anyway, so such suspicion
would be misplaced anyway.

d = "D" creates a g-local variable that shadows the f-local d. This will be useful to
determine which one is visible from the scope of h.

In h, a new nonlocal b gives us access to the original b again, which we know because
of the eventual ’bgh’ output, but we can wonder whether we access b directly from
the scope of f, or from the scope of g, where it happens to also point to the scope of f.

nonlocal c, keeping in mind that c is defined in f but not at all in g, enables us to test
whether we can access the scope of f directly: and indeed we can, as attested by the
’ch’ output.

print(d) is the final test of nested scoping: will we get access to the d in the scope of f
or g? The nonlocal d statement changes nothing to that question — we do not modify
d anyway. The D output shows that we get access to g’s scope.

This is logical: g’s version of d shadows that of f: we get access to the scope of the
closest ancestor that binds the variable we are interested in.

22 Basic data types

To program is to manipulate data. Python provides various data types. We present
here the most fundamental of those.
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The type of an object – that is to say, the class of which it is an instance – can be obtained
thanks to the type function:

>>> type(42)

<class ’int’>

>>> type(42.)

<class ’float’>

>>> type(True)

<class ’bool’>

>>> type("Python")

<class ’str’>

>>> type([1,2])

<class ’list’>

>>> type( (1,2,3) )

<class ’tuple’>

>>> type(None)

<class ’NoneType’>

>>> type(print("Hello")) # see section on NoneType
Hello

<class ’NoneType’>

You shouldn’t do this very often, if at all, but types can, technically, be tested like this

>>> x=5

>>> type(x) == int # avoid that

True

>>> type(x) is int # is exactly of that class

True

>>> isinstance(x,int) # is that or subclass of that
True

Python subscribes to some extend to a “duck typing” philosophy. “If it walk like a
duck and quacks like a duck, it’s probably a duck; treat it as such”. Thus rather than
testing the type of something explicitly, you should just try to make it behave the way
you actually want (quacking, for instance), and see if that works.

The try .. except construction can come in handy for this. See Sec. 23.5[p64]:
“try .. except”.

Even better, rely on polymorphism, which, as we have discussed above, is precisely a
neat way to perform type dispatch.

22.1 Integers: int

22.1.1 Integer literals

Integers behave pretty much as you would expect, and can be entered as usual in bases
10, 16, and 8 using the standard notations:

>>> 42 # decimal

42

>>> 0xDEADBEEF # hexadecimal

3735928559

>>> 0o18 # octal -- here the digit ’8’ is out of place...

SyntaxError: invalid syntax

>>> 0o15

13

22.1.2 Operators on integers

Integers support the following standard operators, listed by classes of increasing
precedence:

+ - addition, subtraction
* / multiplication, floating-point division
// % integral division (quotient) and modulo (remainder)

- negation
** exponentiation

There are also bitwise operators on integers, whose precedences are all lower, and
comparison operators – see the section on Booleans – with the lowest precedence.

An important note regarding the two division operators:

/ is the floating point division. It will always return a floating point value instead of an
integer, even if the result happens to be exact. Contrariwise, // returns an integer if
both its operands are integers.

>>> 18 / 6

3.0

>>> 18 / 7

2.5714285714285716

>>> 18 // 7

2

>>> 18. // 7

2.0

>>> 18 % 7

4

>>> 18. % 7

4.0

// and % provide the standard quotient and remainder of euclidean division, regardless
of whether the output type is int or float.

That is to say, for any a, b ∈ Z, we have the identity
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a == (a // b) * b + (a % b)

22.1.3 Integer arithmetic is exact

In most languages, the range of integers which can be manipulated is restricted by
the fixed amount of memory allocated to it. Operations going beyond that result in
an integer overflow, whereby the value exceeding the maximum wraps back to the
minimum.

In Python, the native int type is a more sophisticated variable-size data structure,
capable of dynamically allocating however much memory is needed to represent the
integer values being calculated.

>>> 2**10000

1995063116880758384883742162683585083823496831886192454

8520089498529438830221946631919961684036194597899331129...

...6826949787141316063210686391511681774304792596709376

Note that this does not apply to floating point values.

22.2 Floating-point numbers: float

22.2.1 Writing floating point numbers

Floating point numbers behave as usual and can be entered with the usual e “exponent”
notation; arithmetic operators other than / – which always produces floats – will
produce a floating point number if any of their operands is floating point:

>>> 3.141592

3.141592

>>> 42**69 # integer

10097201832880355573875790863214833226

896186369872326994250398570376877433

686009543845316266007917815719968899072

>>> 42.**69 # float; note the .

1.0097201832880356e+112

>>> 42.**-69

9.903733891340244e-113

>>> 1e14

100000000000000.0

>>> float(’inf’) # infinity
inf

>>> float(’inf’) - float(’inf’) # Not a Number, undefined
nan

>>> float(’inf’) > 10**9999 # infinity is bigger than any number

True

22.2.2 Floating point computation is inexact

Under the hood, those are the same floating point numbers as in C or any other
programming language: they follow the IEEE 754 norm, double precision (64 bits).

This means, that, unlike integers, the same caveats apply as in any other languages.

You should almost never test the equality two floating point numbers directly, for there
might be a loss of precision due to rounding:

Consider:

>>> 1/3 * 6

2.0

So far, so good. But let’s unpack that into six additions, now:

>>> 1/3 + 1/3 + 1/3 + 1/3 + 1/3 + 1/3

1.9999999999999998

Another example:

>>> 1.1 + 2.2 - 3.3 == 0

False

>>> 1.1 + 2.2 - 3.3

4.440892098500626e-16

>>> 1e19 + 1000 == 1e19

True

Instead of using == you should test whether the distance between them is smaller than
some small value that still accounts for the possibility of error: |x− y| < ε. I often
take e-13, but that really depends on what what kind of computation you are doing,
and it is very difficult to properly evaluate what the margin of error should be, as that
requires detailed knowledge of the IEEE 754 representation and quite a bit of maths.
Some computations (e.g. chaotic systems) are immensely sensitive to errors, as even a
small initial error will “snowball” out into utter nonsense.

The very smallest representable value by float is

>>> import sys

>>> sys.float_info.min # smallest normalised

2.2250738585072014e-308

>>> from math import ulp

>>> ulp(0.0) # smallest denormalised

5e-324
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Note that the error in even the simple addition 1.1+2.2 ends up a whooping 292 orders
of magnitude greater than sys.float_info.min.

It is sometimes acceptable to test equality directly. For instance if a value tends towards
zero, it will get there eventually:

>>> x = 1000

>>> i = 0

>>> while x != 0:

... x /= 2

... i+=1

>>> print(i)
1085 # steps to get to zero

Note how backwards this is compared to mathematics: in R, this loop is infinite: there
is no n such that 1000

2n = 0. But with float, eventually you will get a value smaller that
the smallest representable value, and it will approximate to 0:

>>> 5e-324/2

0.0

So, in Python as in every language, beware of floating point numbers. If a problem
does not require their use, do not use them. If it does, think carefully of all that could go
wrong.

Concrete example: do not ever consider representing money, that is, an exact quantity
of euros and cents, using floating point numbers. Suppose you have 1e; you spend 42
cents. You have. . . not quite 58 cents:

>>> 1 - .42

0.5800000000000001

>>> 1 - .42 == .58

False

Floating-point numbers are better suited for things like temperature, pressure, age, and
other types of measurements, which are intrinsically inexact anyway. Even then it is
easy to produce nonsense if your computations are not continuous.

Fun fact: real numbers are so complicated that, for almost all of them, it is impossible
to write a program of any finite length displaying all their digits. (To say nothing of
trying to fit them in 64 measly bits). (Keyword: “computable number”).

Real numbers are convenient in maths, but in computer science, they are to be feared.
Integers are all right, though; especially in Python, where we do not risk overflow.

Python provides the decimal and fractions.Fraction types for exact, but slower
and less convenient computation, if you need that (e.g. currency,. . . ).

22.3 Complex numbers: class complex

The addition of a j to a numerical literal produces an imaginary number, which can
then be added or otherwise manipulated along with other numerical types:

>>> 27.1j

27.1j

>>> type(27.1j)

<class ’complex’>

>>> 2 + 3.14j

(2+3.14j)

>>> type (2+3.14j)

<class ’complex’>

Note that j is just another notation for
√
−1; in France we tend to use i for that.

Operators involving different numerical will tend to produce results of the “widest”
type; numerical types, from narrowest to widest, are int, float, and complex.

We shall probably not use complex numbers in this class, but it is good to know that
they exist and are very straight-forwardly supported by Python.

22.4 Strings: class str

22.4.1 Writing string literals

There isn’t really a “character” type in Python. There are just strings of length 1. Thus
the string type is both primitive and a sequence type: a string is a sequence of strings
(each of length 1). Roughly, a sequence type is a type that supports element indexes –
starting from 0, as usual in programming – and has a length.

Strings in Python support Unicode, and can be written either with simple or double
quotes, as in shell. Unlike in shell, there is absolutely no difference in semantics between
the two ways; the only thing that changes is that you need not escape single quotes in
a double-quoted string and vice versa.

>>> "This is a ’single quote’ in a double"

"This is a ’single quote’ in a double"

>>> ’This is a "double quote" in a single one’

’This is a "double quote" in a single one’
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There is another type of string syntax: triple quoted! This can use either triple double
quotes or triple single quotes. Either way, in those you need not escape either single or
double quotes, nor do you need to escape carriage returns (\n):

>>> """This is a triple quoted string,

where I can write carriage returns

without problem, and use ’single’

and "double" quotes as well."""

’This is a triple quoted string ,\nwhere I can write carriage

returns\nwithout problem, and use \’single\’\nand "double"

quotes as well.’

The triple-quoted syntax is often use in “doctrings” – strings that decorate functions
and can be used by several tools, including Python’s own help function, for purposes
of documentation. They naturally tend to span several lines.

Like in shell, string literals can be concatenated arbitrarily, and this is even more flexible
as they can be separated by whitespace:

>>> "This i" ’s a string’ """ in multiple bits"""

’This is a string in multiple bits’

Sometimes, you want a long string to be broken into several lines of Python, indepen-
dently of any newline characters that it may contain. As in other contexts, you can do
that with backslashes:

>>> "This is a \

long string."

’This is a long string.’

The drawback here is that it messes up the indentation, visually at least, since you
cannot put whitespace at the beginning of the second line without making it part of
the string:

>>> "This is a \

long string."

’This is a long string.’

In that case, you can take advantage of the literal concatenation feature, combined with
the extension of logical lines within expressions:

>>> ("This is a "

"long string.")

’This is a long string.’

Or, you can escape the returns:

>>> "This is a "\

"long string."

’This is a long string.’

22.4.2 Raw, format, and binary string literals

Prefixing a string literal, regardless of quotation style, with r (or R) makes it a raw
string. In raw strings, all escape sequences, like \n, are ignored:

>>> x = 21*2

>>> print("a\nb{x}c")
a

b{x}c
>>> print(r"a\nb{x}c")
a\nb{x}c

This is quite useful if you want to manipulate strings containing a lot of backslashes,
like LATEX code.

Prefixing with f (or F) makes it a formatted string, of fstring for short, which makes it
possible to include the value of expressions directly in the string, in braces {}:

>>> print(f"a\nb{x}c")
a

b42c

>>> f"Hello, x={x}, x**2={x*x}"
’Hello, x=42, x**2=1764’

There is a lot more to say about fstrings, and we’ll come back to them in Sec. 22.4.10.4[p51]:
“The good stuff: formatted string literals”.

Raw and formatted strings can be combined through an rf (or fr, or Rf, or. . . ) prefix,
in which case all escape codes are ignored except for braces:

>>> print(rf"a\nb{x}c")
a\nb42c

Prefixing with b (or B) makes it a binary string, of type bytes rather than str:

>>> print(b"a\nb{x}c")
b’a\nb{x}c’

>>> print(b"a\nb{x}c".hex())
610a627b787d63
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Binary strings are a sequence of bytes, interpreted as ASCII characters for visualisation
purposes, and are used for binary manipulation. They can also be made raw via an rb

prefix:

>>> print(rb"a\nb{x}c")
b’a\\nb{x}c’

We shall not do any binary manipulation in this course, so you won’t have to worry
about those.

You will also find an u prefix, standing for “Unicode” in old Python 2 code, and it is
supported but redundant in Python 3, as all strings are Unicode.

22.4.3 User interaction: the input procedure

You may at some point want to read a string typed by the user during an interaction
with your program: the command for this is input.

>>> x=input("? ")

? Hello ! # Here I type ’Hello !’

>>> x

’Hello !’

If you want something other than a string, you need to perform a conversion. Generally
speaking, the name of a class, such as int, float, or bool, acts as a constructor, a
function that builds an element of that type, given some arguments. In particular, they
are used for purposes of conversion.

>>> n=int(input("Number please ? "))

Number please ? 42

>>> n + 8

50

For some reason, a lot of students seem to love the input command. When I ask for, say,
a function converting Celsius into Fahrenheit, many will write a procedure prompting
the user for a value, and display the result of the conversion. Which is a completely
different thing. (More on that in the section on NoneType). And this is despite my going
out of my way to not mention input’s existence too early in my lectures, precisely to
avoid this – it still manages to creep up.

Let’s be clear: when I speak of the input of a function, I am not referring to this
command, but to the function’s parameters or arguments. If I don’t ask you explicitly
to prompt the user, don’t use this.

22.4.4 The in/∈ operator

The in operator, which corresponds roughly to the mathematical ∈ in container types,
is extended in strings: not only can it test whether a character is present in a string, it
can test whether a (contiguous) substring can be extracted from the string:

>>> "b" in "abcd"

True

>>> "bc" in "abcd"

True

>>> "ac" in "abcd"

False

Note that since the empty string is a substring of any string, we have

>>> "" in "abcd"

True

>>> "" in ""

True

Which is a bit of a trap in some circumstances: for instance, testing whether the user
inputs “yes” at a prompt, one can easily write

input() in "yY"

meaning “lowercase and uppercase Y mean yes”. But actually, this returns True if the
user enters nothing, which is not the intended behaviour. Instead, you need to write
something like

input() in list("yY")

22.4.5 Length and indexing in sequential types

The length of a string — or of any type for which the notion of length makes sense and
has been implemented, such as lists, tuples, sets (where it means “cardinality”) etc –
can be obtained thanks to the len function:

>>> len("Python")

6

Strings are indexed starting from 0, as usual, and with the usual notation:

>>> "Python"[0]

’P’

>>> "Python"[1]

’y’
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22.4.6 Slicing and dicing, concatenation, repetition

Slightly less usual is the extension of this notation to “slices”, allowing to extract
substrings:

The slice s[start:end] means the substring of s beginning at position start and
ending just before position end. If start is omitted it is assumed to be 0, and if end is
omitted, it is assumed to be the length of the string: len(s). Thus s[:] is always the
same string as s.

>>> "Python"[1:4]

’yth’

>>> "Python"[:]

’Python’

>>> "Python"[:42] # an overly large end index is truncated

’Python’

The customary zero-based indexing makes reasoning from the beginning of the string
easy, but it takes some light arithmetic to reason backwards, from the end of the string.
For those cases, Pythons allow the use of negative numbers in index accesses or slices.
Thus each element is indexed by two different numbers, one positive, one negative.

However, the last element is of negative index −1, and not −0— because distinguishing
+0 and −0would be somewhat tricky. To remember that, consider that, under the usual
positive index, the last element of a string s is at position len(s) - 1, the second-to-last
at len(s) - 2, etc. Therefore, this convention simply spares us the hassle of writing
len(s) all the time.

P y t h o n

0 1 2 3 4 5
-6 -5 -4 -3 -2 -1

>>> "Python"[-1]

’n’

>>> "Python"[-4]

’t’

>>> "Python"[1:-4]

’y’

>>> "Python"[:-4]

’Py’

The slice syntax admits a third, optional argument step — bringing the full syntax to
s[start:end:step] — that dictates the increment between the selected indices:

>>> "Python"[0:6:2]

’Pto’

>>> "Python"[::2]

’Pto’

>>> "Python"[::3]

’Ph’

>>> "Python"[1::2]

’yhn’

The step can be negative; in that case end is best understood as the index which, when
met, immediately ends the construction of the slice. It is still exclusive in its semantics.

>>> "Python"[5::-2]

’nhy’

>>> "Python"[5:1:-2]

’nh’ # excludes ’y’ at index 1

>>> "Python"[4::-2]

’otP’

>>> "Python"[4:0:-2]

’ot’ # note that end is not implicitly zero!

>>> "Python"[4:6:-2]

’’

It should also be noted that, in slices, any start or end argument with out-of-bounds
indexes is silently ignored and the start or end of the string is used instead, exactly as
though the argument had been omitted.

This can result in surprising behaviours if your step is greater than 1, as this is not
quite the same as saying that “out-of-bounds indexes are ignored”.

>>> "Python"[4::-2]

’otP’

>>> "Python"[5::-2]

’nhy’

>>> "Python"[6::-2]

’nhy’ # you could legitimately expect ’otP’...

>>> "Python_"[6::-2]

’_otP’ # ... just ignoring out-of-bounds index 6

>>> "Python"[7::-2]

’nhy’

>>> "Python"[-6::2]

’Pto’

>>> "Python"[-7::2]

’Pto’

Slices are actually objects in Python, which are generally constructed implicitly from
the slice syntax, but can be named and manipulated explicitly. The constructor for that
type is slice(start, stop, step):

47



>>> myslice = slice(3, 10, 2)

>>> myslice

slice(3, 10, 2) # does not do much except store those values

>>> l = list(range(15)) # list of numbers 0 <= .. < 15
>>> l

[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14]

>>> l[myslice] # but can be passed as index!

[3, 5, 7, 9]

>>> l[3:10:2]

[3, 5, 7, 9]

A theorem of some interest is that, for any string s and any integer n, even negative or
out of bounds, it holds that s[:n] + s[n:] == s.

This is useful when “modifying” strings, for instance. . . which you cannot do, strictly
speaking. Unlike in most languages you may be used to, strings in Python are
immutable. That is to say, once a string is created, you can never modify it in-
place. What you do instead is create a new version of the string, incorporating the
modification you want. The slice notation makes this process relatively painless. There
are advantages to strings being immutable, as we shall see later when dealing with sets
and dictionaries.

As an aside, in purely functional programming languages such as Haskell, everything is
immutable. While that may seem strange at first, this has great benefits for program
proof or rewriting, as you never have to worry about any value being sneakily modified
as a side effect of some other piece of code.

Back to Python strings, you can concatenate them with +, which is not unusual, but you
can also multiply them with integers, concatenating them with themselves repeatedly:

>>> "Python" + " rules!"

’Python rules!’

>>> "Python" * 6

’PythonPythonPythonPythonPythonPython’

Thus, to “replace” a character in a string, here capitalising the ’t’ in “Python” for no
reason whatsoever, we can write:

>>> s="Python"

>>> s[:2] + ’T’ + s[3:]

’PyThon’

Slices also have an optional third argument indicating the increment by which to select
characters; it is of course 1 by default.

>>> "Python"[::2]

’Pto’

>>> "Python"[::-1]

’nohtyP’

>>> "Python"[::-2]

’nhy’

The behaviour of slices mirrors that of the range function. See the section on
for .. range.

Note that len, slices, +, *, and more, work not only with strings, but with any “sequence”
type in Python, such as lists and tuples. Actually, len works on any “collection” type,
that is, anything containing a number of other things; that includes strings, lists, tuples,
but also sets and dictionaries.

22.4.7 Python strings use Unicode

Python strings are coded in Unicode (utf8), and as such can contain all kinds of special
characters, while being compatible with the ASCII encoding (see table) and the larger
ISO-8859-1/Latin1 encodings. You can write the Unicode symbols directly, by whatever
means are available (honestly I often just copy and paste from a web page or something),
or you can enter the Unicode code point (or ordinal) for the symbol you want, if you
know it, after the \u escape:

>>> ’Σ is the sum symbol’

’Σ is the sum symbol’

>>> "\u2211 is the sum symbol"

’Σ is the sum symbol’

The functions chr and ord effect the conversion from Unicode code point to character
(“string of length 1”) and vice versa:

>>> chr(65)
’A’

>>> ord(’A’)
65

>>> ord(’a’)
97

>>> ord(’Python’)
TypeError: ord() expected a character, but string of length 6 found

Python also supports Unicode in identifiers, with some restrictions. You can only use
symbols that are classified as letters (and numbers, of course). Thus Σ (U+03A3), the
greek letter, will be acceptable, but

∑
(U+2211), the mathematical operator, will not.
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>>> Σ = sum

>>> Σ(n for n in range(10))
45

>>>
∑

SyntaxError: invalid character ’
∑

’ (U+2211)

>>>
∫

= 2

SyntaxError: invalid character ’
∫
’ (U+222B)

Having Greek letters is great for implementing maths, although it’s a shame mathe-
matical operators are not allowed.

Lest you think that this restriction was a necessary sacrifice for the sake of clarity, note
that, even with letters only, Unicode can be a source of great joy:

>>> ord("A")
65

>>> ord("A")
913

>>> "A" == "A"

False

“What on Earth is going on here?”, you ask, bewildered. . . well, you see, one A is the
bog-standard ordinary latin letter A, and the other A is the capital Greek α. They just
happen to be visually identical in most fonts, but they are entirely different symbols
from different alphabets. Make sure to put Unicode capital αs and βs (B) and so on
everywhere in your code for endless laughs.

22.4.8 Unicode defines the order on characters

Characters are ordered according to their code points. That is to say, given two
characters c and d, we have

c < d ⇐⇒ ord(c) < ord(d) .

22.4.9 The order on characters defines the lexicographical order on strings

This total order on characters is extended to a total order on strings, by deriving the
lexicographical order: let u, v ∈ Σ∗ be strings (j), then

u < v ⇐⇒ u is prefix of v ∨ ∃x, y, z ∈ Σ∗, a, b ∈ Σ :


u = xay

v = xbz

a < b.

(j)Here I am using notations that we shall see this semester in formal languages theory. It should still be
pretty intuitive: Σ is the set of characters, and Σ∗ the set of strings. xay means the concatenation of x, a,
and y.

The following are all True:

>>> ’aa’ < ’aaa’

>>> ’aaa’ < ’ab’

>>> ’Etudiant’ < ’Prof’

>>> ’Prof’ < ’etudiant’ # case matters!

As we shall see later on, other sequential collection types follow the same method to
lift an order on their elements into an order on homogeneous collections.

22.4.10 Formatting strings

A common task with strings is to format data. There are several ways of going about
that in Python, depending on the complexity of the task.

Only print and the basics of fstrings will be tested in the exam.

22.4.10.1 The print procedure

At its most simple, and if you just want to display the result, you can simply use the
variadic print procedure.

>>> x = 1 ; y = None

>>> print("And then", "there was", x, ",and then there were", y,".")

And then there was 1 ,and then there were None .

print adds spaces between its arguments, and a carriage return at the end. This is
controlled by optional arguments sep and end, respectively:

>>> print(x,y,y,x,sep=’..’,end=’!!’)
1..None..None..1!!

What if you want non only to display this, but to get a new string? In that case, again
for basic tasks, you can concatenate what you need, but note that you must convert
non-string elements manually:

>>> "And then " + " there was " + x + ", and then there were " + y + "."

TypeError: must be str, not int
>>> "And then" + " there was " + str(x) + ", and then there were" + str(y) +

"."

’And then there was 1, and then there were None.’

Is there something more convenient and powerful, along the lines of printf and
sprintf? Yes, there are ways, three of them to be specific, thought none are called
printf.
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22.4.10.2 The % operator

In chronological order of introduction to Python, they are the % operator, the format
string method, and fstrings, which share syntax with the formatmethod and can be
see as an improved way to access it. Not that it matters much, but fstrings are also the
most efficient of the bunch.

We are going to touch briefly on each of those, with more emphasis on fstrings, which
are the recommended way to proceed.

% is a binary operator taking a string with special formatting syntax inside, very similar
to printf syntax, and a tuple of values, and returning the corresponding formatted
string:

>>> "Like %.2f a %d printf %s." % (3.14159265359, 42, "dream")

’Like 3.14 a 42 printf dream.’

Since it is a perfectly normal operator producing a perfectly normal string, nothing
prevents you from passing all that as argument to, say, print, essentially making print
into a printf equivalent:

>>> print("Like %.2f a %d printf %s." % (3.14159265359, 42, "dream"))

Like 3.14 a 42 printf dream.

22.4.10.3 The format method

Back in the good-ol’-days of Python 2, that was the way things were done. Then format
was introduced in Python 2.6. It uses a more streamlined method call, extensible on
new types via the __format__ method, and has a new, original specification syntax,
based on curly braces, that breaks with some of the conventions of printf, but retains
some of them:

>>> "Like {:.2f} a {:d} printf {:s}.".format(3.14159265359, 42, "dream")

’Like 3.14 a 42 printf dream.’

For now, we don’t see any improvement over printf that would justify the change of
syntax. But what if you want to repeat a given argument? Sure, you could duplicate it
in the call to format, but there is more elegant. Before the semicolon :, you can actually
put the index of the argument you are referring to. Absent this indication, they will
be taken in order; but if you wish, nothing prevents you from reusing an argument,
perhaps with different formatting:

>>> "Like {0:.2f} a {1:d} printf {2:s}.".format(3.14159265359, 42, "dream")

’Like 3.14 a 42 printf dream.’

>>> "Like {0:.2f} a {1:d} printf {2:s} {0:.3f}.".format(
3.14159265359, 42, "dream")

’Like 3.14 a 42 printf dream 3.142.’

Digression: you can actually do something like that with printf in C, with a $-based
syntax

printf("%1$s%1$s\n", "hello");

but that is a Posix extension, that works only on Unix systems, and is not included in
the C99 standard. You can also used named arguments instead of positional indices
(and for course the formatting part, such as :.2f, is optional), which can result in much
more readable patterns:

>>> "{x:d}{y}{y}{x}".format(x=0,y=1)
’0110’

This is about as good as it gets for format, and while it is a vast improvement over
printf style, there is still a level of redundancy and clunkiness.

22.4.10.4 The good stuff: formatted string literals

Then, with Python 3.6, formatted string literals, or fstrings, entered the fray. An fstring
is special string literal of the form f"...", containing formatting instructions in a
similar syntax to format, which is evaluated at runtime and converted into a normal
string. It can reference any variable in its current scope.

>>> x = ’Python’

>>> v = 3.6

>>> f"Introduced in {x} version {v}."
’Introduced in Python version 3.6.’

It would be difficult to imagine something simpler and cleaner than that. But that is
not the end of it: Since fstrings are evaluated at runtime, you can put (almost) any
valid python expression inside them:

>>> f"Before {v} was {v-0.1}, and after was {v+0.1}."
’Before 3.6 was 3.5, and after was 3.7.’

fstrings concatenate with other string literals, including other fstrings, without prob-
lems,

>>> f"fstring {v} " "regular string"

’fstring 3.6 regular string’
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Thus you can use the same techniques as usual to span an fstring over multiple logical
lines. Also note that all the different syntaxes for string literals apply as well for fstrings;
single quotes:

>>> f’Introduced in {x} version {v}.’
’Introduced in Python version 3.6.’

and triple quotes (whether single or double):

>>> f"""Introduced in {x}
version {v}."""
’Introduced in Python\nversion 3.6.’

This is even more useful in fstrings that in regular strings – where it’s just a nice but
inessential convenience – since you may want to execute code involving string literals
inside fstrings, and you cannot escape special symbols there, as \ cannot appear inside
the formatting curly braces. By using a style of quote for fstrings and another one for
the string literals inside it, things go smoothly:

>>> d = { ’key’ : 42 }
# this is a dictionary; a key:value association

# see the relevant section

>>> f"Value for ’key’ is {d[’key’]}."
"Value for ’key’ is 42."

>>> f’Value for \’key\’ is {d[’key’]}.’ # string eds at ...{d[’
SyntaxError: invalid syntax

>>> f’Value for \’key\’ is {d[\’key\’]}.’
SyntaxError: f-string expression part cannot include a backslash

Note that you can use backslashes just as usual in the string part of the fstring, just
not in the formatting/expression parts between braces. If that restriction becomes
cumbersome, do not hesitate to evaluate the offending expression beforehand, put its
value in a variable, and reference that in the fstring.

Do not hesitate to use triple quotes even if you don’t need line returns, because then
you need not worry about escaping any type of quote:

>>> f"""Value for ’key’ or "key" is {d[’key’]} or {d["key"]}."""
’Value for \’key\’ or "key" is 42 or 42.’

Given the special nature of braces in fstrings, they must be escaped if you want these
characters to appear in the string, but you can’t do that with a backslash: you need to
use double braces {{..}} (k):

(k)Speaking from personal experience, this makes using fstrings to generate LATEX code, which has an
extremely high concentration of braces, a small nightmare.

>>> f"{3.1415:.2f}" # a formated expression

’3.14’

>>> f"{{3.1415:.2f}}" # now it’s just a literal string

’{3.1415:.2f}’
>>> f"{{{3.1415:.2f}}}" # combine the two.
’{3.14}’

Finally, note that, as of the current version of Python, fstrings have much higher
performance than other ways of formatting strings – not that this is usually a bottleneck,
but when it’s both the most elegant and the fastest way to do this, why use anything
else?

It is highly recommended to get used to them. For a complete reference on their syntax,
see the official documentation:

https://docs.python.org/3/reference/lexical_analysis.html#f-strings

https://docs.python.org/3/library/string.html#formatspec

As you can see, there is quite a lot going on in the formatting syntax. I’ll just insist on a
very common thing to do with string formatting: aligning things in monospace fonts.
The relevant formating instructions are:

< left-align text in the field
^ center text in the field
> right-align text in the field

In those examples x still contains ’Python’:

>>> f"[{x:<20}]"
’[Python ]’

>>> f"[{x:>20}]"
’[ Python]’

>>> f"[{x:^20}]"
’[ Python ]’

>>> f"[{x:*^20}]" # fill with any character , here *

’[*******Python*******]’

>>> f"[{x:#^20}]"
’[#######Python#######]’

>>> f"[{x:\^20}]" # it looks bigger but that’s because \ is escaped

# in the string literal below

’[\\\\\\\\\\\\\\Python\\\\\\\\\\\\\\]’

>>> print(f"[{x:\^20}]") # when printed it’s the right size
[\\\\\\\Python\\\\\\\]

Of course for numerical values the usual specifiers for the decimal type suffice to
produce quite legible tables:
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>>> for i in range(0,10+1,2):
print(f"{i:6d} {i**2:6d} {i**3:6d} {i**4:6d}")

0 0 0 0

2 4 8 16

4 16 64 256

6 36 216 1296

8 64 512 4096

10 100 1000 10000

For debugging purposes, it is often useful to print the values of variables; to easily keep
track of which value corresponds to which variable, you can use the “=” formatter:

>>> x,y,z = "abc"

>>> f"{z=} {y=} {x=}"
"z=’c’ y=’b’ x=’a’"

Note that the formatting instructions after the : can use the value of variables. For this,
it suffices to surround the variable name with braces:

lines= [ "a", "bbbbbbb", "ccc"]

maxl = max(len(l) for l in lines)

for l in lines:

print(f"|{l:^{maxl}}|")
---------------------------------

| a |
|bbbbbbb|
| ccc |

Furthermore, fstrings can be nested; the usual rules regarding quote escapes apply:

>>> db = dict()

>>> y = 2021

>>> db[f"{y}_budget"] = 42e5

>>> print(f"{y}_budget : {db[f’{y}_budget’]}")
2021_budget : 4200000.0

Python 3.12 makes nesting more flexible (l).

Finally, let us illustrate what I meant when I said that that types could implement the
__format__ method to roll their own formatting specifications:

>>> import datetime

>>> today = datetime.datetime.today()

(l)https://docs.python.org/3.12/whatsnew/3.12.html#pep-701-syntactic-formalization-of-f-strings

>>> today

datetime.datetime(2019, 8, 20, 11, 53, 33, 122991)

>>> print(f"{today:%B %d, %Y}")
August 20, 2019

Here, %B %d, %Y is a special formatting specification that works only on objects the
datetime class, where its meaning is defined. It works because at runtime, it is known
that today is of this type.

22.5 Nihilism: NoneType: expression versus statement

It is quite important to distinguish expressions and instructions/statements (m). Year
after year I belabour this point, and year after year students forget all about it by the
time the exam comes. Insert sad emoji here.

An expression, like 1+2, has a data type (here, integer), and a value.

Expressions can be nested: e.g. 3*(1+2). Fundamentally, an expression is either a base
value (1, 2,. . . ) or a combination of several sub-expressions under an operator or a
function).

Arithmetical and logical expressions are two kinds that you are familiar with, but there
are endlessly many variants.

A statement (FR: instruction), on the other hand, represents an order given to the
machine:

x = 42 # create a memory space encoding 42, and bind it to x!

print(42) # display that on the standard output!

pass # do nothing!

A statement does not, morally, have any value attached to it, in the way that 2+2 does.
There is a fundamental difference of concept between the value 42, and the execution of
the order “take a bucket of paint and write this value, 42, on the wall!”. That 42 be
written on a wall or on the standard output is immaterial to this distinction.

Because statements do not carry an intrinsic value, there is generally no point in
allowing them to be combined or nested. The only thing you can do with them is put
one after the other.

In Python, some statements, like return 42 cannot be combined or nested in any way,
under pain of SyntaxError. Others, like print(42), can; sort of.

(m)Technically, in Python an expression is also a particular form of statement; I am more interested in the
semantics, here.
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>>> print(print(42), print(69))
42

69

None None

What happens here? print is a function. Functions typically return something, some
value, but this is not the case here; print does something. In that case we prefer the
word procedure to function.

It is important to distinguish the cases where a function returns something from those
when it does not, so as to catch errors. The way Python does that – and many other
languages as well – is to have a “placeholder” type for “this has no type”, “absence of
data”. A value to return when you want to say “I returned nothing”. Thus procedures
are naturally handled in exactly the same way as every other functions, no special
cases needed.

In Python, this special value is called None, and it is the only value belonging to
the type NoneType. Any function that does not return anything implicitly ends with
return None.

And now we can understand what happens in print(print(42), print(69)): the
outermost print begins by evaluating its arguments, in order. print(42) evaluates
42, displays it, and returns None, which becomes the first argument value of the
outermost print. Then print(69) evaluates 69, displays it, and returns None. Finally,
print(None,None) executes, displaying the string representation of both Nones, which
happens to be "None".

22.6 Booleans: bool

Booleans are a very simple data type, containing only two values: True, and False.

22.6.1 Comparison operators

A function that returns a Boolean is called a predicate.

You usually get Booleans as a result of a comparison operator. In Python, they are the
following:

Mathematics Python

= ==

, !=

< <

> >

⩽ <=

⩾ >=

All comparison operators have the same precedence, unlike in C, and that precedence
is lower than that of any arithmetic operation (as in pretty much all any language).
They compare the values of their operands, not whether they are the same memory
object — the operator for that is is.

An interesting and very unusual thing about the Python incarnation of the comparison
operators is that they can be chained as in maths: for instance, I can write

0 < x <= y < 1

to mean

0 < x and x <= y and y < 1

The semantics is only exactly the same in the absence of side effects, as we shall see in
Sec. 22.6.5[p56]: “The semantics of and and or, & implicit Boolean conversion”.

22.6.2 in and is

in and is, as well as their negations not in and is not, can be considered comparison
operators and have the same precedence as them.

in (and its negation not in), corresponding to ∈ in maths, tests whether an element
appears in a collection – so long as the collection type implements the relevant methods:

>>> 2 in {1,3,4}
False

Recall that we saw that, in the case of strings, it also tests for substrings:

>>> "bc" in "abc"

True

That does not apply to other collection types, such as tuples, lists, etc, since, unlike
strings, they can be nested:
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>>> (2,3) in (1,2,3)

False

>>> (2,3) in (1,(2,3))

True

Then there is also is (and is not), testing if two objects point to the same loca-
tion in memory – much more rarely used. Examples of common uses: x is None,
type(x) is int (though isinstance(x,int) is often to be preferred).

The operands of comparison operators need not be of the same type. The rule is that,
when comparing two objects of different types:

⋄ If they are both a numerical type, they are converted to a common type and
compared:

>>> 42 == 42.

True

It should be noted that, technically, bool is a numerical type – in fact it is a subclass
of int. Thus we have:

>>> 0 == False and 1 == True

True

>>> 2 == True or 2 == False

False

>>> 2 * True + True

3

This can result in some strangeness in the case of collections that rely on hashes of
the values of its items, such as sets and dictionaries:

>>> {True, 1, 0, False}
{0, True}

⋄ Otherwise, they are automatically unequal.

>>> "42" == 42

False

⋄ Unless the appropriate method has been defined in one of the operands, they
cannot be ordered:

>>> "42" < 42

TypeError: ’<’ not supported between instances of ’str’ and ’int’

Note that since they are comparison operators, they can be chained as well, and with
any other comparison operators.

Whereas in maths, almost all instances of comparison chaining are ordered, e.g.

e1 < e2 ⩽ e3 = x ⩽∞ ,

and when you see such expressions, it’s quite intuitively obvious what they mean.

Python has no restrictions on which operators can be chained. Consider the expression
None==None is None. What does it mean? If you forget that is can be chained, nothing
makes sense:

>>> None==None is None

True

>>> (None==None) is None

False

>>> None==(None is None)

False

Both == and is are, nominally, binary operators, but neither of the two possible
interpretations of that expression match what you obtain.

What it really means is:

>>> None==None and None is None

True

The same goes for in:

>>> None==None is None in {None}
True

22.6.3 Boolean operators

Boolean expressions involve Boolean operators in the same way that arithmetical
expressions involve arithmetical operators. The Boolean operators are as follows:

Maths / Logic Python

∨ or

∧ and

¬ not

⇐⇒ ==
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The last one is actually the standard comparison operator, not really a Boolean operator,
that just happens to work because logical equivalence is simply equality of Boolean
values.

The truth tables of these operators are as usual.

All three true Boolean operators have lower precedence than any comparison operator,
and are here listed in order of increasing precedence. The only thing in Python with
lower precedence than or is lambda.

Precedence warning: if you find yourself writing

>>> reply=’y’

>>> reply == ’y’ or ’yes’

True

you have just introduced a large bug in your program: the test will always pass:

>>> reply=’n’

>>> reply == ’y’ or ’yes’

’yes’ # non-empty, therefore True

The precedence rules evaluate that as (reply == ’y’) or ’yes’, which is True.

Either write

reply == ’y’ or reply == ’yes’

or – less classical but more convenient – use the in operator and a collection, preferably
a tuple:

reply in (’y’, ’yes’)

22.6.4 A fantastic fear of Booleans

As a point of syntax or style, there is a anti-pattern I see often – quasi systematically,
in fact, in some form or other – and dislike considerably: writing predicates with
unnecessary if statements and/or ==True tests. Here is an example of what I mean:

def p(a,b):

test = a == 1 and b == 2

# or any computation that yields True or False

if test == True:

return True

else:
return False

There are two things wrong with this picture; let’s start with the test. It is a Boolean
expression. Its value is already True or False. For any Boolean b, it holds that b is true
if and only of b==True is true. It does not get extra truer with extra tests ==True. If you
go down that road, why stop there? Why not go full retard, as they say, and write

>>> (b == True) == True

>>> ((b == True) == True) == True

>>> # you get the idea

just for those tasty incremental bits of truthiness? Just don’t, please. There is never
a good reason to write if test == True instead of if test. The same goes for
return test==True versus return test.

Now on to the second wrong thing:

if test :

return True

else:
return False

What are we doing, here? If test is True we return True. If test is False we return
False. test being a Boolean, we have covered all the values it can ever take. In other
words, we return the value of test, no matter what. Let’s do that: return test.

All in all, the predicate above should be written:

def p(a,b):

return a == 1 and b == 2

In exams, I have a policy of taking away points whenever I see that.

22.6.5 The semantics of and and or, & implicit Boolean conversion

Morally, Boolean operators act on two Booleans, and yield a Boolean. False or True is
a well-defined Boolean expression, of value True. Something like False or 42 should
raise an error along the lines of “hey, I expected a bool, and I got an int. What gives?”.
Right? Let’s ask Python:

>>> False or 42

42

>>> True and 42

42

>>> 42 or True

42

>>> True or 42

True

>>> not 42
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False

>>> not not 42

True

>>> False or 0

0

>>> [] and 42

[]

Oh. Okay. “C’est pas faux.” Let’s stay calm and figure out what’s going on.

In Boolean contexts, that is to say, in a if of while test, or as operand to a Boolean
operator, everything that is not already a Boolean is forcibly converted to one, along
the following rules:

Everything becomes True unless it is on the following list, which intuitively captures
the “empty” object of each type:

⋄ False itself, of course.

⋄ None, because you can’t get emptier than that.

⋄ Numerical values equal to zero: 0, and 0.0

⋄ the empty string ’’, the empty list [], the empty tuple (), the empty set set(),
the empty dictionary {}, and any empty container type, generally.

⋄ anything that says so in its __bool__ method. If you write your own type, give
some thought to what conversion makes sense.

That actually makes a lot of sense: implicitly, testing an object becomes testing non
emptiness.

But wait, that explains True or 42 being true, because that is equivalent to
True or True, and that explains not 42 being false, because that boils down to
not True, but why does False or 42 yield 42 instead of True?

First note that this is consistent, as in a Boolean context, 42 will be converted to True

anyway.

The reason for that lies in the precise behaviour of or and and, which actually differs in
subtle but important ways from that of their mathematical counterparts.

In mathematics, both ∧ and ∨ are commutative: the statements

a , 0 ∧
1

a
> 10

and

1

a
> 10 ∧ a , 0

are both well-defined and strictly equivalent for all values of a ∈ R. Let us test that in
Python for a = 0:

>>> a=0

>>> a != 0 and 1/a > 10

False

>>> 1/a > 10 and a != 0

ZeroDivisionError: division by zero

Why this behaviour? In mathematics, all operands are “processed” simultaneously. In
Python – as in most languages – the operands are processed in order, left to right.

Furthermore, not all operands need be evaluated: In mathematics, given the expression
⊤ ∨ x, whatever the Boolean x, the result is ⊤. Likewise, given ⊥ ∧ x, the result is ⊥.

Python follows that convention, and never evaluates the second argument if the first
suffices. Thus, in the first version, 1/a > 10 is never evaluated, and can thus yield
no error. In the second version, it is evaluated first, and the second operand cannot
“protect” it.

Finally, whenever Python examines the value that concludes the evaluation of a binary
Boolean operator, it returns that value itself, and not its Boolean conversion. Thus, for
instance, False or 42 first looks at False, which is not enough to conclude in an or;
then it looks at 42, and returns that. In fact, if it gets to the second operand, it does
not even try to convert it to bool, it just returns it as is. There is no need, as ⊥ ∨ x and
⊤ ∧ x are both equivalent to x.

In conclusion, Python’s binary Boolean operators are only commutative in the absence
of exceptions (and side effects).

Another way of expressing the behaviour of those operators is as follows, with ≈
denoting implicit Boolean conversion:

x or y =

{
x if x ≈ True

y otherwise

and

x and y =

{
x if x ≈ False

y otherwise

Again, neither operator returns the Boolean conversion of their operands, but instead
the operands themselves; in both cases, y is evaluated only in the case where it must
be returned.

A pattern that you may sometimes see that makes use of this behaviour looks like this:
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default = 42

user = input(’Enter a number, or press Enter for the default: ’)

nb = user or default

print(’The number is’, nb, user)

It has the behaviour you would expect. Note that it works if the user enters 0, because
input yields a string, and ’0’ is non-empty. It is not necessarily recommended to write
in this way.

Let us come back to chained comparison operators. I said earlier that they were
translated into an and statement, but with a slight difference in semantics in the
presence of side effects. Let us clarify and demonstrate that fact.

Let us define a test function with no purpose except having a side effect — printing the
value it returns:

def x(x): print(x,end=" "); return x

First, let us see a similarity:

>>> x(10) <= x(2) <= x(3)

10 2 False

>>> x(10) <= x(2) and x(2) <= x(3)

10 2 False

Line and, the chain comparison stops as soon as it is broken; we see this because x(3)

is never executed.

And now, the difference:

>>> x(1) <= x(2) <= x(3)

1 2 3 True

>>> x(1) <= x(2) and x(2) <= x(3)

1 2 2 3 True

Each operand is only evaluated once in a chain comparison.

22.6.6 Assertions: cheap unit testing and preconditions enforcing

Boolean expressions serve of course as tests in the usual control flow structures, but
another cool thing you can do with them is assertions.

An assertion is a statement about the state of your program that must hold if the state
is correct. It can be used as a mechanism for defensive programming – ensuring that

the precondition of a function are met, e.g. this input representing an hour is between
0 and 24, it does not make sense otherwise – or for testing – my function must return
this on that input, otherwise it is incorrect.

The syntaxes for the assert instruction are the following:

assert <condition>

assert <condition> , <optional error data or message>

Its effect is to test the condition, and do nothing if it is True. Indeed, the condition
states the normal, expected behaviour of the program. If the condition is false, on the
other hand, something is very wrong with the state of the program, and an exception
is raised, interrupting the program.

It is very good practice to use asserts in your code whenever convenient. Like unit
tests, they can catch bugs at their source and prevent regressions.

Of course, the code within the assertions may have a negative impact on performance,
in which case they should be deactivated in a production environment. Assertions
are only executed in debug mode, which is on by default, and can be deactivated by
passing the -O (capital O, for Optimisation) flag to Python.

The behaviour of assert is thus equivalent to

if __debug__: # you can’t assign to this; use -O

if not condition: raise AssertionError #(optional_message)

Note that it is a bad idea to try to catch an assertion error, and have the behaviour
of the program depend on that. Assertions only trigger if the logic of the program is
violated; they are fundamentally outside of the program’s logic. They are a safeguard
against incoherent behaviour, not a control flow mechanism. That is why they can be
deactivated or removed at will.

For instance, you should probably not use an assertion to test the sanity of a user’s
input; dealing intelligently with your users’ inability to formulate correct inputs is
very much in your program’s bailiwick; “user not very smart” is not an error condition,
it’s a Tuesday.

You should use an assertion to ascertain that programmers (including you) use your
function correctly. Dealing with programmers’ inability to read and understand a
function’s documentation is not your responsibility. If your function only makes sense
when n is positive, and you have documented that fact, then by all means throw in an
assert n>=0 at the beginning of it. If the function is ever called with n negative, it’s a
programmer error, everything should stop right now so the programmer notices and
fixes the error.
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The optional message is not all that useful, as the traceback displayed when an exception
is raised reproduces the assertion’s line:

>>> n = 52

>>> assert n == 42

Traceback (most recent call last):

File "<pyshell#14>", line 1, in <module>

assert n == 42

AssertionError

I often see error messages that paraphrase the condition:

>>> assert n == 42, "n should be 42"

Traceback (most recent call last):

File "<pyshell#18>", line 1, in <module>

assert n == 42, "n should be 42"

As you can see it is completely redundant; I can read the condition already. It might
serve some use in that capacity if I caught the AssertionError, and did not have the
traceback, but as discussed above that goes against the grain of what an assertion
means.

A better use for it that I can see is to provide the value that failed to meet the condition,
if applicable:

>>> assert n == 42, n

Traceback (most recent call last):

File "<pyshell#19>", line 1, in <module>

assert n == 42, n

AssertionError: 52

Here I can see that the actual value of n that triggered the assertion was 52, which is
non-redundant and actually helpful for debugging purposes.

Let’s take a silly example to illustrate the kind of use of assert I would like to see in
your code. Suppose I want to implement a function that computes the square of a
number (very difficult, that. . . ).

I propose the following implementation:

def square(n): return n**2

To illustrate the use of assertions to test preconditions, I’ll add the requirement that
my function must only be called with nonnegative values. This condition is entirely
artificial here, but again, it’s just to showcase an assertion. I would then write:

def square(n):

assert n >= 0

return n**2

Once the function is written, I want to make sure it is correct. I know how to compute a
square independently of my implementation, so I do that for a few values – it’s good to test
edge cases, so for integers the first few and a large one generally suffice – and write

assert square(0) == 0

assert square(1) == 1

assert square(2) == 4

assert square(10) == 100

Nothing explodes when I run this code, so I am that much more confident that my
function is correct.

Do not remove or comment out your assertions! Again, they can be deactivated
globally for performance reasons if need be, and they protect against code regressions.
Very often I see students removing the assertions after having (allegedly) tested their
function. I cannot fathom the reasoning under that act — nor can they account for it,
when I ask. And of course, of course!, two times out of three, when the assertions are
put back in, it turns out that the code was incorrect.

An even better way to proceed would be Test-Driven Development (TDD). The idea is
to write the tests first, when you have decided what your function should do on paper,
and only then to implement the function, until all the tests pass.

An interesting case is when you have two implementations of the same function. It’s
very common to have an obvious, clearly correct but inefficient way to implement
something, which you later replace by a more finicky optimised version, perhaps
operating on completely different principles. Rather than getting rid of the old, correct
but slow implementation, you can use it in tests to check that the new implementation
is equivalent to the old – and prevent regressions while you continue to optimise the
new version.

With two independent implementations, you can use a loop to test equivalence on a
large number of values: Here I would write:

for n in range(10): assert square(n) == n * n

This passes as well, so the **-based and *-based implementations seem equivalent.

There is a drawback to the form above: if debug mode is deactivated, this does not
disappear completely, but becomes
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for n in range(10): pass

Which is still a loop for nothing. Thus the following form should be preferred:

assert all( square(n) == n*n for n in range(10) )

We shall study that syntax later on, in Sec. 24.5.1[p84]: “Comprehensions for every
type; first contact with generators”. Specifically, see Sec. 24.5.3.4[p87]: “Reductions”,
especially the part about any and all.

In this syntax, it is harder to see for which value the assertion fails (if fail it does). We
can use the := operator, which assigns a value to a variable in the course of evaluating
an expression, to store the last values computed before the assertion failed, and return
them with the AssertionError:

def square(n): return 8 if n==3 else n*n

assert all( (es:=square(en:=n)) == (ee:=n*n)

for n in range(10) ), (en, es, ee)

----------------------------------------------

AssertionError: (3, 8, 9)

Here en, es, and ee store, respectively, the value of n that caused the failure, the value
that was computed by square, and the value that was expected.

22.6.7 Beware: a trap in assert’s syntax

assert is an instruction, like return, not a function, like print, and thus it requires
no parentheses. Of course, you can always use parentheses around any expression
without changing its meaning, and so assert False and assert( False ) are strictly
equivalent. Likewise, the following, with an error message, seems perfectly innocuous:

assert (False, "It’s a trap!")

Yet, you receive a warning (in some contexts; Idle seems to eat them, but I see them
when using Python from the terminal in 3.10.8) when running the code:

Warning (from warnings module):

SyntaxWarning: assertion is always true, perhaps remove parentheses?

What is happening here? (e1,e2,...,en) is the Python syntax for tuples; ordered
immutable lists of elements. They can also be written simply e1,e2,...,en in some

contexts. assert may potentially take two comma-separated arguments, but the
comma is part of its syntax, there is no tuple involved. Putting parentheses around
both arguments turns

(False, "It’s a trap!")

into a single tuple – here, a couple, so non-empty, and therefore equivalent to True.
Hence the warning.

22.6.8 Synthetic table of operator precedence and associativity

The table in Figure 1[p61] presents all precedence classes for Python constructs —
including some not yet introduced in this document — in order of increasing priority.
Where applicable, the associativity is indicated. When in doubt, refer to it.

A few notes are required in order to clarify some of the entries. Strictly speaking, the
concept of associativity is only classically defined for binary operators. We extend the
definition to the following intuition:

The associativity of a syntactic construct is whichever side (left or right) the parentheses
accumulate on, if made explicit.

By that loose definition, a unary operator, like −, is right associative, because −− 1 =

−(−(1)), and the parentheses accumulate on the right. The same idea applies to lambda
and .. if .. else ...

23 Basic control flow

Here we recall the basic control flow structures. They mostly behave as expected and
have few game-changing Pythonic specificities that I am aware of, so there is not much
to say beyond giving the syntax.

The exception to that is the for loop. There is much more to it than meets the eye at
first glance, and we shall come back to it later.

23.1 Conditional branching instruction: if

This is your usual if/elif/else statement, with the usual semantics.

if <c1>:

<execute if c1>

elif <c2>:

<execute if ¬c1 ∧ c2>
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= (◦ · (• · •))
+=, -=, *=, /=, //=, %=, &=,^= |=, <<=, >>= none

:= none
lambda (◦ · (• · •))

x if C else y (◦ · (• · •))
or ((• · •) · ◦)
and ((• · •) · ◦)
not (◦ · (• · •))

in, not in, is, is not, <, <=, ==, !=, >=, > ((• · •) · ◦)
| ((• · •) · ◦)
^ ((• · •) · ◦)
& ((• · •) · ◦)

<<, >> ((• · •) · ◦)
+, - ((• · •) · ◦)

*, @, /, //, % ((• · •) · ◦)
+x, -x, ~x (◦ · (• · •))

** (◦ · (• · •))
await x

x[i], x[i:i ′], x(a,...), x.a

(x...), (x,...), [x,...], {x,...}, {k:v,...}

Figure 1: Precedence and associativity

...

elif <cn>:

<execute if
∧n−1

k=1 ¬ck ∧ cn>

else:
<execute if

∧n
k=1 ¬ck>

Just recall that the conditions are converted to Booleans if they are not already, with the
consequences discussed in the section on that data type.

As in any language (apart from, say, pure functional languages) be mindful of side
effects:

The following two blocks of code are only equivalent under a certain assumption. What
is it?

if test():

instr1()

else:
instr2()

if test():

instr1()

elif not(test()):
instr2()

23.2 Conditional expression: .. if .. else .. ternary operator

Sometimes, you have a simple test that is best written in one line, typically when you
are trying to return a conditional value or assign it to a variable, or perhaps use it in
the middle of a computation.

This can be done with the following syntax, where B is a Boolean and vtrue and vfalse

are expressions:

< vtrue > if < B > else < vfalse >

which stands for the expression, or the value:{
vtrue if B holds

vfalse otherwise

This corresponds to what is often called “the” ternary operator <cond> ? t : f in
C and derived languages. The use of the definite article in this terminology is a bit
imprecise: it is an operator with three operands, hence ternary, but not the only possible
one.
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Note that since this is an expression, and not an instruction, it can be used in the middle
of a computation

>>> (1 if False else 2) **2

4

and you you cannot use return (or any instruction) within it: write

return 1 if True else 2

or

if True:

return 1

else:
return 2

but never

return 1 if True else return 2

This construct can be chained, of course, though doing so is not recommended
for reasons of legibility. There are two ways to interpret the expression
1 if C1 else 2 if C2 else 3, depending on the associativity of this – slightly weird
– operator. Let us test that in a systematic way:

def default(x,y): return 1 if x else 2 if y else 3

def left (x,y): return (1 if x else 2) if y else 3

def right (x,y): return 1 if x else (2 if y else 3)

for x in (0,1):

for y in (0,1):

print(x,y," ", default(x,y), left(x,y), right(x,y))

------------------------------------------------------------

0 0 3 3 3

0 1 2 2 2

1 0 1 3 1

1 1 1 1 1

Thus we see that the ternary operator is associative to the right which, after a minute
of reflection, appears as the most natural option.

Functions being first-class objects, this construct is perfectly capable of switching
between functions:

>>> (str.lower if True else str.upper)("Abacus")

’abacus’

>>> (str.lower if False else str.upper)("Abacus")

’ABACUS’

This is to be used with parsimony, if at all.

The ternary operator has the lowest precedence of all Python operators.

23.3 While loop

The while loop is as usual:

while <condition>:

<intructions block>

break and continue statements can be used in a for loop, with the usual semantics.

There is one Pythonic surprise, though: while may be paired with an else clause,
executed at the natural end of the loop — that is to say, after the condition turns to
False — but not in the event of a break. This also works with for loops, and an
example is provided in the corresponding section.

This syntactic construct is rarely used, and the choice of else for the keyword is widely
acknowledged as injudicious.

You may mentally substitute nobreak for else when trying to wrap your head around
that concept.

If you use that construct at all, I’d recommended commenting the break and else lines
to make the logic clear.

23.4 for .. in .. range loop

The syntax of the for loop that most closely resembles the classical “i++” approach is
the range construction:

for k in range(0,10,2):
print(k, end=’ ’)

-----------------------

0 2 4 6 8

As you can guess, the last argument, the increment, is optional and defaults to 1.
Following the same convention as for slices, the starting point is inclusive, and the end
point is exclusive.
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for k in range(10,0,-2):
print(k, end=’ ’)

------------------------

10 8 6 4 2

There is also a syntax with just one argument: range(n) is interpreted as range(0,n).
This often appears when generating the indices of a string or list:

s = "Python"

for k in range(len(s)):
print(s[k], end=’ ’)

------------------------

P y t h o n

This syntax appears a bit restrictive, and it is not immediately clear whether the range
syntax is actually an intrinsic part of the for loop’s own syntax or something else.

As it happens, range is not tied to for’s syntax:

>>> range(10)
range(0, 10)

>>> type(range(7))
<class ’range’>

but it’s not clear at this point what it is and what you can do with it. For now let us
just say that the range type is an iterable and indexable/subscriptable sequence type —
you can use for loops, r[i] indexed access and r[i:j:step] slice notation on them.

We shall come back to this in greater detail when speaking of generators later on,
but know that for in Python is really a “for each”, that iterates over every item in a
collection type that supports the operation – an iterable type. Ranges are just one such
type, but strings, lists, tuples, sets, etc, are as well.

for <var> in <collection>

<block in which var takes the value...

... of an element of the collection. >

So you can just write

for c in "Python":

print(c, end=’ ’)

---------------------

P y t h o n

Not only is this clearer and less error-prone, since there is no point in reasoning on
indices if your logic does not depend on them, but this is actually slightly more efficient
in general, as you don’t have to generate an extra range object.

It is important to note that the iteration variable exists outside the scope of the for
loop, and holds the last value it took during the loop. For instance, after iterating on
"Python" as above, we have:

>>> c

’n’

This does not apply to for loops appearing in comprehension expressions.

The iteration variable can actually be replaced by a structure of variable names, in
which case the same kind of pattern matching as in standard assignments on nested
structures (cf. Sec. 24.1[p69]: “Tuples: class tuple”) is performed. For instance, here we
iterate over lists of couples:

>>> l = [ (n, n**2) for n in range(5) ]

>>> l

[(0, 0), (1, 1), (2, 4), (3, 9), (4, 16)]

>>> for x,y in l:

print(f"{x} -> {y} ", end=’’)

0 -> 0 1 -> 1 2 -> 4 3 -> 9 4 -> 16

This is often used with, for instance, the enumerate construct, which provides automatic
indexing of an iterable:

>>> list(enumerate("Python"))

[(0, ’P’), (1, ’y’), (2, ’t’), (3, ’h’), (4, ’o’), (5, ’n’)]

>>> for k,c in enumerate("Python"):

print(f"{k}:{c} ",end=’’)

0:P 1:y 2:t 3:h 4:o 5:n

Also useful is the zip function, to consume several iterables at the same time:

>>> for x,y,z in zip([1,2,3], "abcd", "XYZ"):

... print(x,y,z)

1 a X

2 b Y

3 c Z
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Note that it stops when the shortest iterable is exhausted.

Also occasionally useful is the reversed function, which reverses an (ordered) iterable:

>>> for x in reversed(range(3)):
... print(x)

2

1

0

Again, we shall examine the underlying notions in more detail in the sections on
iterables, generators, etc.

break and continue statements can be used in a for loop, with the usual semantics.

Like while, for loops may also have an else clause in Python, executed at the end of
the loop but not in the event of a break.

This example, lifted from Python’s own documentation, – with some additional
comments – illustrates the use of this construct:

for n in range(2, 10):

for x in range(2, n):

if n % x == 0:

print(n, ’equals’, x, ’*’, n//x)

break # found a factor
else:# if no break

# loop fell through without finding a factor

print(n, ’is a prime number’)

-----------------------------------------------------

2 is a prime number

3 is a prime number

4 equals 2 * 2

5 is a prime number

6 equals 2 * 3

7 is a prime number

8 equals 2 * 4

9 equals 3 * 3

23.5 try .. except

You may already be familiar with exceptions if you have used Java or any other
somewhat modern, mid-to-high level language. Whenever something goes wrong
with your program, rather than crashing outright, it “raises” and “exception”.

If the exception is not caught / handled at some point by code that invoked the faulty
sub-program, the execution is interrupted. The exception itself is an object that can

carry some information about the type and parameters of the failure.

try is a flow-control structure dealing with exceptions. Its syntax admits many variants,
as follows:

try:
<code that may fail>

except <ExceptionName1> :

<what to do if this exception is raised>

except <ExceptionName2> as <var>: # as is optional,

<what to do in that case> # exception is bound as <var>

except (<Ex3, Ex4, ...): # catch any of those

<what to do in that case>

except : # catches all other exceptions

<what to do in that case>

else: # optional

<executes if the try block does not raise any exception>

finally: # optional
<always executes after, regardless of exceptions and breaks>

As you can see, it is somewhat similar to a switch/case structure (which did not exist in
Python before version 3.10), but specialised for exceptions.

Exception names — actually classes — are among Exception (of which all others are sub-
classes), AssertionError, NameError, TypeError, IndexError, KeyError, ValueError,
OverflowError, ZeroDivisionError, etc.

A classical example, seen whenever user input is involved:

n = None

while n is None:

try:
n = int(input("Enter a number: "))

except ValueError:
print("Invalid number. Retry.")

You can define your own exception types by subclassing Exception. This not essential,
and will be clearer after reading the section on objects.

If you want a catch-all that can manipulate the raised exception, unlike except:, you
can use, for instance:

except Exception as e: print(repr(e))
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23.6 Pattern matching: match..case

For the longest time, Python had no equivalent to any kind of switch/case construct.
Alternatives included chaining if..elif constructs and using dictionaries, none of
which was very satisfactory. Then, for version 3.10, the developers suddenly woke
up and added the match..case statement. This turned out to be a very significant
addition.

Not only does match cover everything that is expected of a switch construct, but it
goes deeper, and enables structural pattern matching, a powerful tool more often seen
in statically typed functional languages such as OCaml or Haskell. match is not quite
as convenient as the equivalent in those languages, but we are 90% of the way there,
and I for one welcome our new match-ing overlords.

In this section, we shall take a very superficial view of what it can do. We shall
come back to it later, after Sec. 24.6[p89]: “Packing and unpacking” and Sec. 27[p99]:
“Object Oriented Programming in Python”, and explore the power of structural pattern
matching a bit more in depth. That will be the object of Sec. 28[p109]: “Advanced
structural pattern matching”.

23.6.1 Syntax overview

For now, the syntax:

match expr:

case pattern1: <execute if expr matches pattern1>

case pattern2: <execute if expr matches pattern2 but not 1>

...

case patternN: <execute if expr matches patternN but not 1..N-1>

Patterns are a new class of syntactic constructs, which can be thought of as a generali-
sation of assignment targets. In the statement x = 2, x is the assignment target, and
now x is bound to the value 2.

More complex assignment targets can be found in Sec. 24.6[p89]: “Packing and unpack-
ing”: for instance [a,b] = [1,2] breaks down [1,2], and binds a to 1 and b to 2. This
is structural pattern matching: finding, if possible, an assignment of the variables in
the left-hand side that matches the structure of the right-hand side. Patterns in the
match statement generalise that.

Intuitively, the match statements attempts to make pattern1 = expr happen, then
pattern2 = expr if the first didn’t work, and so on. If a pattern works, it bind variables
(if the patterns contains variables), and executes the code corresponding to the case.

Syntax note: Unlike all other keywords, such as def, if, etc, match and case keywords

are so-called soft keywords, which is to say you can still use them as variable or
argument names.

>>> def = 7

SyntaxError: invalid syntax

>>> if = 7

SyntaxError: invalid syntax

>>> match = 1

>>> match
1

This does not prevent them from being recognised as keywords when they are used
in the right grammatical context, which is to say that of a statement, rather than an
expression.

23.6.2 The different types of patterns, by example

Let us take an example that covers the different types of patterns, if only superficially.
We shall go through it pretty much line by line.

match x:

case 0: return "Ze Zero or Neo"

case 1 | -1: return "Neo or Negative Neo"

case int(): return "integer != 0"

case "INSA": return "lotta homework"

case str() as s: return f"a string ’{s}’"
case "a", 1, 3.0: return "a very specific sequence"

case [x, y, z]: return f"3 element sequence {x}-{y}-{z}"
case [1|2 as x, 3|4 as y] as l: return f"or/as {x} {y} {l}"
case x, [*l], y, z: return f"4 elem seq, 2nd is seq {l}"
case x, *rest: return f"at least 1 element {x}:{rest}"
case {1:v, 2:V, 3:x} if x==v+V: return f"dict 123"

case {2:v, **r}: return f"dict 2 -> {v}; {r}"
case {3:8}: return "38"

case _: return "who knows?"

for x in [-1, 0, 1, 2,

"INSA", "Meh",

(1,2,3), ["a", 1, 3.0], ("a", 1, 3.0), {"a", 1, 3.0},
[1, 3], [1, 4], [3, 1],

(1,), [1,2], [1,2,3], [1,2,3,4], [1, 2, [3, 4], 5],

[1, [2, 3], 4, 5], [1, (), 4, 5],

{1, 2, 3}, {1:"a", 2:"b", 3:"c"},
{1:4, 2:3, 3:7}, {1:4, 2:3, 3:8}, {1:4, 3:8},
]:

print(f"{repr(x):>30} -> {match(x)}")

------------------------------------------------------------------------------

65



-1 -> Neo or Negative Neo

0 -> Ze Zero or Neo

1 -> Neo or Negative Neo

2 -> integer != 0

’INSA’ -> lotta homework

’Meh’ -> a string ’Meh’

(1, 2, 3) -> 3 element sequence 1-2-3

[’a’, 1, 3.0] -> a very specific sequence

(’a’, 1, 3.0) -> a very specific sequence

{1, 3.0, ’a’} -> who knows?

[1, 3] -> or/as 1 3 [1, 3]

[1, 4] -> or/as 1 4 [1, 4]

[3, 1] -> at least 1 element 3:[1]

(1,) -> at least 1 element 1:[]

[1, 2] -> at least 1 element 1:[2]

[1, 2, 3] -> 3 element sequence 1-2-3

[1, 2, 3, 4] -> at least 1 element 1:[2, 3, 4]

[1, 2, [3, 4], 5] -> at least 1 element 1:[2, [3, 4], 5]

[1, [2, 3], 4, 5] -> 4 elem seq, 2nd is seq [2, 3]

[1, (), 4, 5] -> 4 elem seq, 2nd is seq []

{1, 2, 3} -> who knows?

{1: ’a’, 2: ’b’, 3: ’c’} -> dict 2 -> b; {1: ’a’, 3: ’c’}
{1: 4, 2: 3, 3: 7} -> dict 123

{1: 4, 2: 3, 3: 8} -> dict 2 -> 3; {1: 4, 3: 8}
{1: 4, 3: 8} -> 38

It should not be too surprising to see

0 -> Ze Zero or Neo

This is the standard behaviour of a switch/case statement, as seen in other languages:
the case is triggered if the expression is equal to the literal pattern 0.

Next, we see an OR pattern 1 | -1 matching either of two constants.

-1 -> Neo or Negative Neo

1 -> Neo or Negative Neo

More generally, you can use p | q to create a pattern that matches if either p or q

matches — tested in order, which can matter if the patterns bind variables. Pretty
straightforward so far.

2 -> integer != 0

Now, 2 is not covered by our previous patterns, and it somehow matches int(). Note
that replacing int() by intwould fail with error message

case int: return "integer != 0"

^^^

SyntaxError: name capture ’int’ makes remaining patterns unreachable

This is because int is an ordinary variable name, like x or y, that just happens to be
bound to the class for integers by default. As a pattern, a variable name simply matches
everything, and is bound to the matched object.

This is called a capture pattern. Writing case int: in our match x: would therefore
be tantamount to writing int = x, with the result of binding the variable int to the
value of x.

The reason Python protests is that, since a capture pattern always matches, every case:
below that line becomes useless: they can never be tested. Recall from the syntax
definition that match executes the first case that matches, and only the first.

So, back to what is actually written, what does int() mean? This is a class pattern. It
matches if the expression is an instance of the class int, as tested with isinstance().

Note that this means that anything in a sub-class of intmatches as well. Recall that
bool is a subclass of int; we have:

>>> isinstance(True, int)
True

>>> match True:

... case int(): print("yes")

yes

Class patterns go far beyond just testing the type, though; between the parentheses,
one can test the values of attributes as well. We shall come back to that in Sec. 28[p109]:
“Advanced structural pattern matching”. Meanwhile, just remember that you need a ()
suffix to test a type in a pattern, and leave it at that.

’INSA’ -> lotta homework

’Meh’ -> a string ’Meh’

The first corresponds to a literal pattern again, and the second to a class pattern, with a
twist: str() as s. str() is obviously the class pattern, and as is a keyword that can
be used within a pattern to bind all or part of the matched expression to a variable
name.

In that case, we match any string and bind it to s. This is not the most useful use of
as, though, as we could have reused x. In the case where the matched expression has
no convenient name already available, e.g. in a match [1,2,3]: binding the matched
value that way can be quite useful.
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We shall soon see cases where as binds only parts of the matched value, rather than all,
where the keyword is much more obviously useful.

The next cases are where things start getting a bit more complex. You might want to
pause here and come back after reading Sec. 24[p68]: “Container data types” if you’re not entirely
clear on what lists, tuples, sets, and dictionaries are, and how they are written.

Let us focus on a subset of the rules:

case "a", 1, 3.0: return "a very specific sequence"

case [x, y, z]: return f"3 element sequence {x}-{y}-{z}"
case _: return "who knows?"

--------------------------------------------------------------------

(1, 2, 3) -> 3 element sequence 1-2-3

[’a’, 1, 3.0] -> a very specific sequence

(’a’, 1, 3.0) -> a very specific sequence

{1, 3.0, ’a’} -> who knows?

"a", 1, 3.0 is a sequence pattern, and one that happens to only contain constants.
It is very important to note that it could equally have been written ("a", 1, 3.0) or
["a", 1, 3.0], with no difference in semantics whatsoever! That means there is no
direct type distinction between list and tuple in patterns. Any ordered sequential
type will match.

This is a bit shocking, but not too much when you consider that this is coherent with
how unpacking works: (a,b) = [1,2] has the same effect as [a,b] = [1,2], for
instance.

Also note that a set will not match, even with the right values. In fact, there is no
pattern support for sets at all:

>>> match 1:

... case {"a", 1, 3.0}: pass

...

SyntaxError: invalid syntax

case [x, y, z] also presents a sequence pattern, this time with variables. It works
exactly as expected from an unpacking, binding its variables to the components of any
three-element sequence. There again, it could have been written (x, y, z) or simply
x, y, z with no change in meaning.

What of {1, 3.0, ’a’}? Being a set, it does not match any of the two sequence
patterns, but it matches _, which is the wildcard, or catch-all pattern. As its name
indicates, it matches everything.

It does not bind, though, which is a bit of a subtlety, as _ is a valid variable name in
Python, and thus this could as well be a capture pattern, matching anything but also

binding to _. case _ will often be the last line of your match statement. If you need to
bind, case x: <do something with x> can serve equally well.

Let us now focus on this:

case [x, y, z]: return f"3 element sequence {x}-{y}-{z}"
case [1|2 as x, 3|4 as y] as l: return f"or/as {x} {y} {l}"
case x, [*l], y, z: return f"4 elem seq, 2nd is seq {l}"
case x, *rest: return f"at least 1 element {x}:{rest}"

-------------------------------------------------------------------------------

[1, 3] -> or/as 1 3 [1, 3]

[1, 4] -> or/as 1 4 [1, 4]

[3, 1] -> at least 1 element 3:[1]

(1,) -> at least 1 element 1:[]

[1, 2] -> at least 1 element 1:[2]

[1, 2, 3] -> 3 element sequence 1-2-3

[1, 2, 3, 4] -> at least 1 element 1:[2, 3, 4]

[1, 2, [3, 4], 5] -> at least 1 element 1:[2, [3, 4], 5]

[1, [2, 3], 4, 5] -> 4 elem seq, 2nd is seq [2, 3]

Here we have sequence patterns, with a few twists. [1|2 as x, 3|4 as y] as l

demonstrates as-bindings of both parts of the matches value, in x and y, and the entire
value itself, in l.

x, *rest and x, [*l], y, z both demonstrate the use of packing (Sec. 24.6[p89]:
“Packing and unpacking”), and the latter shows deep exploration of the structure: the
second element must be a sequence type.

Sequence patterns are even more powerful than in unpacking contexts, though, because
each element can be any pattern, as already demonstrated by [1|2 , 3|4]. For
instance, [2,"a"] would not match the pattern [str(), _], because the first element
is not of type str.

An important limitation of sequence patterns is that at most one starred name may
appear in them. Otherwise, the matching would be ambiguous. For instance, the
pattern[*a, *b]may match[1,2] as[], [1,2], or[1], [2], or[1,2], []. Likewise,
[*a, "x", *b] is ambiguous, as there may be several instance of "x" in the list. The
“one starred name” limitation avoids all such problems.

If you want to do that kind of stuff— for instance, splitting a list along certain keywords
— you should use manual programming with index searches, or regular expressions, or
even a full-fledged parser generator. That kind of tasks has a way of getting complex
quite quickly, and match/case is not meant to handle them on its own.

Finally, we deal with dictionaries, or, more generally, mappings:

case {1:v, 2:V, 3:x} if x==v+V: return f"dict 123"

case {2:v, **r}: return f"dict 2 -> {v}; {r}"
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case {3:8}: return "38"

case _: return "who knows?"

---------------------------------------------------------------

{1, 2, 3} -> who knows?

{1: ’a’, 2: ’b’, 3: ’c’} -> dict 2 -> b; {1: ’a’, 3: ’c’}
{1: 4, 2: 3, 3: 7} -> dict 123

{1: 4, 2: 3, 3: 8} -> dict 2 -> 3; {1: 4, 3: 8}
{1: 4, 3: 8} -> 38

The set {1, 2, 3} is not matched by anything — except the wildcard, of course —
because a set is not a mapping. {2:v, **r} is an interesting mapping pattern.

It matches any mapping (in particular, dict and its derivatives) that contain at least
the key 2, whose corresponding value is bound to v. The remainder of the matched
mapping. is bound to r, following the ** syntax for dictionary unpacking. ** can only
appear at the end of a mapping pattern.

However, note that {2:v} alone would also match the same values! It just wouldn’t
bind the remainder of the dictionary. This is what happens with case {3:8}: it matches
{1: 4, 3: 8}.

I really do not like this syntax — or rather its semantics. It is misleading. It looks like
case {3:8} is a constant — not a literal, not an atomic value, but a constant nonetheless.
You would expect the pattern {3:8} to match the value {3:8}, and nothing else, but
that’s not how it works. Instead it matches any extension of the pattern.

At least it is not inconsistent with assignment semantics, because no unpacking exists
for dictionaries:

>>> {a:b} = {1:2}
SyntaxError: cannot assign to dict literal here. Maybe you meant ’==’ instead of

’=’?

Still, I would rather have seen case {3:8,...} or a mandatory case {3:8, **r}
rather than this. It is what it it; keep that in mind if you match dictionaries.

That said, you can do some pretty neat things in practice, so long as you are clearheaded
about what the syntax means: let us extract the name and first phone number of a
student, from a record containing other, irrelevant information, which we ignore:

>>> match {"name":"Toto", "phones":[123,911], "sex":"safe"}:
... case {"name":n, "phones":[p,*r]}: print(n,p)
...

Toto 123

23.6.3 A simple application: handling a command line

Let us use match to handle a basic command line interface:

def cmdmatch(c):

ops = {"cp":"copy", "mv":"move"}
match c.split():

case ["cp"|"mv" as c, *options, source, target]:

for o in options:

match o:

case "-v": print("I’m verbose")

case "-i": print("I’m interactive")

case _ : raise ValueError(o)
print(f"I {ops[c]} {source} to {target}")

case ["cp"|"mv" as c, *r]:

raise TypeError(f"{ops[c]} needs at least 2 arguments")

-------------------------------------------------------------------

>>> cmdmatch("cp -i -v toto tata")

I’m interactive

I’m verbose

I copy toto to tata

>>> cmdmatch("mv toto tata")

I move toto to tata

>>> cmdmatch("mv -x toto tata")

ValueError: -x

>>> cmdmatch("mv toto")

TypeError: move needs at least 2 arguments

As you can see, match is a rather natural and straightforward tool for handling that
type of problem.

We shall see more advanced applications of structural pattern matching in Sec. 28[p109]:
“Advanced structural pattern matching”.

24 Container data types

So far, we have seen basic, atomic types – with the weird exception of the string type,
which is both atomic and a sequence, depending on length. Now we focus on composite
data types, which specifically serve as containers for groups of elements of (other?)
types.
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24.1 Tuples: class tuple

Tuples in Python work pretty much in the same way as they do in mathematics, and
share the same syntax:

>>> t = (1, "toto", 3.14) # note the heterogeneous types

>>> t

(1, ’toto’, 3.14)

>>> type(t)

<class ’tuple’>

In some contexts, the surrounding parentheses are optional:

>>> t = 1, "toto", 3.14

>>> t

(1, ’toto’, 3.14)

Elements are grouped in a specific, sequential order. Therefore they are indexable
(subscriptable) and slice-able, following the same syntax as seen for strings.

>>> t[1]

’toto’

>>> t[:2]

(1, ’toto’)

>>> t[:-1]

(1, ’toto’)

>>> t[:0]

() # empty tuple

>>> t[:1]

(1,) # singleton tuple

Note the strange syntax for singleton tuples; this is necessary, because (1) is just the
expression 1 in parentheses, and should be equivalent to it – you should always be able
to put an expression in parentheses without changing its meaning. Having a weird
syntax in the specific case of singleton tuples is an acceptable compromise to avoid
confusion between tuple parentheses and expression parentheses.

Tuples can be nested:

>>> t = (1, (2,3) , 4)

>>> t[1][0]

2

They can be concatenated and multiplied, like strings, again because those operations
make sense on any sequential container type:

>>> (1,2) + (3,4)

(1, 2, 3, 4)

>>> (1,2) * 5

(1, 2, 1, 2, 1, 2, 1, 2, 1, 2)

Like strings, and unlike, say, lists, they are immutable:

>>> t[0]=8

TypeError: ’tuple’ object does not support item assignment

If you want to modify a tuple, just construct a new tuple from the old one, following
the same recipe as seen previously for strings:

>>> (8,) + t[1:]

(8, (2, 3), 4)

There is a degree of pattern-matching in some contexts, which enables you to perform
assignments on nested structures: for instance

>>> (a, (b,c), d) = (1, (2, 3), 4)

>>> print (a, b, c, d)

1 2 3 4

>>> (a, *m, b) = (1, 2, 3, 4)

>>> a, b, m

(1, 4, [2, 3])

See Sec. 24.6[p89]: “Packing and unpacking” for more details on the role of the * in the
(a, *m, b), and note that the result would be the same with [a, *m, b] or a, *m, b

on the left-hand side.

As mentioned for basic types, the name of a class acts as a constructor for it, and can
therefore be used for purposes of conversion from another to this one. For instance:

>>> tuple("Python")

(’P’, ’y’, ’t’, ’h’, ’o’, ’n’)

Of course, that only works if the conversion makes enough sense that somebody
thought of implementing it:

>>> tuple(1)

TypeError: ’int’ object is not iterable

We shall see what “iterable” means in more detail soon, but intuitively it means being
a container whose elements can be enumerated in some arbitrary order, one after the
other, to build a tuple. An object that cannot do that cannot be converted into a tuple.

Tuples themselves are iterables, of course, and so they support for each loops:
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for x in (1,2,3):

print(x,end=’’)
---------------------

123

Like pretty much all containers, they support the in and not in operators to test
whether an element is contained within them. Or rather, whether they contain an
element of equal value (as opposed to equal memory location).

>>> 2 in (1,3,4)

False

>>> 3 in (1,3,4)

True

Of course, they have a length:

>>> len( (1,2,3) )

3

>>> len(1,2,3) # don’t forget the parentheses!

TypeError: len() takes exactly one argument (3 given)

Tuples can be compared of course, with the semantics that two tuples are equal if and
only if they are of equal length and elements of equal index are equal. More clearly:

(a1, . . . , an) = (b1, . . . , bm) ⇐⇒ n = m ∧ ak = bk ∀k

The same applies to all sequential containers.

>>> t = (1,2,3)

>>> t == (1,2,3)

True

>>> (1, 2, 3) == (2, 1, 3)

False

>>> (1,2) == (1,2,3)

False

Again, be careful with parentheses:

>>> 1,2 == 1,2,3

(1, False, 2, 3)

Note that two tuples of equal values do not necessarily occupy the same memory space,
even when written as literal values:

>>> (1,2,3) is (1,2,3)

False

Contrast to integers and string literals

>>> 3 is 3

True

>>> "abc" is "abc"

True

An optimised execution might detect that and optimise memory. As of version 3.6.3,
even python3 -O does not do so. Since tuples are immutable, I cannot imagine any
point in ever using is for them anyway.

What about inequalities? As seen with strings, and as applicable to any sequential,
indexable (subscriptable) type, the total order on elements is lifted into the lexico-
graphical order on containers. Let u, v ∈ Σ∗ be words representing the containers (n),
then

u < v ⇐⇒ u is prefix of v ∨ ∃x, y, z ∈ Σ∗, a, b ∈ Σ :


u = xay

v = xbz

a < b.

>>> (1,2) < (1,2,3)

True

>>> (2,2) < (1,2,3)

False

Note that you should only attempt to compare homogeneous tuples, as comparison is
undefined between different types. In the following example, at some point, Python
attempts to compute 2 < "a str", and it does not go well:

>>> (2,3) < ("a str",1,2,3)

TypeError: ’<’ not supported between instances of ’int’ and ’str’

As always with a dynamic language, such errors may not appear immediately, as the
type is only checked at runtime: no error is raised in the following code

>>> (2,3) < (1,2,3,"a str")

False

because, since 2 > 1, the comparison is stopped immediately, and 2 < "a str" is never
actually run.

(n)Here I am using notations that we shall see this semester in formal languages theory. It should still be
pretty intuitive: Σ is the set of characters, and Σ∗ the set of strings. xay means the concatenation of x, a,
and y.
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24.2 Lists: class list

Lists function almost exactly the same as tuples, with a bracket-based syntax:

>>> l = [1, "toto", 3.14]

>>> type(l)

<class ’list’>

The only meaningful difference is that lists are mutable, whereas tuples are not. That
is to say, they can be modified in-place:

>>> l[1] = True

>>> l

[1, True, 3.14]

The del keyword can be used to remove elements from lists, in indexed notation:

>>> l = [0, 1, 2, 3, 4]

>>> del l[2]

>>> l

[0, 1, 3, 4]

Be careful when deleting several elements in succession, as indexes change after the
first deletion:

>>> l = [0, 1, 2, 3, 4]

>>> del l[1], l[3]

>>> l

[0, 2, 3]

We can also assign to entire slices, replacing the entire sublist:

>>> l = [1, 2, 3]

>>> l[1:] = list("abc") # or simply l[1:] = "abc", any iterable will do

>>> l

[1, ’a’, ’b’, ’c’]

Note that the right-hand–side of the assignment need not be a list, specifically; any
iterable type will do:

>>> l[1:3] = (1,2)

>>> l

[1, 1, 2, ’c’]

>>> l[1:3] = range(5)
>>> l

[1, 0, 1, 2, 3, 4, ’c’]

>>> l[1:3] = 5

TypeError: can only assign an iterable

Note that in the edge cases where the slice is of length one or zero, the behaviour
remains that of subsequence replacement:

>>> l = list(range(5))
>>> l

[0, 1, 2, 3, 4]

>>> l[1:1] = list("abc")

>>> l

[0, ’a’, ’b’, ’c’, 1, 2, 3, 4]

>>> l[1:2] = list("xyz")

>>> l

[0, ’x’, ’y’, ’z’, ’b’, ’c’, 1, 2, 3, 4]

Compare the last line to

>>> l[1] = list("xyz")

>>> l

[0, [’x’, ’y’, ’z’], ’y’, ’z’, ’b’, ’c’, 1, 2, 3, 4]

Replacing an element by a list nests the list, modifying the outer list in-place. Replacing
a slice of length one by a list concatenates the list before the element to the replacing
list, and that to the list after the element. Replacing a length of length 0 inserts the new
list in place.

24.2.1 Lists versus tuples

I have read in several sources that tuples are best used for small heterogeneous data
structures or records like

>>> student = ("Julius", "Caesar", 55)

Components are accessed through indexing:

>>> student[2]

55

Lists, on the other hand, should be used for homogeneous collections of unbounded
length: lists of int, or lists of strings, etc.

I never found any concrete justification for that received wisdom, and, as I can figure
out, is (almost) completely baseless, and hold the real question to be that of mutability.

Obviously any structure of unbounded length should preferably be homogeneous –
otherwise iterating on them requires type dispatch. That is true of tuples as well as of
lists. Of course, if it is of unbounded length, you are probably in a context where you
want to add elements, which implies mutability, which implies using lists.
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I find it a dangerous idea, under most circumstances, to use indexing to access elements
of a record – unless it is of very small size, follows a very obvious order, and will never
need extension.

Indeed, if you ever want to add data to your records, or reorder the fields? A lot of
code will need refactoring. You are much better off using a dictionary (class dict, see
the relevant section), a singleton (a class, singleton or not, see the section on objects),
or a named tuple (o). Thus, generally, neither lists not tuples should be used for that
purpose. Exception include packing and unpacking (see relevant section) function
arguments and multiple return values; in that case tuples should be preferred.

Immutability being the only concrete difference between the two types, the real criterion
when deciding what type you should use for your “lists” is: “do you need mutability?”
– i.e. do you need to add or modify elements. If not, go with tuples, as they are a bit
more efficient, can be used in sets and dictionaries, as we shall see shortly, and by using
them you know that your code does not contain hard-to-debug side effects.

If you do need mutability for something specific, by all means go with lists. Usually, you
don’t. If you think you don’t, and it turns out there is a case where you end up needing
it, convert your tuple into a list, and you are set; since lists support all operations tuples
do, the part of your code that uses tuples should not see the difference.

To expend on the question of efficiency, tuples are generally more memory-efficient
and faster than lists in almost all respects – so long as you don’t need to modify or
append to them, of course.

What Python calls lists are actually dynamic arrays of pointers (even when the elements
are of basic types): they overallocate memory exponentially to allow for fast appending,
and are reallocated in a larger memory space when that excess capacity becomes
insufficient. A tuple is allocated once, with exactly the right amount of memory.

>>> from sys import getsizeof

>>> help(getsizeof)

getsizeof(...)

getsizeof(object, default) -> int
Return the size of object in bytes.

>>> t = tuple(range(10))
>>> l = list(range(10))
>>> getsizeof(t)

128

>>> getsizeof(l)

200

(o)https://docs.python.org/3/library/collections.html#collections.namedtuple

As a parenthesis, “list” is really a misnomer for Python lists. In programming, “list”
usually (systematically in functional languages) refers to linked lists: cells containing a
pointer to the next cell, which have very different algorithmic properties from dynamic
arrays. There are also structures explicitly called arrays in Python, which are mainly
useful for interfacing with C code, and for intensive numerical computations (e.g. in
NumPy).

24.2.2 Pointers and memory

To be clear, in Python, every variable is a pointer, except for basic types: int, float,
str, bool. They are implicitly dereferenced when used.

Note about terminology: In the Python community, people often use the word reference
instead of pointer.

24.2.2.1 The danger of multiple pointers

When you write t = (1,2,3), you create a variable t, which points to a location in
memory containing the structure. In the case of tuples, since the memory is never
modified, there is hardly any reason to give it much thought. When it comes to lists,
this becomes crucial.

Consider the following code:

>>> l = list(range(5))
>>> l

[0, 1, 2, 3, 4]

>>> m = l

>>> m

[0, 1, 2, 3, 4]

>>> m[1] = "Hello"

>>> m

[0, ’Hello’, 2, 3, 4]

>>> l

[0, ’Hello’, 2, 3, 4]

>>> m is l # test whether they point to the same memory address

True

The list l was modified, though no line of code explicitly did so. But since m and l

are pointers, m = l just means “copy the pointer l into a new pointer m”. This does
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not create a deep copy of the target list; you just end up with two different pointers,
pointing to the same memory location. They become two names for the same list.

24.2.2.2 Case study: nested lists/ matrices

Occurrences of shared pointers can become harder to see in nested lists:

>>> l = list(range(5))
>>> ll = [l,l]

>>> ll

[[0, 1, 2, 3, 4], [0, 1, 2, 3, 4]]

>>> ll[0][2] = "X"

>>> ll

[[0, 1, ’X’, 3, 4], [0, 1, ’X’, 3, 4]]

This is a source of danger in many common situations. Say that you want to initialise a
n× nmatrix with 0: there is a seemingly very elegant way to do so: [0] * n yields a
list with n zeros; thus repeating [ [0] * n ] n times yields the desired matrix

n = 5

>>> M = [ [0] * n ] * n

>>> mprint(M) # a matrix printing function I defined.

[0, 0, 0, 0, 0]

[0, 0, 0, 0, 0]

[0, 0, 0, 0, 0]

[0, 0, 0, 0, 0]

[0, 0, 0, 0, 0]

So far so good. However, when you actually alter the matrix, it does not behave in the
desired way:

>>> M[2][1] = 1

>>> mprint(M)

[0, 1, 0, 0, 0]

[0, 1, 0, 0, 0]

[0, 1, 0, 0, 0]

[0, 1, 0, 0, 0]

[0, 1, 0, 0, 0]

Thinking in terms of pointers, what happens is not surprising: [0] * n is evaluated,
and is handled as a pointer; let us denote it by l. The list [ [0] * n ] is therefore
equivalent to [l], and M is [l,l,l,l,l].

In order to properly initialise a matrix, you need to evaluate the expression “[0]*n”
n times, to create n different lists in memory. This can be done in a loop — or most
elegantly using list comprehensions, which we shall see in more detail in Sec. 24.5[p83]:
“Comprehension expressions”.

>>> M = [ [0] * n for _ in range(n) ]

>>> M[2][1] = 1

>>> mprint(M)

[0, 0, 0, 0, 0]

[0, 0, 0, 0, 0]

[0, 1, 0, 0, 0]

[0, 0, 0, 0, 0]

[0, 0, 0, 0, 0]

Additional problems of a similar nature appear when trying to copy matrices: we
discuss this in Sec. 24.2.3[p74]: “Shallow copies and deep copies”.

24.2.2.3 In-place assignment on mutable structures

Another thing that should be noted is the behaviour of +=:

>>> l = [1,2] ; m = [’a’, ’b’] ; oldl = l

>>> l += m

>>> l

[1, 2, ’a’, ’b’]

>>> oldl

[1, 2, ’a’, ’b’]

As you can see, l is appended to in-place. Thus l += m is not actually equivalent to
l = l + m:

l = [1,2] ; m = [’a’, ’b’] ; oldl = l

>>> l = l + m

>>> l

[1, 2, ’a’, ’b’]

>>> oldl

[1, 2]

Indeed, l = l + m first evaluates l + m, which creates a new list in memory – let us
call its pointer p – then performs l = p, redefining l to point to the new memory
location, while the original is untouched.

24.2.2.4 Infinitely deep lists

Finally, note that it is possible to create infinite looping structures:

>>> il=[1]

>>> il.append(il)
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>>> il

[1, [...]]

>>> len(il)

2

The list il is infinite in the sense that, though it only has two elements, its second
element is always equal to itself, which makes it infinitely deep.

If you tried to write the entire list, you would write, endlessly, something along the
lines of:

[1, [1, [1, [1, .... ]... ]]]

The only reason Python does not choke when trying to display it in the interactive
mode — i.e. trying to get a repr(..) — is because it is careful to memorise which
pointers it has already encountered, and thus detects such loops, printing an ellipsis
... instead.

Any recursive function that does not perform similar bookkeeping will loop on such
lists. Here is a naïve list printer:

def recf(l):

print(end=’[’)
for e in l:

if type(e) is list:

recf(e)

else:
print(e,end=’; ’)

print(end=’] ’)

-----------------------------

>>> recf([1,2,3])

[1; 2; 3; ]

>>> recf([1,list(’abc’),3])

[1; [a; b; c; ] 3; ]

>>> recf(il)

[1; [1; [1; [1; [1; [1; [1; [1; [1;

KeyboardInterrupt # I interrupted the program.

Needless to say, although it is important to know that this is possible, it is not
recommended to define infinite lists unless you have a very, very good reason for it.

24.2.3 Shallow copies and deep copies

What if you want to copy a list, so as to alter two versions of it independently? The
simplest way to proceed is to use the type constructor list(..). There is also a .copy()

method.

Recall that the list(..) constructor takes any iterable, including other lists, and creates
a list containing the same elements, in the order of iteration. Thus we have:

>>> l = list(range(5))
>>> ll = list(l)

>>> l is ll # they are indeed different objects in memory

False

>>> l[2] = ’X’

>>> l,ll

([0, 1, ’X’, 3, 4], [0, 1, 2, 3, 4])

Now let us do the same thing with matrices:

>>> n = 5

>>> M = [ [0] * n for _ in range(n) ]

>>> MM = list(M)

>>> M is MM

False

>>> M[2][1] = 1

>>> mprint(M)

[0, 0, 0, 0, 0]

[0, 0, 0, 0, 0]

[0, 1, 0, 0, 0]

[0, 0, 0, 0, 0]

[0, 0, 0, 0, 0]

>>> mprint(MM)

[0, 0, 0, 0, 0]

[0, 0, 0, 0, 0]

[0, 1, 0, 0, 0] # what?

[0, 0, 0, 0, 0]

[0, 0, 0, 0, 0]

Despite M and MM being different objects in memory, we still, somehow, managed to
alter one through the other. What’s going on here?

The reality of it is. . . we did not actually modify one through the other. Strictly speaking,
we actually modified neither M nor MM, as objects.

Recall that a list is actually a list of pointers to the objects it contains. A pointer is
basically an integer. When M was copied, a new list containing the same values, the
same integers, the same pointers, was created. Let us visualise this by using a command
revealing the memory locations of each object:

>>> help(id)

id(obj, /)

74



Return the identity of an object.

This is guaranteed to be unique among simultaneously existing objects.

(CPython uses the object‘s memory address.)

>>> [ id(e) for e in M ] # list comprehension

[140180209944968, 140180127633608, 140180210018824,

140180210019208, 140180209944520]

>>> [ id(e) for e in MM ]

[140180209944968, 140180127633608, 140180210018824,

140180210019208, 140180209944520]

As expected, M and MM contain the same pointers. We represent this graphically using
PythonTutor in Figure 2[p75]. Thus, M[2] and MM[2] are actually the same list.

What we did is called a shallow copy: we copied the list of pointers, but we did not
bother to dereference the pointers to copy the objects we point to. A copying operation
that recursively copies contained objects is called a deep copy. This operation is provided
by the small, aptly names copy module:

>>> M = [ [0] * n for _ in range(n) ]

>>> from copy import deepcopy

>>> MM = deepcopy(M)

>>> M[2][1] = 1

>>> mprint(M)

[0, 0, 0, 0, 0]

[0, 0, 0, 0, 0]

[0, 1, 0, 0, 0]

[0, 0, 0, 0, 0]

[0, 0, 0, 0, 0]

>>> mprint(MM)

[0, 0, 0, 0, 0]

[0, 0, 0, 0, 0]

[0, 0, 0, 0, 0]

[0, 0, 0, 0, 0]

[0, 0, 0, 0, 0]

>>> [ id (e) for e in M ]

[140180233630728, 140180127751240, 140180127750856,

140180127750664, 140180127751368]

>>> [ id (e) for e in MM ]

[140180127749320, 140180165209800, 140180127751560,

140180127751752, 140180127751944]

As the ids show, this time every single sublist has been fully duplicated in memory. At
last our matrix copy behaves as expected.

Figure 2: In-memory representation of shallow matrix copy, using PythonTutor.
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24.2.4 How not to iterate on lists

Let me I share with you some terrible code I have seen in the 2018–2019 resit exam, in
answer to exercise 51[p141]. (I have adapted the exercise and the code somewhat). It
illustrates a very common mistake with in-place modification of iterable structures,
whether in Python or in C.

The aim of the exercise is to write a function remove_bad(l,bad) returning a new list
identical to l except in that elements equal to bad have been removed from it.

Here is (an adaptation of) the code the student produced:

l = [1,2,3,2,2,1]

def remove_bad(l,bad):

for i in range(len(l)):
print(i,l) # for debugging purposes
if l[i] == bad:

l.remove(l[i]) # removes the first occurrence , in-place

print(remove_bad(l,2))

---------------------------

0 [1, 2, 3, 2, 2, 1]

1 [1, 2, 3, 2, 2, 1]

2 [1, 3, 2, 2, 1] # we have successfully removed the first 2

3 [1, 3, 2, 1] # and another

4 [1, 3, 2, 1]

IndexError: list index out of range
... in remove_bad, if l[i] == bad:

There is a grave problem here — leaving aside that removing elements of l in-place
does not answer the question, which demands a new list.

The algorithmic problem is that the length of l is computed once, at the beginning of
the loop. When removing elements from the list in-place, its length diminishes with
each element that is removed. At the end of the loop, if any element was removed, i
takes index values that no longer exist.

The only case where this algorithm behaves correctly – again leaving aside that it does
not answer the question – is when the list does not contain any element that should be
removed.

The moral of the story is: be extremely careful about in-place alteration, especially in
the presence of iteration.

24.2.5 Sorting

The sorted function takes any iterable (tuples, lists, sets, . . . ), and returns a fresh sorted
list of their elements:

>>> l = [2, 7, 4, 0, -6]

>>> sorted(l)
[-6, 0, 2, 4, 7]

>>> l

[2, 7, 4, 0, -6]

This is not to be confused with the sort method, which is a procedure, that sorts in
place:

>>> print(l.sort())
None

>>> l

[-6, 0, 2, 4, 7]

The order can be reversed through use of the optional, keyword argument reverse:

>>> l = [2, 7, 4, 0, -6]

>>> sorted(l,reverse=True)
[7, 4, 2, 0, -6]

>>> l.sort(reverse=True)

>>> l

[7, 4, 2, 0, -6]

If there is a need to order a sequence according to a non-standard ordering, the optional
keyword argument key can be provided. key is a function converting the elements of
the sequence to be sorted to keys. It is according to their keys, then, that the elements
are ordered. For instance, if we wish to order strings according to their length instead
of the usual Unicode-based lexicographical ordering, we can do:

>>> l = [’School’, ’Platypus’, ’Sleep’]

>>> sorted(l) # the usual order
[’Platypus’, ’School’, ’Sleep’]

>>> sorted(l,key=len)
[’Sleep’, ’School’, ’Platypus’]

>>> sorted(l,key=lambda s:s[2])

[’Platypus’, ’Sleep’, ’School’]
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Here len is the usual function returning the length of a string, and lambda s:s[2] is
merely an anonymous function associating to each string its third character.

Both sort and sorted implement stable sorting algorithms, which means that values
that compare equal are kept in their previous order. This is extremely useful when
sorting in multiple passes. Imagine having a list of students sorted in the usual
alphabetical order. Then sort it by project group; an unstable sort could shuffle the
students’ names in each group.

The sorting algorithm used by Python is actually Timsort, a sophisticated blend of
merge sort and insertion sort. It is very efficient.

24.3 Sets: class set

Sets in Python play the same role as sets in mathematics: they are unordered but
iterable collections, without duplicates.

They support the standard set operators:

Mathematics Python

= == set equality: A ⊆ B and B ⊆ A
, !=

⊆ <= inclusion: x ∈ A⇒ x ∈ B

⊇ >=

⊂ <

⊃ >

∩ &

∪ |

\ or − - set difference: { x ∈ A | x < B }

� ^ symmetric difference: A ∪ B \A ∩ B

>>> s = set(range(5)) ; ss = set(range(3,8))
>>> s, ss

({0, 1, 2, 3, 4}, {3, 4, 5, 6, 7})

>>> 1 in s , 7 in s

(True, False)

>>> s & ss # intersection

{3, 4}
>>> s | ss # union

{0, 1, 2, 3, 4, 5, 6, 7}
>>> s - ss # difference

{0, 1, 2}

>>> s ^ ss # symmetric difference

{0, 1, 2, 5, 6, 7}

>>> {} # you can’t define an empty set that way

{}
>>> type({})
<class ’dict’> # it’s actually the empty dictionary

>>> set() # this is how you make an empty set

set()

>>> s <= ss , s >= ss

(False, False) # inclusion is of course a *partial* order

>>> set() <= s # empty set is smaller than everybody

True

They are not a sequential type, which means that there is no indexed access to elements,
nor slices.

>>> s[2]

TypeError: ’set’ object does not support indexing

When iterated upon, each element is visited once, but the order of iteration is not
guaranteed:

>>> for e in s:

print(e,end=’’)

01234 # iteration follows the same order as display

>>> { ’Python’, ’abba’, ’ABBA’, ’A’,’a’}
{’a’, ’ABBA’, ’A’, ’Python’, ’abba’}

>>> { ’Python’, ’abba’, ’ABBA’, ’A’}
{’A’, ’ABBA’, ’Python’, ’abba’} # order has changed

>>> { 10010, 1, 86}
{1, 10010, 86} # order does not correspond to order on elements

For all intents and purposes, the order in which the elements of a set are displayed
or iterated on should be considered random – or, more judiciously, undefined. It is not
really random, but entirely dependent upon the internal implementation.

Duplicates are meant with respect to value, not memory location.

>>> t = (1,2)

>>> tt = (1,2)

>>> t is tt

False

>>> { t, tt }
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{(1, 2)}

Beware: since Booleans are actually a subclass of integers, that actually have the
same values as 0 and 1 – not merely as an implicit conversion to Boolean, unlike other
numbers – and thus they will be confused in a set:

>>> { 0, False, True, 1 }
{0, True}

0 is added first, then False, but since it has the same value as 0, is is treated as a
duplicate, despite being of a different (sub)type. Then True is added, and 1 is detected
as a duplicate of it, which explains the result.

Sets are mutable, but can only contain immutable objects, as they are implemented
using hash tables. In particular, that excludes sets of sets.

>>> { 1, 2, { 4, 5 } , 3 }
TypeError: unhashable type: ’set’

In the next section, we shall explore what hashable means.

Even if you are working exclusively with lists, a quick jaunt through sets can be
extremely useful to efficiently remove duplicates from a collection:

>>> l = [2, 1, 2, 1, 1, 1, 3, 3, 2, 2]

>>> list(set(l))

[1, 2, 3]

This elegant solution, as anything involving sets, requires the elements to be hashable.
A method working on anything would be of quadratic complexity — here using a
comprehension expression, cf. Section 24.5[p83]:

>>> l = [[1], [2], [2], [1], [1], [1], [3], [1], [2], [1]]

>>> list(set(l))

TypeError: unhashable type: ’list’

>>> [ e for k,e in enumerate(l) if e not in l[:k] ]

[[1], [2], [3]]

24.3.1 Frozen sets: class frozenset

But what if you want sets of sets?

Let us first understand what that ’unhashable’ error means.

The idea of hash tables, which Python sets use internally, rests on the computation of a
“summary” (called hash) of the value of an object, which is then used to determine the
address in memory where they are stored.

The hash is a deterministic function – although highly chaotic – so equal values imply
equal hashes. The converse is not always true because some information is lost, as the
hash is short. In a hash table, the hash of the value of an object determines the memory
location where the object is stored.

When checking whether an object is already in the table, you just hash it, and use direct
memory access to see if it is there, as opposed to, say, iterating over the container and
testing equality against each value, as you would in a list. Membership testing (∈, in)
is therefore very efficient for large collections, as it is amortised to O(1) – constant time
– with some trickery.

All of this rests on the assumption that the value of an object is constant. If your object
is mutable, its value may change over time (that’s what being mutable is all about), and
thus its hash may change as well. But any set that would contain that object has no way
of knowing whether or when a change takes place. Its hashes will not be recomputed.
Thus the set ends up being inconsistent. This is why such structures are restricted to
hashable (that is to say, generally, immutable) elements.

frozenset is an immutable alternative to set, though otherwise compatible with it –
for instance, comparison operators ignore whether a set is frozen or not.

>>> S = frozenset(s) ; SS = frozenset(ss)
>>> S, SS

(frozenset({0, 1, 2, 3, 4}), frozenset({3, 4, 5, 6, 7}))
>>> s == S, ss == SS

(True, True)

You can now create a set of frozen sets:

>>> { S, SS }
{frozenset({0, 1, 2, 3, 4}), frozenset({3, 4, 5, 6, 7})}

24.4 Dictionaries: class dict

Dictionaries are a “key”/“value” structure, encountered in various languages under
diverse names, such as associative arrays, associative memory, mappings, etc.

A dictionary should be regarded as a set of keys, which can take any (immutable) value,
to each of which another (unique) value is associated. There is no restriction upon
the mutability of associated values, only of keys, and this for reasons identical to the
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restriction on sets, for they share the same type of hashtable-based implementation —
with a few specialised optimisations to accounts their different roles. (p)

Like sets, dictionaries are fundamentally unordered, though from Python 3.7 onwards
their implementation is guaranteed to preserve the order in which elements are
inserted (q). Like all other collections we have see so far, they can contain elements of
heterogeneous types — though this should be used parsimoniously.

Recall that, counter-intuitively, we could not use {} to define empty sets: this is because
{} stands for the empty dictionary:

>>> {}
{}
>>> type({})
<class ’dict’>

>>> dict() == {}
True

Dictionaries can be initialised in extenso – or in display form – in the same way as sets
et cetera, by listing their entries, separated by commas. Each entry, however, has a
special, colon-separated <key> : <value> syntax:

>>> age = {’Toto’:15, ’Tata’:27, ’Mamie’:97 }
>>> age

{’Toto’: 15, ’Tata’: 27, ’Mamie’: 97}

Alternatively, they can be defined using the type constructor dict(), and a tuple of
couples, or any other suitable sequence types:

>>> dict( [ (’Toto’, 15), (’Tata’, 27), (’Mamie’, 97 ) ] )

{’Toto’: 15, ’Tata’: 27, ’Mamie’: 97}

Note that only one value, at most, can be associated to any given key. If several
associations are given, only the last one counts:

>>> {’Toto’: 15, ’Tata’: 27, ’Mamie’: 97, ’Toto’:99}
{’Toto’: 99, ’Tata’: 27, ’Mamie’: 97}

The key values are treated, syntactically, as indexes:

(p)The most frequent operation on a set is to test whether a given element belongs to it; sets are optimised
for that. In the case of dictionaries, it is expected that you you are most often looking for values associated to
a valid key, so they are slightly less efficient in the case where the key you are looking for is not there.

(q)This was already an “accidental” property of the implementation of CPython 3.6. You need to use an
OrderedDict if you want another order or compatibility across all versions.

>>> age[’Tata’]

27

This makes dictionaries an indexable type, stricto sensu, as it implements the
__getitem__ method that underlies the object[index] syntax. However, they remain
fundamentally unordered, like sets. You can choose keys in an ordered way if you like
– though if your keys are 0..n, you are better off using a list or a tuple. At any rate, do
not attempt to use slice notations on dictionaries.

>>> age[1:3]

TypeError: unhashable type: ’slice’

See Sec. 22.4.6[p47]: “Slicing and dicing, concatenation, repetition” on slices to under-
stand why that message is what it is. Regardless, no slices on dictionaries.

In standard dictionaries, trying to access undefined keys results in an error.

>>> age[’IDONTEXIST!’]

KeyError: ’IDONTEXIST!’

There are, however, various ways to handle notions of “default values”, as we shall see
later.

Dictionaries are a mutable structure, like sets and lists. Entries can be added, altered,
or removed outright, all using the index-like notation:

>>> age[’IDONTEXIST!’] = "Well, *now*, I do!"

>>> age

{’Toto’: 15, ’Tata’: 27, ’Mamie’: 97, ’IDONTEXIST!’: ’Well, *now*, I do!’}

>>> age[’IDONTEXIST!’]

’Well, *now*, I do!’

>>> del age[’IDONTEXIST!’]

>>> age

{’Toto’: 15, ’Tata’: 27, ’Mamie’: 97}

>>> age[’IDONTEXIST!’]

KeyError: ’IDONTEXIST!’

>>> del age[’IDONTEXIST!’]

KeyError: ’IDONTEXIST!’

Note that, in particular, dictionaries cannot appear as keys to other dictionaries. They
can appear as associated values, though:
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>>> { age : 21 }
TypeError: unhashable type: ’dict’

>>> { 21 : age }
{21: {’Toto’: 15, ’Tata’: 27, ’Mamie’: 97}}

Like sets, dictionaries are iterable. For all iteration-related intents and purposes, they
are treated as the set of their keys:

>>> for k in age:

print(k,age[k])

Toto 15

Tata 27

Mamie 97

Consistently with this view of dictionaries as sets of keys, their length is defined as
their number of defined keys, or, equivalently, or stored key/value associations:

>>> len(age)

3

Likewise, you can easily tests the presence of a key with in:

>>> ’Toto’ in age

True

>>> ’toto’ in age

False

If you want to iterate on key/value pairs directly, you can use the items method to get
a “view” object – not an object any of the usual types – containing those pairs:

>>> age.items()

dict_items([(’Toto’, 15), (’Tata’, 27), (’Mamie’, 97)])

>>> for k,v in age.items():

print(k,v)

Toto 15

Tata 27

Mamie 97

Likewise, if you want to iterate on the values only, there is a method for that:

>>> age.values()

dict_values([15, 27, 97])

In Python 3.9+, you can merge two dictionaries using the union (|) operator, as for sets.
However, this operation is not commutative: if the two dictionaries define different
values for the same key, only the last value is taken into account:

>>> {’Toto’: 15, ’Tata’: 99} | {’Tata’: 27, ’Mamie’: 97}
{’Toto’: 15, ’Tata’: 27, ’Mamie’: 97}

There is also an |= operator, which updates a dictionary in place; the dictionary
operators | and |= therefore play the same role for dictionaries as + and += do for
lists. |= is a nicer syntax for the dict.update method, just as += is syntactic sugar for
list.extend.

>>> d = {’Toto’: 15}
>>> d |= { ’Tata’: 27 }
>>> d

{’Toto’: 15, ’Tata’: 27}
>>> d |= [ ("Mamie", 97) ]

>>> d

{’Toto’: 15, ’Tata’: 27, ’Mamie’: 97}

The last line shows that update accepts in the right-hand side any iterable convertible
to a dictionary, whereas the union expect two dictionaries:

>>> {’Toto’: 15, ’Tata’: 27} | [ ("Mamie", 97) ]

TypeError: unsupported operand type(s) for |: ’dict’ and ’list’

Prior to Python 3.9+, creating a fresh, merged dictionary required the use of dictionary
unpacking, as discussed in section Sec. 24.6.2.1[p92]: “Merging two dictionaries”.

Leaving aside dictionary merging, let us move on to the set of keys (ignoring associated
values). There is a method to get a set-like objects representing the set of keys, which
enables you to use set operators, which are not usable directly on dictionaries (with the
exception of | in Python 3.9+):

>>> age.keys()

dict_keys([’Toto’, ’Tata’, ’Mamie’])

>>> age & {’Toto’, ’xx’}
TypeError: unsupported operand type(s) for &: ’dict’ and ’set’

>>> age.keys() & {’Toto’, ’xx’}
{’Toto’}

In the case where associated values are hashable, the dict_items object returned by
the items method is also set-like:

80



>>> {’Toto’: [] }.items() & age.items()

TypeError: unhashable type: ’list’

>>> {’Toto’: 15 }.items() & age.items()

{(’Toto’, 15)}

Those three view objects, keys, items, values, are dynamic, in the sense that they are
always updated along with the underlying dictionary:

>>> K = age.keys()

>>> age[’Banana’] = 10

>>> K

dict_keys([’Toto’, ’Tata’, ’Mamie’, ’Banana’])

>>> del age[’Banana’]

>>> K

dict_keys([’Toto’, ’Tata’, ’Mamie’])

However, they cannot be used to modify the underlying dictionary indirectly.

Two dictionaries are considered equal for the purpose of == if they contain identical
pairs key/value. Other comparison operators are not supported:

>>> {’Toto’: 15 } <= age

TypeError: ’<=’ not supported between instances of ’dict’ and ’dict’

If you want to reason about the “inclusion” of a dictionary into another, you can use its
items view:

>>> {’Toto’: 15 }.items() <= age.items()

True

>>> {’Toto’: [] }.items() <= age.items()

False # this works, despite [] not being hashable

Since there are a few subtleties with those view objects, for instance values being
unsuitable for any comparison,

>>> age.values() == age.values()

False # == always returns False on that view

I would advise, for purposes of comparison, to explicitly and systematically convert
views – especially values and, to a lesser extent, items – to sets or whatever you need;
that may be suboptimal in terms of execution time, but at least the semantics of the
comparisons become entirely clear:

>>> set(age)

{’Toto’, ’Mamie’, ’Tata’}
>>> set(age.items())

{(’Tata’, 27), (’Mamie’, 97), (’Toto’, 15)}
>>> set(age.values())

{97, 27, 15}
>>> set({’Tata’: 27 }.items()) <= set(age.items())

True

24.4.1 Handling default values

24.4.1.1 The get(key, default) method

Suppose that we want to count the number of appearances of each letter in a string.
From

s = "AABaaBAAA"

we expect to obtain

{’A’: 5, ’B’: 2, ’a’: 2}

With what we have seen so far, we cannot write

def count(s):

d = {}
for c in s:

d[c] += 1

return d

----------------------

Traceback in d[c] += 1

KeyError: ’A’

because the first time a letter is encountered, it has no corresponding associated value;
we cannot increment something that is yet undefined. We have to test whether the key
has been encountered previously, and initialise the field if not:

def count(s):

d = {}
for c in s:

if c in d:

d[c] += 1

else:
d[c] = 1

return d
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Would it not be better if we could say that, by default, we have encountered a key zero
times? As it happens, we can, using the get method:

>>> age.get(’Toto’) # this item exists

15

>>> age.get(’XXX’) # this one does not

None # here I wrote it explicitly;

# the interactive mode won’t print it unless requested

>>> age[’XXX’]

KeyError: ’XXX’

get is thus a more forgiving version of indexed access, returning None – by default
– when the key is unknown. The default returned value can be changed through an
optional argument:

>>> age.get(’Toto’,"I’m not here!")

15

>>> age.get(’XXX’,"I’m not here!")

"I’m not here!"

Thus our count function becomes:

def count(s):

d = {}
for c in s:

d[c] = d.get(c,0) + 1

return d

There is also the setdefault method, occasionally useful, which behaves in all ways
like get, except that it not only returns the default value, but inserts it in the dictionary
if needed.

Thus, one can write, for instance

d.setdefault(key, []).append(value)

to add to a list of values that may not exist yet.

24.4.1.2 defaultdict, from collections

There is a variant of the dictionary class that is created with a “default factory”. This
factory is a function which is called when a key is missing, and returns the value now
associated with this key. Let us begin by importing the type constructor:

from collections import defaultdict

Let us create a dictionary such that all default values are zero:

>>> d = defaultdict(lambda: 0)

Note in passing that you could also create a defaultdict and initialise it with the
values of another dictionary D like so:

>>> d = defaultdict(lambda: 0, D)

In both cases lambda:0 is merely a niladic function (i.e. it has no arguments) that
returns zero. This is our factory – the advantage of having a function in that role rather
than simply a default value will become clear later.

>>> d

defaultdict(<function <lambda> at 0x7fb0a51bde18>, {})

The display is a bit verbose, but only the {} at the end matters: for now, the dictionary
is empty.

>>> d[5]

0

>>> d

defaultdict(<function <lambda> at 0x7fb0a51bde18>, {5: 0})
>>> d[’hey’]

0

>>> d

defaultdict(<function <lambda> at 0x7fb0a51bde18>, {5: 0, ’hey’: 0})

Key/default values associations are created on the fly whenever a key is looked up.

Thus our function becomes:

def count(s):

d = defaultdict(lambda: 0)

for c in s:

d[c] += 1

return d

Suppose now that instead of simply counting occurrences, we wish to list the indexes
where they appear: on the previous example s = "AABaaBAAA" we would expect

{’A’: [0, 1, 6, 7, 8], ’B’: [2, 5], ’a’: [3, 4]})

Before encountering a letter, we have seen it at no index; thus our default should be
the empty list. We can then append to it the relevant indexes. Our default factory is
therefore the function of no argument returning a new list. We could write it lambda:[],
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but we already have a function (actually, a callable) for that, and it is the list constructor
list, which does return a new empty list when called with no arguments. (Actually,
we could have used int in place of lambda:0 as well, as it returns 0 with no argument.
Most type constructors, when called with no argument, return whatever makes sense
as the “zero” or “empty” element for that type.)

Thus we obtain the function:

def occs(s):

d = defaultdict(list)

for k,c in enumerate(s):

d[c].append(k)

return d

Note how essential it is in this application that a default factory, a function, be provided,
and not merely a default value. Let us simulate passing a default value by defining a
list and giving a factory that always returns a pointer to that same list:

l=[]

def occs(s):

d = defaultdict(lambda:l)
for k,c in enumerate(s):

d[c].append(k)

return d

print(occs(s))
----------------------------------------------------------------

defaultdict(<function occs.<locals>.<lambda> at 0x7f4c9fe3cea0>,

{’A’: [0, 1, 2, 3, 4, 5, 6, 7, 8],

’B’: [0, 1, 2, 3, 4, 5, 6, 7, 8],

’a’: [0, 1, 2, 3, 4, 5, 6, 7, 8]})

All values point to the same list l. Thus, when values are mutable, it is essential to be
able to create a fresh value for each key. Hence the need for a “factory”.

The defaultdict structure enables some pretty nice tricks. See for instance a trick to
represent trees, in this snippet of code.

24.4.1.3 Counter, from collections

For the specific use-case of counting elements, there is actually a nice variant of dict
called Counter. Still with s = "AABaaBAAA", we have:

>>> Counter(s)

Counter({’A’: 5, ’B’: 2, ’a’: 2})

Counters in Python play the role of multisets, or bags, in mathematics. That is to say,
sets where elements may appear multiple times. Thus they support some specific
arithmetic operations:

>>> Counter(s)+Counter(s)

Counter({’A’: 10, ’B’: 4, ’a’: 4})

As a fun example, an anagram of a word or sentence is another word or sentence using
exactly the same letters, and the same number of each. We ignore case. Generally, in
the case of sentences, we ignore whitespace and punctuation as well. Testing if two
strings are anagrams is easy thanks to counters:

>>> def is_anagram(u,v):

u,v = ( e.replace(" ","").upper() for e in (u,v) )

return Counter(u) == Counter(v)

>>> u = "Counting Eh Tv"

>>> v = "Vincent Hugot"

>>> is_anagram(u,v)

True

The u,v = .. line makes use of a comprehension expression to avoid repeating the
same code twice; cf. Section 24.5[p83].

24.5 Comprehension expressions

Implementing any non-trivial algorithm means performing operations on collections
of elements: initialising, filtering, transforming. . .

Say that you need to build the set S of all even numbers less than 10; in mathematics, this
is written using the set-builder notation – also called set abstraction or set comprehension
or set intension:

S =
{
n ∈ J1, 9K

∣∣ ∃k ∈ N : n = 2k
}

So far, you know of two ways to define this set in Python. First, you can compute it
yourself and write it in extenso – this is called a display expression in Python:

>>> S = { 0, 2, 4, 6, 8 }

Of course, that is only realistic for small collections, and is unworkable if it depends on
another variable.

Second, you can write some code to programmatically compute it, by initialising the
container and augmenting it in a loop:
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>>> S = set()

>>> for n in range(10):
if n%2==0:

S.add(n)

>>> S

{0, 2, 4, 6, 8}

This is what you would do in most circumstances.

There is a third way, available in a few languages, Python included: comprehension
expressions. The idea is to use pretty much the same set-builder notation as in
mathematics, where useful, to achieve greater conciseness and clarity. For instance, we
could write:

>>> { n for n in range(10) if n%2==0 }
{0, 2, 4, 6, 8}

>>> { 2*k for k in range(5) }
{0, 2, 4, 6, 8}

24.5.1 Comprehensions for every type; first contact with generators

Let us see how this works, and how flexible it is. The example so far was for sets, but
this construction works for any collection type; at least with a few syntactic tweaks. The
idea is that the delimiters determine the type of collection being created, and indeed
that holds for sets, as we have seen, and lists as well:

>>> [n for n in range(10) if n%2==0]
[0, 2, 4, 6, 8]

This also holds for dictionaries, with a key : value syntax:

>>> {n : n**2 for n in range(10) if n%2==0}
{0: 0, 2: 4, 4: 16, 6: 36, 8: 64}

However, if you follow this pattern for tuples, you get

>>> (n for n in range(10) if n%2==0)
<generator object <genexpr> at 0x7fb79904d468>

instead. Despite not having a nice, textual representation, generators – or, more
generally, iterators – are actually the central iterable structure powering every for loop
behind the scene, and are so fundamental they get to use the basic (..) delimiters. To
get a tuple, you have to use the tuple constructor and write:

>>> tuple(n for n in range(10) if n%2==0)
(0, 2, 4, 6, 8)

Using the type constructor in this way always works as expected.

>>> list(n for n in range(10) if n%2==0)
[0, 2, 4, 6, 8]

>>> set(n for n in range(10) if n%2==0)
{0, 2, 4, 6, 8}

What actually happens here is that this is equivalent to passing the generator as
argument to the constructor:

>>> tuple((n for n in range(10) if n%2==0))
(0, 2, 4, 6, 8)

Since this is not a very nice-looking syntax, in contexts where you pass a generator
expression as the single argument to a function, its parentheses can be omitted.

A small syntactic exception if for dictionaries: the key : value syntax is only a
trick to distinguish set comprehensions from dictionary comprehensions. Using
couples (key, value) would be ambiguous, as a set of couples does not have the
same behaviour as a dictionary. What happens behind the scenes is that dictionary
comprehensions are converted to dict(..) constructor calls on a collection of couples:

>>> {n:n**2 for n in range(10) if n%2==0}
{0: 0, 2: 4, 4: 16, 6: 36, 8: 64}

>>> dict(n:n**2 for n in range(10) if n%2==0)
SyntaxError: invalid syntax

>>> dict((n,n**2) for n in range(10) if n%2==0)
{0: 0, 2: 4, 4: 16, 6: 36, 8: 64}

>>> {(n,n**2) for n in range(10) if n%2==0} # not the same thing

{(6, 36), (0, 0), (8, 64), (4, 16), (2, 4)}

In all cases, why does passing a generator to a constructor work? Because generators
are iterable, and collection constructors just iterate over them to build the required
collection, in the same way they would, say, a list, or a range.

We shall see what a generator is, exactly, in Sec. 29[p112]: “Iterables, iterators, and
generators”. In the meantime, let us just say that a generator is an object that produces
values on demand, until they are exhausted:
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>>> G=(n for n in range(5) if n%2==0)
>>> type(G)

<class ’generator’>

>>> next(G)
0

>>> next(G)
2

>>> next(G)
4

>>> next(G)
StopIteration # exception: the generator is exhausted

This is why they do not have any nice textual representation: you can’t know that a
generator will produce without asking them to produce a value, and doing so alters
their state. Values are produced once, on demand, and are not stored in memory. Thus
a generator can only be read once, and is then lost. This makes them very lightweight
in memory, and enables us to have infinite generators as well.

24.5.2 Loop nesting in comprehensions

So far we have seen that comprehensions have two components: a generator expression,
which does all the heavy lifting, and, optionally, delimiters – and, in the case of dict, a
special key : value syntax – to specify which type constructor the resulting generator
should be fed to.

Now, let us see what we can do with generator expressions. In

>>> [n // 2 for n in range(10) if n%2==0]
[0, 1, 2, 3, 4]

we use an expression n // 2, a for loop, which defines n, and a conditional expression.
More complex expressions can involve additional variables and levels of nesting:

>>> [ (x,y) for x in ’ABCD’ if x != ’D’ for y in (0,1,2) ]

[(’A’, 0), (’A’, 1), (’A’, 2), (’B’, 0), (’B’, 1), (’B’, 2),

(’C’, 0), (’C’, 1), (’C’, 2)]

Unlike in mathematics, however, you cannot put clauses in any order:

>>> [ (x,y) for y in (0,1,2) if x != ’D’ for x in ’ABCD’]

UnboundLocalError: local variable ’x’ referenced before assignment

Is there a general rule of thumb to fully understand this syntax? Of course there is!
The generator expression

[ (x,y) for x in ’ABCD’ if x != ’D’ for y in (0,1,2) ]

is actually “morally” (r) equivalent to a function containing the code

for x in ’ABCD’:

if x != ’D’:

for y in (0,1,2):

yield (x,y)

We shall see the yield keyword in greater detail in Sec. 29.2[p114]: “yield and
yield from”. Let us just say for now that it’s very much like a function’s return, but
instead of completely exiting the function, it pauses it after yielding a value, so that you
can later “unpause” it, causing it to resume execution to just after the yield keyword
that paused it, until it yields another value and pauses again.

If yield is confusing you, think in terms of adding to a list for now:

L = []

for x in ’ABCD’:

if x != ’D’:

for y in (0,1,2):

L.append( (x,y) )

print(L)
---------------------------------

[(’A’, 0), (’A’, 1), (’A’, 2), (’B’, 0), (’B’, 1), (’B’, 2),

(’C’, 0), (’C’, 1), (’C’, 2)]

Seeing this, the general rule of thumb for comprehensions is clear: you nest for and
if clauses in exactly the same manner as though you were writing normal loops and
conditionals. The only things that change are that

(1) you write everything on one logical line, without opening a new block each time
with a colon :

(2) the expression in the innermost for or if is put at the very beginning of the
expression instead

(3) the outermost construct must be a for

(4) you cannot have an else clause in your ifs.

Regarding the restriction on else clauses, do not forget that you can use the ternary
operator syntax:

(r). . . and also technically, but I have omitted a few steps to clarify the exposition here.
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>>> [ "Even" if n%2==0 else "Odd" for n in range(5) ]

[’Even’, ’Odd’, ’Even’, ’Odd’, ’Even’]

For legibility reasons, I would add space or indentation when using this construct to
visually separate the ternary operator from the loops.

Of course, the logical line can be broken up following the usual rules; in te case of
comprehensions, you can actually use line breaks pretty arbitrarily. For instance, the
following works quite well:

L = [ (x,y) for x in ’ABCD’

if x != ’D’

for y in (0,1,2) ]

24.5.3 Common comprehension patterns

Let us see a few common comprehension patterns – and mistakes

24.5.3.1 Cartesian product

We have seen examples of cartesian products in the previous section already, without
naming them as such.

As a reminder, the cartesian product of two sets A and B is the set

A× B =
{
(x, y)

∣∣ x ∈ A, y ∈ B}
,

and we generalise this notion to other structures, such as lists. This is written quite
easily:

>>> [ (x,y) for x in (1,2,3) for y in (4,5,6) ]

[(1, 4), (1, 5), (1, 6), (2, 4), (2, 5), (2, 6),

(3, 4), (3, 5), (3, 6)]

Note that you cannot write that using and:

>>> [ (x,y) for x in (1,2,3) and y in (4,5,6) ]

NameError: name ’y’ is not defined

Comprehensions actually allow the use of Boolean expressions after for .. in, but
the semantics is not what you would intuitively expect:

>>> [ x for x in (1,2,3) and (4,5,6) ]

[4, 5, 6]

To understand what is happening here, please refer to Sec. 22.6.5[p56]: “The semantics of
and and or, & implicit Boolean conversion” on the semantics of and and or chains. The
bottom line is, you will probably never have to use Boolean operators after for .. in.
You may of course freely use them after if.

24.5.3.2 Mapping / element by element transformation

A common need is to transform a collection, applying a function to each of its elements:
thus

e1, . . . , en

becomes

f(e1), . . . , f(en) .

In functional programming, we use the map higher-order function (s) for that. This exists
in Python as well, but it is just as convenient to use comprehensions:

>>> def f(x): return f"f({x})"
>>> [ f(x) for x in "abc" ]

[’f(a)’, ’f(b)’, ’f(c)’]

Of course, you don’t need to define a function for that, as the transformation can be
performed directly in the comprehension’s leftmost expression:

>>> [ f"g({x})" for x in "abc" ]

[’g(a)’, ’g(b)’, ’g(c)’]

>>> [ (x, x//3, x%3) for x in range(5) ]

[(0, 0, 0), (1, 0, 1), (2, 0, 2), (3, 1, 0), (4, 1, 1)]

24.5.3.3 Filtering

Another common need is to filter a collection C, keeping only those elements that
satisfy a predicate P: C becomes – using set notation –

C ′ =
{
e ∈ C

∣∣ P(e)}
In functional programming, there is a higher-order filter function for that, and again,
it exists in Python, but is just as convenient using comprehensions, where we have for
instance:

(s)You may indirectly have heard of it in the context of Map/Reduce frameworks.
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>>> def P(x): return 65 <= ord(x) <= 65+26

>>> [ c for c in "loUPwPerER" if P(c) ]

[’U’, ’P’, ’P’, ’E’, ’R’]

There again, defining a separate predicate is not at all necessary:

>>> [ c for c in "loUPwPerER" if 97 <= ord(c) <= 97+26 ]

[’l’, ’o’, ’w’, ’e’, ’r’]

24.5.3.4 Reductions

It is common to want to reduce a collection to a single value. Of course that value
can be something complex, like another collection, but often it is something simple,
like an integer. Either way, in functional programming, there is a reduce higher-order
function for that – also extent in Python, though somewhat hidden. Here we focus on
some simple reductions, using comprehensions.

First the sum function:

sum(C) =
∑
e∈C

e .

This very useful function has the good taste to be predefined in Python. It takes
any iterable collection as argument. This means that, like the list, tuple, and other
collection type constructors, it can be used quite elegantly with generator expressions.
Let us compute

10∑
k=0

k :

>>> sum( k for k in range(10+1) )

55

It would be a bad idea, although not a wrong one, to create a list to pass as argument to
sum – or any function taking an iterable:

>>> sum( [ k for k in range(10+1) ] )

55

Not only is this less legible, but behind the scene you now need to compute all the
values of k, and store them all in memory in a list, before even staring the computation
of the sum.

In contrast, the first version computed the values of k one at a time, incrementing the
sum along the way, in the same efficient way you presumably would if you wrote the
code for

∑10
k=0 k directly.

Rule of thumb: If you are writing a comprehension expression for the purpose of a
reduction, always use generators rather than wrapping it into an intermediary structure.

There is no predefined prod function that performs the product:

prod(C) =
∏
e∈C

e .

That should not stop us from defining one, and computing

5! =
5∏

k=1

k = 1× 2× · · · × 5 = 120 :

def prod(C):

r = 1 # neutral element for *; just like 0 for +

for e in C: r *= e

return r

>>> prod(range(1, 5+1))

120

>>> prod( 1/k for k in range(1,5+1) )

0.008333333333333333

>>> 1/120

0.008333333333333333

Two interesting reductions are the builtin min and max functions, which, interestingly,
can be used either as variadic functions, returning a minimal/maximal element out of
their arguments, or as a reduction on a single iterable:

>>> min(1)

TypeError: ’int’ object is not iterable

>>> min(3,1,2)

1

>>> min([3,1,2])

1

Like sorted(..) and list.sort(), they take an additional key argument to define the
order according to which the notion of minimal/maximal element should be defined:

>>> l = [’Platypus’, ’School’, ’Sleep’] # in the usual order
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>>> min(l), max(l)

(’Platypus’, ’Sleep’)

>>> sorted(l,key=lambda s:s[2])

[’Platypus’, ’Sleep’, ’School’]

>>> max(l,key=lambda s:s[2])

’School’

Let us use this to find, for instance, the index of the minimal element of a list:

>>> l = [75, 76, 99, 74, 11, 98, 85, 7, 5, 87]

>>> min(l)

5

>>> l.index(5)

8

>>> min(range(len(l)), key=lambda i:l[i])

8

The most frequent element in a list:

>>> l = [’A’, ’C’, ’B’, ’B’, ’C’, ’C’, ’C’, ’C’, ’C’, ’A’]

>>> max(set(l), key=l.count)

’C’ # l would work instead of set(l), but less efficient

Be mindful of the fact that not all objects are totally, or linearly, ordered. Thus there is
not always a smallest, or greatest, element. Sets for instance, are only partially ordered
with respect to ⊆. min and max return a minimal/maximal element; in fact the first one
they encounter. In the case of partial orders, the actual order in which elements are
encountered matters, and reordering the arguments or the collection can change the
result:

>>> min({0},{0,1})
{0}

>>> min({0,2},{0,1})
{0, 2}

>>> min({0,1},{0,2})
{0, 1}

Another common reduction is the concatenation of multiple strings, provided by the
str.join method:

>>> "".join( chr(k) for k in range(65,65+26) )

’ABCDEFGHIJKLMNOPQRSTUVWXYZ’

For Booleans, there are the two functions all and any, acting on iterable collections of
(implicit or explicit) Booleans:

all(C) =
∧
b∈C

b = ∀b ∈ C, b .

and

any(C) =
∨
b∈C

b = ∃b ∈ C : b .

>>> all([])

True # neutral element for *and*

>>> all([True, False, True, True])

False

>>> all([True, True, True])

True

>>> any([])

False # neutral element for *or*

>>> any([True, False, True, True])

True

>>> any([False, False])

False

Of course, they can be used with any types of values, with implicit Boolean conversion:

>>> any([ (), () ])

False

>>> any([ (), (1,2) ])

True

We have seen a typical use in the section on assertions:

assert all( square(n) == n*n for n in range(10) )

This compactly translates the statement:

∀n ∈ J0, 9K, square(n) = n2

24.5.3.5 Index manipulation, permutations

You can use comprehension expressions to act on indexes as well as elements: for
instance, the inversion

>>> l = list(range(5))

>>> [ l[-i-1] for i in range(5) ]

[4, 3, 2, 1, 0]
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Of course inversion in particular can be done more elegantly with the slice l[::-1].

Let us try more general permutations. The application of the permutation σ on a list
l = [e1, . . . , en] is the list

lσ−1 =
[
eσ−1(1), . . . , eσ−1(n)

]
Let

σ =

(
0 1 2 3 4

1 2 0 4 3

)
be a permutation – in Cauchy’s notation – on J0, 4K. That is to say, we send the element
of index 0 onto index 1, the element of index 1 onto index 2, the element of index 2
onto index 0, and exchange the last two.

l = list("ABCDE")

def σ−1(i): return (1,2,0,4,3).index(i) # get the index where i appears

# I use σ−1 for clarity. In actual code, use a valid identifier

lσ−1 = [ l[σ−1(i)] for i in range(5) ]

print( lσ−1 )

---------------------------------------------------------------

[’C’, ’A’, ’B’, ’E’, ’D’]

24.5.3.6 Flattening a sequence of sequences

Say that you have a sequence of sequence, and want to flatten all those sequences into
one, concatenating them all. You can do so easily with a comprehension:

>>> l = [ (1,2,3), (4,5), (6,7,8) ]

>>> [ e for sl in l for e in sl ] # sl = sublist

[1, 2, 3, 4, 5, 6, 7, 8]

24.5.3.7 Element repetition / stutter

Sometimes, you want to “stutter” a sequence, repeating an element a number of times.
It is not immediately trivial how to do so:

>>> [ (c,c,c) for c in list("ABCD") ]

[(’A’, ’A’, ’A’), (’B’, ’B’, ’B’), (’C’, ’C’, ’C’), (’D’, ’D’, ’D’)]

does not give the expected result by itself. You still need to flatten that. There is, to my
knowledge, no magical syntactic trick to automatically flatten the tuple:

>>> [ c,c,c for c in list("ABCD") ]

SyntaxError: invalid syntax

>>> [ *(c,c,c) for c in list("ABCD") ] # unpacking attempt

SyntaxError: iterable unpacking cannot be used in comprehension

However, repetition is actually very easy to write, with the right idea:

>>> [ c for c in list("ABCD") for _ in range(3) ]

[’A’, ’A’, ’A’, ’B’, ’B’, ’B’, ’C’, ’C’, ’C’, ’D’, ’D’, ’D’]

In this code, _ is just the name one traditionally uses for a variable whose name does
not actually matter, since one does not actually ever use its value. It could as well have
been called i.

24.6 Packing and unpacking

24.6.1 Starred expressions: sequence types

At the most basic level, packing is the act of grouping several elements in a sequence
type, like so

>>> t = ("Hello", 24, True)

and unpacking is to “explode” the package back into its individual components, through
pattern matching:

>>> s,i,b = t # or, equivalently , (s,i,b) = t

>>> print(s,i,b)
Hello 24 True

The pattern-matching works on any sequence type – concretely, that means lists and
tuples – but not on unordered types, as it would be ambiguous:

>>> [s,i,b] = t

>>> s,i,b

(’Hello’, 24, True)

>>> {s,i,b} = t

SyntaxError: can’t assign to literal

The * operator enables the programmer to selectively pack or unpack elements in some
contexts:
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>>> r = range(7)
>>> first, second, *middle, end = r

>>> first

0

>>> second

1

>>> middle

[2, 3, 4, 5]

>>> end

6

>>> [type(e) for e in (first,second,middle,end)]

[<class ’int’>, <class ’int’>, <class ’list’>, <class ’int’>]

Here, we have used * to pack the middle elements in a list while unpacking others. As
you can see, this is quite a convenient way of isolating the first and last few elements
from the rest. The alternative would be to write multiple slices

>>> r = range(7)

>>> first = r[0]

>>> second = r[1]

>>> middle = r[2:-1]

>>> end = r[-1]

>>> (first, second, middle, end)

(0, 1, range(2, 6), 6)

>>> (first, second, list(middle), end)

(0, 1, [2, 3, 4, 5], 6)

Let us note here that *-packing provides us with a list, regardless of the initial type of
the container being unpacked:

>>> s = set(range(5))

>>> a, *rest = s

>>> a, rest

(0, [1, 2, 3, 4])

In contrast, slicing preserves the type of the underlying indexable. Note as well that
*-packing works on all iterables, whereas slices require indexable types. In the code
above, a is only first in the arbitrary order of iteration – we merely isolated an arbitrary
element from the rest, similar to a call to the pop() method, but without altering the

original set. We could not have used slices to achieve the same effect, as sets are not
indexable:

>>> a = s[0] ; rest = s[1:]

TypeError: ’set’ object does not support indexing

Only a single starred expression can appear on the left-hand side. The reason for
this restriction should be pretty clear: how the two starred variables should share the
elements would be difficult to define.

>>> *a,*b = r

SyntaxError: two starred expressions in assignment

We have covered the uses of * in left-hand sides of assignments. Let us now see where
we may find them in expressions.

In a comma-separated element enumeration context – this is to say, when enumerating
the elements of a list, tuple, or set, or when writing arguments to a function call – a *

can be used to unpack a collection directly within the enumeration:

>>> r = range(5)

>>> [’A’, *r, ’Z’]

[’A’, 0, 1, 2, 3, 4, ’Z’]

>>> {’A’, *r, ’Z’}
{0, 1, ’A’, 2, 3, 4, ’Z’}

>>> print(’A’, *r, ’Z’, sep=’,’)

A,0,1,2,3,4,Z

For the last line, recall that print is a variadic function, printing the separator sep

between each two of its successive arguments. Its output shows that each element of r
was passed as a separate argument to the function.

Contrary to the restrictions of left-hand side packing, in the context of expression
unpacking there is no restriction to how many starred expressions may appear:

>>> print(*{3.15, 6.7, 90.}, *r, ’A’, *r, ’Z’, sep=’ , ’)

90.0 , 3.15 , 6.7 , 0 , 1 , 2 , 3 , 4 , A , 0 , 1 , 2 , 3 , 4 , Z

The only restriction is of course that any function call must in the end be made with
the right number of arguments. print being variadic, we have not run into this:

>>> def f(a,b,c): print(a,b,c)

>>> f(*[1,2], 3)
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1 2 3

>>> f(*[1,2,3,4])

TypeError: f() takes 3 positional arguments but 4 were given

24.6.2 Doubly-starred expressions: dictionaries

What about dictionaries?

>>> age = {’Toto’:15, ’Tata’:27, ’Mamie’:97 }

>>> print(*age)
Toto Tata Mamie

As you can see, single star syntax unpacks the list of the dictionary’s keys – a behaviour
entirely consistent with the view that, for iteration purposes, a dictionary is assimilated
to the set of its keys.

However, this usual single-star syntax does not work well in the context of dictionary
item enumeration:

>>> { ’Jojo’:15 , *age }
SyntaxError: invalid syntax

This is to be expected; in this context, both keys and values are needed. For this, there
is a special double-star unpacking syntax that does work as hoped:

>>> { ’Jojo’:15 , **age }
{’Jojo’: 15, ’Mamie’: 97, ’Tata’: 27, ’Toto’: 15}

However, it works only in that context, and does not generate, say, key/value couples
usable in classical contexts:

>>> [*age]

[’Toto’, ’Tata’, ’Mamie’]

>>> [**age]

SyntaxError: invalid syntax

Nor can it be used in left-hand sides:

>>> {’Mamie’: 97, **d } = age

SyntaxError: can’t assign to literal

This stands in contrast to single-star packing:

>>> [ a, *b ] = age

>>> b

[’Tata’, ’Mamie’]

Working only in the context of dictionary item enumeration does not make double-star
syntax nearly so niche a tool as you would expect, though, as dictionaries are present
in unexpected places. . .

Consider the following code, where we define two functions with the same named
arguments, which, incidentally, correspond to the keys of our toy dictionary:

def f(Toto, Tata, Mamie):

print(Toto, Tata, Mamie)

def g(Mamie, Toto, Tata):

print(Toto, Tata, Mamie)

Recall how we used the single-star unpacking syntax in function calls to pass positional
arguments. We can actually do the same thing with double-star unpacking syntax to
pass keyword arguments, this time:

>>> f(**age)

15 27 97

>>> g(**age)

15 27 97

What we have done here is equivalent to having written

>>> f(Toto=age[’Toto’], Tata=age[’Tata’], Mamie=age[’Mamie’])

15 27 97

Internally, functions actually use dictionaries to handle the values of their keyword
arguments, and we make use of that fact.

Be careful not to confuse single- and double-starred unpacking: as f accepts both
positional and keyword arguments, it is also possible to unpack the set of keys in a
function call, with very different results:

>>> f(*age)

Toto Tata Mamie

>>> g(*age)

Tata Mamie Toto

Note that, in f(**age) and g(**age), the order of arguments does not matter — which
is fortunate, since dictionaries are unordered structures anyway. Recall that order does
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not matter either when arguments are passed by keyword — which is one of the selling
points of calling functions in such a way, as it avoids some silly programming mistakes.

The f(argname=argvalue, ...) syntax could in principle have been defined as
f(’argname’ : argvalue, ...) instead, and though the latter is not actually valid
python syntax, it is still “morally” equivalent to what takes place.

Some standard dictionary methods make use of that, such as the update method, which
updates a dictionary in-place according to the contents of another one, passed as a
argument:

>>> age.update( { ’a’ : 1, ’b’: 2 } )

>>> age

{’Toto’: 15, ’Tata’: 27, ’Mamie’: 97, ’a’: 1, ’b’: 2}

Thanks to the implementation of update, the above could equally well be written:

>>> age.update(a=1,b=2)

>>> age

{’Mamie’: 97, ’Tata’: 27, ’Toto’: 15, ’a’: 1, ’b’: 2}

We shall see how such a function might be defined in more detail in the Sec. 25.1[p92]:
“Variadic function definition”.

24.6.2.1 Merging two dictionaries

If you want to (non-recursively) merge two dictionaries into a new one without altering
the original, you can (1) in Python 3.9+, simply use the union (|) operator, as for sets
(2) prior to 3.9, to obtain the same behaviour, unpack both of them into a fresh one:

>>> age = {’Toto’:15, ’Tata’:27, ’Mamie’:97 }
>>> d = { ’AA’ * i : 10*i for i in range(1,3+1) }
>>> d

{’AA’: 10, ’AAAA’: 20, ’AAAAAA’: 30}

>>> { **age, **d }
{’Toto’: 15, ’Tata’: 27, ’Mamie’: 97, ’AA’: 10, ’AAAA’: 20, ’AAAAAA’: 30}

Note that, should the two dictionaries share keys, associations in d will overwrite those
in age:

>>> { **{0:1}, **{0:2} }
{0: 2}

In some sources, I have seen this pattern recommended instead:

>>> dict(**age, **d) # or dict(age, **d)

{’Toto’: 15, ’Tata’: 27, ’Mamie’: 97, ’AA’: 10, ’AAAA’: 20, ’AAAAAA’: 30}

Yes, it also works for that purpose, but only to some extent. But why does it work at all?
Because, like update, dict() treats its keyword arguments as dictionary associations,
for the purpose of building a new dictionary:

>>> dict(a = 1, b = 2)

{’a’: 1, ’b’: 2}

This makes manually defining dictionaries with string keys a little more elegant. But
beware: the keyword argument syntax is not as flexible as the k:v dictionary item
syntax:

>>> dict(a = 1, b = 2)

{’a’: 1, ’b’: 2}

>>> dict(1=a, 2=a)

SyntaxError: keyword can t be an expression

>>> dict(**{1 : ’a’ , 2 : ’b’})
TypeError: keyword arguments must be strings

>>> dict(**{’a’:0},**{’a’:1})
TypeError: type object got multiple values for keyword argument ’a’

Thus this method of merging will fail on dictionaries whose keys are not strings, or
who have keys in common.

The {**d1, **d2} syntax is very clear and very efficient. Use it. The only real
alternative is to copy the first dictionary, then update that with the second; this is
both much less elegant, and almost twice as slow in tests. Comprehension flattening
patterns or itertools.chain methods are even slower.

25 Advanced function definitions

25.1 Variadic function definition

This follows Sec. 21.5.4[p36]: “Defining functions; predicates and procedures” and
Sec. 21.5.7[p38]: “Optional arguments”.

Variadic functions such as print are pretty neat, but so far we have not seen how we
can define our own. Let us come back to function definitions, in full generality; we
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shall need dictionaries and packing/unpacking.

Recall the last pattern we gave for function definitions, including optional parameters:

def <functionname> (<arg1>, ..., <argN>,

<optarg1> = <defval1>,... <optargM> = <defvalM>):

So far, all of our arguments, whether mandatory or optional, could be passed either
as keyword or positionally. We shall see that, in all generality, arguments can also be
exclusively positional or exclusively keyword.

The more general definition pattern is either of two patterns below, where I name the
parameters according to the following conventions:

pk positional and keyword parameters without default value
pkd positional and keyword parameters with default value (optional parameters)
p exclusively positional parameters — traditionally written args

k exclusively keyword parameters — traditionally written kwargs

def <fun> (

<pk1>, ..., <pkN>,

<pkd1> = <def1>,..., <pkdM> = <defM>,

*<p>,

**<k>

):

or, perhaps more rarely,

def <fun> (

<pk1>, ..., <pkN>,

*<p>,

<pkd1> = <def1>,..., <pkdM> = <defM>,

**<k>

):

In both cases, all variables are assigned a value during a function call, according to the
following discipline:

⋄ the optional parameters <pkd_> have their default values, if not overridden later.

⋄ the first N positional arguments are affected, in order, to positional parameters
<pk_>.

⋄ excess positional arguments are all affected, as a tuple, to <p>. If there is no such
excess, <p> is the empty tuple. This is the nub of variadic functions, such as print.

<p> absorbs this excess at the point where it appears in the definition. This means
that in the first form, excess positional arguments first override the default values

of the <pkd_>, whereas in the second form, the defaults can only be overridden by
keyword arguments.

⋄ then come keyword arguments, which can specify the value of missing positional
arguments <pk_> or override the default value of optional arguments <pkd_>.

⋄ any excess keyword arguments, that is to say arguments neither <pk_> nor <pkd_>,
are then absorbed, as a dictionary, by <k>, which is the empty dictionary by default.

Let us illustrate all this with examples: let us define a function according to the first
form:

def f( pk1, pk2,

pkd1=’d1’, pkd2=’d2’,

*p, **k

):

print("f ",pk1,pk2,pkd1,pkd2,p,k)

We have:

>>> f(1,2) # ‘‘normal’’ positional call

f 1 2 d1 d2 () {}

>>> f(pk2=2,pk1=1) # keyword call

f 1 2 d1 d2 () {}

>>> f(1,pk2=2) # partial positional , partial keyword

f 1 2 d1 d2 () {}

>>> f(1,pkd2=99,pk2=2) # overriding default via keyword

f 1 2 d1 99 () {}

>>> f(1,pkd2=99,pk2=2,a=78) # excess keyword is absorbed

f 1 2 d1 99 () {’a’: 78}

>>> f(1,2,3) # positional; override some defaults

f 1 2 3 d2 () {}

>>> f(1,2,3,4,5,6) # override all defaults; excess positionals absorbed

f 1 2 3 4 (5, 6) {}

>>> f(1,2,3,4,5,6,a=90,b=55) # same; excess keywords absorbed

f 1 2 3 4 (5, 6) {’a’: 90, ’b’: 55}

And now with the second form:

def g( pk1, pk2, *p,

pkd1=’d1’, pkd2=’d2’, **k

):

print("g ",pk1,pk2,p,pkd1,pkd2,k)
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We have:

>>> g(1,2)

g 1 2 () d1 d2 {}

>>> g(pk2=2,pk1=1)

g 1 2 () d1 d2 {}

>>> g(1,pk2=2)

g 1 2 () d1 d2 {}

>>> g(1,pkd2=99,pk2=2)

g 1 2 () d1 99 {}

>>> g(1,pkd2=99,pk2=2,a=78)

g 1 2 () d1 99 {’a’: 78}

>>> g(1,2,3) # excess positional absorbed: defaults untouched

g 1 2 (3,) d1 d2 {}

>>> g(1,2,3,4,5,6) # defaults cannot be overridden positionally

g 1 2 (3, 4, 5, 6) d1 d2 {}

>>> g(1,2,3,4,5,6,pkd2=777) # but can be overridden by keyword

g 1 2 (3, 4, 5, 6) d1 777 {}

>>> g(1,2,3,4,5,6,a=90,b=55)

g 1 2 (3, 4, 5, 6) d1 d2 {’a’: 90, ’b’: 55}

Let us now illustrate that by writing our own toy versions of print and dict(..):

def myprint(*args):

for a in args:

print(a,"",end="")
print() # newline

We have:

>>> myprint()

>>> myprint(1)

1

>>> myprint(1,2)

1 2

>>> myprint(*range(5))
0 1 2 3 4

Now for dict(..), we have:

def mydict(**kwargs):

return kwargs

----------------------------------------------------

>>> d,D = dict(a=1,b=2), dict(c=3,d=4)

>>> mydict(**d,**D)

{’a’: 1, ’b’: 2, ’c’: 3, ’d’: 4}

>>> mydict(**d,**D,another=’stuff’)

{’a’: 1, ’b’: 2, ’c’: 3, ’d’: 4, ’another’: ’stuff’}

With this, we have covered function definition in all generality, except for two advanced
features: decorators, and annotations.

25.2 Function decorators

Function decorators are a means of altering how a function, method, or class works,
without modifying its definition — or even needing access to it. Examples include
automatically logging function calls and debug information, measuring time elapsed
— cf. Sec. 31.4[p120]: “Examples and performance tests” — automatic memoisation —
cf. question (233)[p192] and functools.cache, — defining read-only attributes, getters
and setters (t), and more.

Fundamentally, a decorator is nothing more than a higher order function, taking a
function as input and yielding another function as output. Python supports a special
“@” syntax making this process more elegant, but it is not required.

25.2.1 A plain decorator

For a first contact, we shall not use any special syntax at all. Let us make a decorator
announce_call that modifies the behaviour of a function by printing “Hello” and
“Goodbye” before and after it is executed. While this is a bit silly in and of itself, you
can substitute those printing operations for any kind of pre- and post-processing you
want; think of this as a template for more useful decorators.

The general idea of decoration is to “wrap” the function inside another function, called
a wrapper. The wrapper is in charge of calling the original function, to which it passes
along any argument it receives. Before and after that, it does whatever it needs to do;
here, printing. The decorator then returns the wrapper, which in effect becomes the
decorated function.

def announce_call(f):

def wrap(*a,**k):

print("Hello!")

(t)See https://docs.python.org/3/library/functions.html#property.
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res = f(*a,**k)

print("Goodbye!")
return res

return wrap

To use it, without any pretty syntax, we can define our function as usual, and after that
rebind it to the modified version of itself.

def e(x): return f"e({x})"
e = announce_call(e)

---------------------------

>>> e

<function announce_call.<locals>.wrap at 0x7fa6758c7be0>

>>> e(1)

Hello!

Goodbye!

’e(1)’

It works as expected, of course, but is a tad cumbersome: the name of the altered
function is repeated three times. Instead, you can and should use the special @-syntax
for decorators: simply write @<your decorator> on the line preceding the definition
of your function.

@announce_call

def f(x): return f"f({x})"

@announce_call

def g(x): return f"g({x})"

print([f(x) + g(x) + g(x) for x in range(2)])

---------------------------------------------

Hello!

Goodbye!

Hello!

Goodbye!

Hello!

Goodbye!

Hello!

Goodbye!

Hello!

Goodbye!

Hello!

Goodbye!

[’f(0)g(0)g(0)’, ’f(1)g(1)g(1)’]

25.2.2 Decorators with their own states

Now let us write a more sophisticated decorator count_calls, such that functions not
only say hello and goodbye, but also say their name, display their arguments, as well
as their return values on goodbye, and count the total number of times they have been
called; each function must have its own independent counter.

Getting the name of a function is easy: a function is an object with a __name__ attribute
that contains just this information.

The counter is more delicate. This can be done in an OOP style, defining a callable class
with a counter attribute, but this is much simpler and cleaner in a more functional style,
using a lexical closure. (u)

The idea is that the decorator is called once, and once only, for each decorated function
— at definition time — while the wrapper is called once for each call of the decorated
function. With good reason, since the wrapper is the decorated function.

Thus, our counter shall be a variable initialised by the decorator, and used, nonlocally,
by the wrapper. Each wrapper shall therefore have its own independent counter.

def count_calls(f):

i = 0

def w(*a,**k):

nonlocal i

i += 1

call = f"{f.__name__}[{i}]({’,’.join(map(repr,a+tuple(k.items())))})"
print(f"@< {call}...")
res = f(*a,**k)

print(f" {call} = {repr(res)} >@")

return res

return w

@count_calls

def f(x): return f"f({x})"
@count_calls

def g(x): return f"g({x})"

print([f(x) + g(x) + g(x) for x in range(2)])

---------------------------------------------------

@< f[1](0)...

f[1](0) = ’f(0)’ >@

@< g[1](0)...

g[1](0) = ’g(0)’ >@

@< g[2](0)...

g[2](0) = ’g(0)’ >@

(u)Using on-the-fly function attributes is also a possibility: f.my_counter = .....
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@< f[2](1)...

f[2](1) = ’f(1)’ >@

@< g[3](1)...

g[3](1) = ’g(1)’ >@

@< g[4](1)...

g[4](1) = ’g(1)’ >@

[’f(0)g(0)g(0)’, ’f(1)g(1)g(1)’]

This is a nice little debugging decorator; let us apply it to a function with a more
complex behaviour: the Fibonacci sequence:

@count_calls

def fib(n):

return n if n <= 1 else fib(n-1) + fib(n-2)

print(fib(3))

-----------------------------------------------

@< fib[1](3)...

@< fib[2](2)...

@< fib[3](1)...

fib[3](1) = 1 >@

@< fib[4](0)...

fib[4](0) = 0 >@

fib[2](2) = 1 >@

@< fib[5](1)...

fib[5](1) = 1 >@

fib[1](3) = 2 >@

2

25.2.3 Decorating wrappers to preserve function metadata

The use of decorators has an undesirable side effect, in that decorated functions
forget their original identity: recall that they are their wrapper. Let us consider a
well-documented little function, that happens to be decorated:

@count_calls

def helpful():

"I’m well-documented!"

return "Happy!"

---------------------------------------------------

>>> helpful

<function count_calls.<locals>.w at 0x7fddbda6fa30>

>>> helpful.__name__

’w’

>>> help(helpful)

Help on function w in module __main__:

w(*a, **k)

The nice documentation has been lost, along with the name of the function. Bad
decorators! What is the solution to bad decorators, you ask? Why, more decorators, of
course!

Let us import the wraps decorator from the functools module:

from functools import wraps

Now we can decorate our wrapper functions to overwrite their metadata — name,
documentation — by that of the function they decorate, which is passed as argument
to wraps; let us use that in count_calls:

def count_calls(f):

i = 0

@wraps(f)

def w(*a,**k):

nonlocal i

...

This time all helpful information is preserved:

>>> helpful

<function helpful at 0x7fe59e3bba30>

>>> helpful.__name__

’helpful’

>>> help(helpful)

Help on function helpful in module __main__:

helpful()

I’m well-documented!

As a bonus, wraps adds a __wrapped__ attribute to the wrapper it decorates, ponting
to the original, undecorated function. This can be useful; maybe we do not want to
count some calls in the case of count_calls; maybe we want to bypass the cache in the
case of memoise, etcetera.

Let us demonstrate:

>>> helpful()

@< helpful[1]()...
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helpful[1]() = ’Happy!’ >@

’Happy!’

>>> helpful.__wrapped__

<function helpful at 0x7f3aad8a7d90>

>>> helpful.__wrapped__()

’Happy!’

>>> helpful()

@< helpful[2]()...

helpful[2]() = ’Happy!’ >@

’Happy!’

Decorators may be chained; this presents no difficulty whatsoever:

@announce_call

@count_calls

def helpful():

...

--------------------------

>>> helpful()

Hello!

@< helpful[1]()...

helpful[1]() = ’Happy!’ >@

Goodbye!

’Happy!’

25.2.4 A fun decorator: trace

Let us come back to the Fibonacci function. Here is a cool decorator to print its call tree
— or indeed that of any function:

def trace(f):

lvl = 0

@wraps(f)

def w(*a,**k):

nonlocal lvl

tree = "| " * lvl + "+"

print(f"{tree} {f.__name__}({’, ’.join(map(repr,a))})")
lvl += 1

res = f(*a,**k)

lvl -= 1

return res

return w

@trace

def fib(n):

return n if n <= 1 else fib(n-1) + fib(n-2)

print(fib(5))

---------------------------------------------------------------

+ fib(5)

| + fib(4)

| | + fib(3)

| | | + fib(2)

| | | | + fib(1)

| | | | + fib(0)

| | | + fib(1)

| | + fib(2)

| | | + fib(1)

| | | + fib(0)

| + fib(3)

| | + fib(2)

| | | + fib(1)

| | | + fib(0)

| | + fib(1)

5

Do you understand why and how it works?

Note: I do not have the necessary LATEX font to display that here, but the tree can be
made much prettier by using Unicode ordinal 9474 in place of | and ordinals 9500 and
9472 in place of +.

25.2.5 Parametric decorators

What if you need to have a decorator that takes parameters? For instance, let us write a
decorator who_says, behaving much like announce_call, except that the messages it
prints can be customised by a parameter:

@who_says("Simon")

def f(x): return f"f({x})"

print(f(0))

---------------------------

Simon says Hello!

Simon says Goodbye!

f(0)

To implement that, we are going to nest functions three levels deep . . . but don’t panic,
it is actually all fairly straightforward when you think about it.
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In order for things to work properly, the expression who_says("Simon") must be a
decorator. Therefore, who_says must be a function that takes an argument and returns
a decorator. The decorator itself is done as usual, by declaring and returning a wrapper
function.

Thus we have a pattern:

def deco_with_params(params):

def deco(f):

@wraps(f)

def wrap(*a,**k):

... params ... f(*a,**k)...

return wrap

return deco

Let us apply it to our problem:

def who_says(who):

def deco(f):

@wraps(f)

def wrap(*a,**k):

print(who, "says Hello!")

res = f(*a,**k)

print(who, "says Goodbye!")

return res

return wrap

return deco

We get the expected behaviour.

25.2.6 Class decorators

Decorators can be used on classes, and can be — callable — classes. This is outside the
scope of this document.

26 Reading and writing files

For now I shall just give you the bare minimum you will need in the exercises.

Files are opened with the open function, which is quite rich in functionality. Let us say
that mytext.txt is an existing text file. It contains the text:

This␣is

a

text␣file.

Let us open it; by default, we are in read-only mode:

>>> f = open("mytext.txt")

>>> f

<_io.TextIOWrapper name=’mytext.txt’ mode=’r’ encoding=’UTF-8’>

Once the file is open, it acts as an iterator on the text’s lines, which is both convenient
and very efficient, as we do not load all the file in memory at once, but just a single line
of it. By default, line returns are normalised to ’\n’ regardless of the file’s own CR/LF
style.

>>> [l for l in f]

[’This is\n’, ’a\n’, ’text file.\n’]

Note that doing so moves the imaginary reading head in the file, and thereafter the
stream is exhausted. If you want to read the file again, you need to position the stream
back at the beginning, which can be done with seek(0):

>>> [l for l in f]

[]

>>> next(f)
StopIteration

>>> f.seek(0)

0 # I’m now at position zero. Again.

>>> [l for l in f]

[’This is\n’, ’a\n’, ’text file.\n’]

The str.split method is very convenient, in conjunction with line iteration, to extract
information from text files:

>>> [l.split() for l in f]

[[’This’, ’is’], [’a’], [’text’, ’file.’]]

Alternatively, you can read all the text at once:

>>> f.read()

’This is\na\ntext file.\n’

>>> f.read()

’’ # stream is exhausted

Note that both methods rely on the same stream:
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>>> f = open("mytext.txt")
>>> [l for l in f]

[’This is\n’, ’a\n’, ’text file.\n’]

>>> f.read()

’’

>>> f.seek(0)

>>> f.read()

’This is\na\ntext file.\n’

>>> [l for l in f]

[]

When you are done, close the file.

>>> f.close()

Writing is much the same; you must specify write-mode by passing "w" to open. The
file need not exist yet. In write mode, you have, unsurprisingly, access to the write

method:

>>> g = open("blah.txt","w")

>>> g.write(’This is\na\ntext file.\n’)

21 # number of characters written

# always equal to the length of the string.

>>> g.close()

26.1 The with .. as statement, for files

The recommended way to handle files is through the use of context managers and the
with .. as statement.

Without going into detail or generalities, the idea is to minimise the work that needs
doing to ensure your files are properly closed and you don’t leak file descriptors.

with introduces a code block, and you can open as many files as you want at once:

with open(ROfile) as f, open(RWfile,"w") as g:

<block with f and g opened>

Within this block, you can do whatever you want with f and g. Any variable defined
with this block will remain accessible outside of it.

The point of this construction is that, no matter what happens, whether you exit the
block normally or exceptions are raised, the files are properly closed. Thus you don’t
need to close them manually or worry about them much.

This is a good pattern. Use it.

27 Object Oriented Programming in Python

This continues Sec. 21.2[p34]: “A few words about Object Oriented Programming
(OOP)”.

You will have a course on OOP (in Java) during the first semester. While the general concepts
are the same, the details can change significantly from one language to the next.

27.1 Empty class, dynamic attributes

Let us define our own class, representing a person. For now, let us start by defining an
empty class we can play around with:

class Person:

pass

Now that we have defined a class, we can instantiate it into objects:

>>> p = Person()

>>> p

<__main__.Person object at 0x7f82091eab70>

>>> type(p)

<class ’__main__.Person’>

__main__ is of course the name for the current, main module. The class we just defined
belongs to it.

Now that we have an object, we can play around with it. For now, it has no attributes,
but in Python, you can sometimes define those on the fly:

>>> p.a

AttributeError: ’Person’ object has no attribute ’a’

>>> p.a = 21 # on-the-fly new attribute. It works here,

# but not on all objects.

>>> p.a

21

>>> del p.a

99



>>> p.a

AttributeError: ’Person’ object has no attribute ’a’

27.2 Why we have constructors

Let us add some attributes, with default values, to our class:

class Person:

name = ’’

age = 0

Playing around with instances, we see that each object has those default values, and its
own namespace once defined:

>>> p, q = Person(), Person()

>>> p.name

’’

>>> p.name = "Toto"

>>> p.age = 25

>>> f"{p.name} {p.age} {q.name} {q.age}"
’Toto 25 0’

However, consider this:

class Person:

name = ’’

age = 0

hobbies = [’Knitting’, ’Reading’]

All instances actually share the same list, which is very limiting:

>>> p, q = Person(), Person()

>>> p.hobbies

[’Knitting’, ’Reading’]

>>> del p.hobbies[0]

>>> p.hobbies

[’Reading’]

>>> q.hobbies

[’Reading’]

We have encountered that kind of problem before, for instance for default values of
the defaultdict type. The solution is to call a function to make new instances of the
needed objects. This is the notion of constructor which we have already discussed. A
constructor is a function or method that initialises an object, that instantiates a class. In

Python, each time you use a constructor, like list(...), the method named __init__

plays that role. (v)

Note that this “double-underscore” naming style is that used, by convention, by Python
to denote special methods. We already mentioned __len__, for instance, which is the
special method actually handling len(..)’s length or cardinality computations. There
are many more special methods, some of which we shall discuss in good time, and
others we shall list in Sec. 27.10[p106]: “Special, magic, dunder methods”.

27.3 Static attributes, and the typemetaclass

The attributes we have defined so far are actually static attributes. That is to say, they
are attached to the class, more so than to instances of it.

You can and should preferably access them directly from the class:

>>> Person.age

0

Actually, what this means is that a class is itself an object. But if that is so, then what
class is class itself an instance of?

>>> type(Person)

<class ’type’>

So type is really also a class — a metaclass, of which all other classes are instances. But
what is type an instance of? Is that an object as well?

>>> type(type)

<class ’type’>

Type is a perfectly ordinary instance of. . . itself. The type function is therefore a
constructor, which can be used to define new types, new classes, on the fly, since they
are perfectly ordinary objects:

>>> help(type)

...

| type(name, bases, dict) -> a new type

...

>>> C = type(’C’, (object,), dict(a=1))

>>> C

<class ’__main__.C’>

>>> type(C)

(v)There is another, __new__, that I shall not discuss, and which can be ignored in 99% of use cases.
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<class ’type’>

>>> C.a

1

Here we see that, internally, the attributes – and methods – associated with an object
are actually handled by a dictionary, like function calls.

type is also an instance of object. All objects are derived from object by inheritance.
And object is a type. It’s objects all the way down indeed. . .

>>> isinstance(type,object)

True

>>> type(object)

<class ’type’>

The idea of inheritance, which we shall see later, is that some classes are specialised
instances of others, adding and altering behaviour, and inheriting the rest. For instance
frozenset shares a lot of behaviour with set, with a few twists of its own.

27.4 Constructors: beware of mutable structures

Let us add a constructor to our class. It is its job to initialise attributes, given a number
of pertinent arguments. Its first argument, as for all non-static methods, is generally
called self (w)and is a pointer to the object being defined itself. Within the definition of
a method, you must refer to any local attribute as self.something.

class Person:

def __init__(self, name=’’, age=0, hobbies=[]):

self.name = name

self.age = age

self.hobbies = hobbies

p = Person("Toto", 25, [’Knitting’, ’Reading’])

q = Person("Tata", 97, [’Snoozing’])

------------------------------------------------

>>> p.hobbies

[’Knitting’, ’Reading’]

>>> q.hobbies

[’Snoozing’]

(w)though I am very lazy and often write it s for short, which you might notice in my code; use self in
production code; do as I say, not as I do.

This time, we have a much more convenient way of defining new objects, and it seems
like we have different lists at last. We must, since we provide those new lists to the
constructor. But what happens if we don’t, and use the default value?

>>> p, q = Person(), Person()

>>> p.hobbies.append(0)

>>> p.hobbies

[0]

>>> q.hobbies

[0] # oops, still the same list.

>>> r = Person()

>>> r.hobbies

[0] # everyone shares the same

What happens here is that the default values were evaluated once, when the line

def __init__(self, name=’’, age=0, hobbies=[]):

was run, yielding a pointer which will then be shared among all objects using the default
value. We need the new list to be generated at each call of __init__. A solution would
be to write self.hobbies = hobbies.copy() or self.hobbies = list(hobbies), so
that every list of hobbies passed to the constructor is copied. This may or may not be
what you want. If you want the lists passed to the constructor not to be copied, but
want a fresh empty list by default, write something like this:

class Person:

def __init__(self, name=’’, age=0, hobbies=None):

self.name = name

self.age = age

self.hobbies = list() if hobbies is None else hobbies

p = Person("Toto", 25, [’Knitting’, ’Reading’])

q = Person("Tata", 97, [’Snoozing’])

r, s = Person(), Person()

--------------------------------------------------------------

>>> r.hobbies.append(0)

>>> r.hobbies

[0]

>>> s.hobbies

[]

27.5 matching attributes

Recall that in Sec. 23.6[p65]: “Pattern matching: match..case”, we used class patterns
such as int() and str(), and said we can go farther and match attributes as well?

Let us do that:
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p = Person("Toto", 25, [’Knitting’, ’Reading’])

match p:

case Person(age=25, hobbies=[x,y]): print(p.name, y)

--------------------------------------------------------

Toto Reading

It follows about the same conventions as for mappings: so long as at least the attributes
you are looking for are present, and each one matches its assigned pattern, it matches.

Note, crucially, that although Person(age=25, hobbies=[x,y]) looks like a constructor
invocation, it is not. In this example it happens that the attributes and the constructor
arguments are the same, which is good practice where possible, but that need not be
the case. The name argument is missing anyway.

Like mapping patterns, class patterns syntactically look like they define an object, but
in fact match only part of it.

A class pattern C(a=1,b=2) has no guarantee to match an object C(a=1,b=2):

class C:

def __init__(s,a,b):

s.x = a+b

myobj = C(a=1, b=2)

match myobj:

case C(a=1, b=2): print("yes")
case C(x=3): print("Beware!")

----------------------------------

Beware!

Also note that attributes are matched by name, exclusively. A pattern C(x,y) would be
rejected with

TypeError: C() accepts 0 positional sub-patterns (2 given)

despite C having a two-arguments constructor, which is expected as constructors have
nothing to do with matching, as belaboured above, and so would C(x), with

TypeError: C() accepts 0 positional sub-patterns (1 given)

The problem is that attributes are not intrinsically ordered, so “bind x to the first
attribute” makes no sense, absent a notion of “first”.

We shall see in Sec. 28[p109]: “Advanced structural pattern matching” that we can use
data classes to enforce an order between attributes, and match accordingly.

27.6 Instance methods and static methods

A method – or instance method – is a function associated to an object, and potentially
acting on it, altering it.

Methods are not fundamentally different from attributes — when it comes down to it,
they are simply attributes that happen to be callable.

Let us define the getold(years) method for instances of Person. It increments their
age by years, and causes them to state their new age.

Like __init__, instance methods always take self as their first argument. The rule is
that, if c is an instance of class C, then a call c.f(x) is equivalent to C.f(c,x).

When presenting the code, I shall not repeat previously defined methods, so as to save
space, and just write ... to indicate some code has been elided.

class Person:

... # I don’t repeat __init__

def getold(self,years):

self.age += years

print(f"{self.name} says: I am now {self.age} years old.")

Let us test this:

>>> p = Person("Toto", 25, [’Knitting’, ’Reading’])

>>> p.age

25

>>> p.getold(1)

Toto says: I am now 26 years old.

>>> p.age

26

The second form works as well:

>>> Person.getold(p, 3)

Toto says: I am now 29 years old.

>>> p.age

29

What if you want your class to contain a method that does not rely on a specific
instance? For instance, let us say that we want to compute the average age of many
persons? Then, while this operation is clearly associated with the type Person, is is just
as clearly not tied to a specific person, to a specific instance; especially if you want a
specific behaviour for the empty population.
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In that case, you define a static method. Such a method does not have privileged access
to any of the instances of the class, only to its static namespace. Therefore, it should
not take self as its first argument but whatever you want, as would a normal function.
In the end, it is merely a function in the namespace of the class.

Let us define our variadic static method avgage so that it returns the average age of its
arguments, or None if called with no arguments.

class Person:

...

def avgage(*ps):

return sum( p.age for p in ps ) / len(ps) if ps else None

-----------------------------------------------------------------

p = Person("Toto", 25, [’Knitting’, ’Reading’])

q = Person("Tata", 97, [’Snoozing’])

r, s = Person(), Person()

Let us test this:

>>> Person.avgage() # None

>>> Person.avgage(p)

25.0

>>> Person.avgage(p,q)

61.0

>>> Person.avgage(p,q,r,s)

30.5

But wait, what happens if we call it from an instance of the class?

>>> p.avgage()

25.0

>>> p.avgage(q)

61.0

So far, there is nothing distinguishing our “static” method from any other, beyond
the fact that we didn’t call the first argument self — but this is a convention, not
a syntactical requirement. So when the method is called from an instance, its first
argument, as always, is that instance. The above is therefore equivalent to

>>> Person.avgage(p)

25.0

>>> Person.avgage(p,q)

61.0

And maybe that is the behaviour you want; but if not, if you want the method to
behave the same regardless of whether it is invoked from the class or an instance, then
you should use the @staticmethod decorator, like so:

class Person:

...

@staticmethod
def avgage(*ps):

return sum( p.age for p in ps ) / len(ps) if ps else None

Then the instance is no longer passed as argument:

>>> p.avgage()

>>> p.avgage(q)

97.0

A related decorator is @classmethod, which passes the class of the instance object
as first argument, instead of the instance — this allows calling other class or static
methods, and is useful in the case of inheritance.

27.7 String representations str and repr

So far, our objects have been somewhat cryptic to look at in the interactive mode:

>>> p

<__main__.Person object at 0x7f370d00dac8>

>>> q

<__main__.Person object at 0x7f3710d95b70>

Sure, it tells us the main information: type and memory address, allowing us to
see that those are two different objects, but it would be nice to have palatable string
representations of our persons. So far, conversion to string yields the same display,
wrapped in a string:

>>> str(p)

’<__main__.Person object at 0x7f370d00dac8 >’

There are actually special methods which we can override to change this: __repr__
and __str__.

The first one is called to get a representation of the object for Python — the canonical
string representation which, if at all possible, should be valid Python code to build a
copy of the object. It is called by the builtin repr function.

The second one is called by str to convert an object in a “pretty”, human friendly,
representation. Lacking a specific implementation, it defaults to using the repr.

To fully understand the difference between the two, consider this:
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>>> str(’Hello’)

’Hello’

>>> repr(’Hello’)

"’Hello’"

>>> print(str(’Hello’), "and",repr(’Hello’))

Hello and ’Hello’

>>> repr(repr(’Hello’))

’"\’Hello\’"’

The repr version contains the Python quotes and escapes necessary to encode a str

object, and would be used by a programmer trying to generate Python code in a string,
say, for later execution by timeit. The str version contains what you actually want to
see when you decide to print a string. print(str(x)) is equivalent to print(x).

Let us define a canonical string representation for Person:

class Person:

...

def __repr__(self):

return f"Person({repr(self.name)}, {self.age}, {self.hobbies})"

Let us test this:

>>> p

Person(’Toto’, 25, [’Knitting’, ’Reading’])

>>> repr(p)

"Person(’Toto’, 25, [’Knitting’, ’Reading’])"

>>> str(p)

"Person(’Toto’, 25, [’Knitting’, ’Reading’])"

>>> p.getold(10)

Toto says: I am now 35 years old.

>>> p

Person(’Toto’, 35, [’Knitting’, ’Reading’])

But, before we defined this, why did we have a repr at all? Why do we have a str,
when we have not defined it? How does it know that it should default to repr? Because
no class stands on its own; all inherit from object, and it defines a number of standard
behaviours that we can override if we so choose.

27.8 Inheritance

Inheritance is the process through which new classes inherit the behaviour of other
classes. They can then choose to redefine and override some of them, and add their
own new behaviours. The syntax to inherit from a class is as follows:

class <DerivedClass> (<ParentClass>):

Implicitly, all classes inherit, at least, from object, so

class Person:

was strictly equivalent to

class Person(object):

Let use derive a class from Person:

class Teacher(Person):

def lecture(self):

print(f’{self.name} lectures: "You are doing it wrong!"’)

Let us test that and see that a teacher can indeed behave in all respects as a person, but,
they can also lecture people.

>>> VH = Teacher("V. Hugot", 33, [])

>>> VH

Person(’V. Hugot’, 33, [])

>>> VH.getold(1)

V. Hugot says: I am now 34 years old.

>>> VH.lecture()

V. Hugot lectures: "You are doing it wrong!"

>>> p.lecture()

AttributeError: ’Person’ object has no attribute ’lecture’

We have

>>> isinstance(VH, Teacher)

True

>>> isinstance(VH, Person)

True # it is a subclass

>>> isinstance(VH, object)

True # of that too; always

>>> isinstance(VH, list)

False # just checking isinstance can return False ;-)
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This is all well and good; however, we would like to override some of the inherited
behaviours to make them more specific to the case of teachers. For one thing, the string
representation still states Person; let us update it to say Teacher.

Note: this is a somewhat artificial example to illustrate inheritance, and in this specific case,
you could just bypass that and get the current class name with obj.__class__.__name__.
But let us pretend that does not exist.

class Teacher(Person):

..

def __repr__(self):

return f"Teacher({repr(self.name)}, {self.age}, {self.hobbies})"

Now it behaves as it should:

>>> VH

Teacher(’V. Hugot’, 33, [])

Since only the first word changes, could we not have used the previous representation,
and simply changed the first word? Yes we could have, for we can call methods from
parent classes:

def __repr__(self):

return Person.__repr__(self).replace("Person","Teacher",1)

has the same effect as before. Instead of calling Person explicitly, and needing to pass
self, would it not be great if we could, for an instant, treat self as an instance of the
parent class only? We can, thanks to super(), which returns a delegate object to the
parent class, with full access to all applicable attributes. The code becomes:

def __repr__(self):

return super().__repr__().replace("Person","Teacher",1)

with, again, the same results. Super is preferred for single inheritance — for instance,
should you decide to change the base class, you can do so transparently, without having
to alter all the methods that used a call to a parent, provided that the new parent class
is compatible with the calls that are made. It is also a little bit more readable.

In the case of multiple inheritance, it is a powerful tool, but requires careful design
and consideration to work correctly. In Sec. 27.9[p105]: “Multiple inheritance”, we shall
assume that we are using versions of __repr__ that do not use super().

Let us create another derived class: what about students? Well, they can’t lecture
people, but they can goof around, acquiring new hobbies in the process:

class Student(Person):

def goof(self,hobby):

self.hobbies.append(hobby)

print(f’{self.name} goofs around with {hobby.lower()}’)

def __repr__(self):

return super().__repr__().replace("Person","Student",1)

Let us see Bob discover the joys of knitting:

>>> Bob = Student("Bob", 19, [])

>>> Bob.goof(’Knitting’)

Bob goofs around with knitting

>>> Bob

Student(’Bob’, 19, [’Knitting’])

Let us not forget that everyone is still a Person, and that Persons, Teachers, and
Students can be mixed in any context that merely needs a Person:

>>> all ( isinstance(o,Person) for o in (p,q,VH,Bob,PVH) )

True

>>> Person.avgage(p,q,VH,Bob,PVH)

41.4

27.9 Multiple inheritance

Advanced notion: skip this section unless you have a clear and present need to use the
technique — in which case you will need a lot more documentation.

Python supports multiple inheritance, which means that a class can inherit from several
— though inheriting just from one is much more common. The syntax is as follows:

class <DerivedClass> (<ParentClass1>,...,<ParentClassN>):

Multiple inheritance has a reputation for difficulty and potential danger, to the point
that Java does not support it at all, as opposed to, say, C++. Whether that reputation
is fully deserved, whether the danger is intrinsic to multiple inheritance as a concept
or whether it is the result of poor implementations and uses of it, remains a matter of
some debate. Let us just see briefly how it works in Python.

Consider the case of professors; clearly, they are a subset of teachers, but, as researchers,
they are eternal students. Thus, they can behave as both – where that does not conflict.
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class Prof(Teacher,Student):

pass
----------------------------

>>> PVH = Prof("V. Hugot", 33, [])

>>> PVH.goof(’Video Games’)

V. Hugot goofs around with video games

>>> PVH.lecture()

V. Hugot lectures: "You are doing it wrong!"

So far so good. But what about methods shared by the two parent classes, but
implemented differently? In that case Teacher and Student have conflicting definitions
of __repr__. Which one prevails? (x)

>>> PVH

Teacher(’V. Hugot’, 33, [])

It turns out that Teacher prevails. Why? Because Python’s method to resolve this
conflict – known as the diamond problem – is to use left-to-right priority in the order of
inheritance. Teacher comes first in the definition Prof(Teacher,Student), so that is
what is used.

The details are a bit more complicated. Python builds a method resolution order (MRO),
which is a linear order among classes derived from the inheritance graph according to
algorithms we shall not get into. When a method is called, Python invokes it from the
first class, with respect to the MRO, that implements it.

You can consult the MRO of any class, as it is stored as an attribute of the class object:

>>> Prof.__mro__

( <class ’__main__.Prof’>,

<class ’__main__.Teacher’>, <class ’__main__.Student’>,

<class ’__main__.Person’>,

<class ’object’>)

In other words, when Prof calls a method, Python first looks for an implementation
in Prof itself; if Prof does not implement the method, it looks into the parents, in the
order Teacher, then Student, then it looks into the common ancestor Person, and as a
last resort, into object.

(x)Here we are assuming there is no use of super().

27.10 Special, magic, dunder methods

Special, magic, or dunder – for double underscore – methods are methods with a
special role in Python. By convention, they are named according to the template
__methodname__.

What is magical or special about them? Nothing intrinsic; they are ordinary methods,
without any special syntax or mechanics. What makes them special is that impor-
tant parts of the Python language calls them implicitly and automatically, in certain
circumstances.

So far we have seen __len__, which is called by the len function; __repr__, which
is called by the repr function, and thus any time a value is displayed in the Python
interactive mode; __str__, which is called any time you print something; __init__,
which is called any time a new object is created. We shall see __next__ and __iter__,
which are central to iterable structures in Sec. 29[p112]: “Iterables, iterators, and
generators”, and there are many more.

Operators such as + are actually syntactic sugar for method calls. If you want to define
a type that supports those operators — “operator overloading”, — all you have to do
is implement the corresponding methods.

Binary operators:

+ __add__(self,other)

- __sub__(self,other)

* __mul__(self,other)

// __floordiv__(self,other)

/ __truediv__(self,other)

% __mod__(self,other)

** __pow__(self,other[,modulo])

<< __lshift__(self,other)

>> __rshift__(self,other)

& __and__(self,other)

^ __xor__(self,other)

| __or__(self,other)

Binary comparison operators:
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< __lt__(self,other)

<= __le__(self,other)

== __eq__(self,other)

=! __ne__(self,other)

>= __ge__(self,other)

> __gt__(self,other)

Note that every binary operator has a normal version and a “reversed”, or “reflected”
version. That means there are also methods __radd__, __rsub__, __rmul__, __rdiv__,
__rlt__, __req__, etc.

The difference between, say, __add__ and __radd__ is this: suppose I want to roll my
own wrapper for int— for some reason — with support for addition. I get the class

class INT:

def __init__(self, a): self.a = a

def __add__(self, other):

print("__add__")
return self.a + other

When an object of my class is the left operand of +, everything works as expected. But
not when my object is on the right:

>>> INT(1) + 2

__add__

3

>>> 1 + INT(2)

TypeError: unsupported operand type(s) for +: ’int’ and ’INT’

Why is that? Well, recall the rule seen in Sec. 27.6[p102]: “Instance methods and static
methods”:

The rule is that, if c is an instance of class C, then a call c.f(x) is equivalent to
C.f(c,x).

That means that INT(1) + 2 is translated into INT.__add__(INT(1), 2) — with-
out recomputing INT(1), of course. Then, how is 1 + INT(2) translated? Into
int.__add__(1,INT(2)). The problem is int is not programmed to deal with operands
of type INT; it does not know that class exists!

Must we modify the builtin class int to get support for our homemade INT? Fortunately
no. It suffices to add an __radd__ method to our INT class:

class INT:

...

def __radd__(self, other):

print("__radd__")
return other + self.a

and things work as expected:

>>> 1 + INT(2)

__radd__

3

Why and how does that work? When int fails to handle the other operand, of type
INT, it obligingly returns a very special value NotImplemented. Think of it like a little
brother for None: like None, it is the only one of its type:

>>> type(NotImplemented)

<class ’NotImplementedType’>

What’s special about that value is that the Python interpreter will actively be on the
lookout for it as the return value when executing magic methods for binary operators,
such as __add__. If it does not detect it, the buck stops there. If it does detect it, it
tries to reverse the operands and invoke __radd__ from the other type. If that method
is not implemented, or is but ends up returning NotImplemented for those particular
arguements, only then does it give up and raise a TypeError.

If that is not clear, play with the following code:

class A:

def __add__(s,o):

print("Aadd")
if isinstance(o,int): return "intOK"

return NotImplemented

class B:

# pass

def __radd__(s,o):

print("Bradd")
if isinstance(o,A): return "yes"

Try executing A()+1 and A()+B() with and without the return NotImplemented line
and the __radd__ method in B, until you understand what is going on.

That means that any proper implementation of a binary operator, that wishes to let other
classes fully support it with their own operators, should be of the form:
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if isinstance(other, sometype):

return # something
elif isinstance(other, someOtherType):

return something_else

...

return NotImplemented

Without the last line, the method would return None, which is as valid a return value
as any other, and the interpreter would stop there.

Incrementation / in-place assignment operators:

+= __iadd__(self,other)

-= __isub__(self,other)

*= __imul__(self,other)

/= __idiv__(self,other)

//= __ifloordiv__(self,other)

%= __imod__(self,other)

**= __ipow__(self,other[,modulo])

<<= __ilshift__(self,other)

>>= __irshift__(self,other)

&= __iand__(self,other)

^= __ixor__(self,other)

|= __ior__(self,other)

Not that there are NotImplemented shenanigans at work here again: when executing
a += b, Python first tries __iadd__ — there is some expectations that it implements
an in-place version of __add__, cf. Sec. 24.2.2.3[p73]: “In-place assignment on mutable
structures” — and if that is not implemented or returns NotImplemented, it tries
a = a + b, which invokes __add__. That too can fail, in which case it tries __radd__,
as seen before.

Consider the following code for an illustration:

class A:

def __add__(s,o):

print("A.add")
if isinstance(o,int): return "Aa"

return NotImplemented

def __iadd__(s,o):

print("A.iadd")
return NotImplemented

class B:

def __radd__(s,o):

print("B.radd")
if isinstance(o,A): return "yes"

----------------------------------------

>>> a = A()

>>> a += B()

A.iadd

A.add

B.radd

>>> a

’yes’

Unary operators, conversions, etc:

- __neg__(self)

+ __pos__(self)

abs() __abs__(self)

~ __invert__(self)

complex() __complex__(self)

int() __int__(self)

float() __float__(self)

oct() __oct__(self)

hex() __hex__(self)

repr() __repr__(self)

str() __str__(self)

bool() __bool__(self)

hash() __hash__(self)

len() __len__(self)

reversed() __reversed__(self)

Other special operators

X[index] __getitem__(self, index)

X[index] = v __setitem__(self, index, v)

x in X __contains__(self, other)

f(x) __call__(self, *args, **kwargs)

Note that your classes can support some operations even if they are not explicitly
defined. For instance, if __contains__ is not implemented, x in X will default to

108



iterating on the structure X via __iter__ in search of x. If __iter__ is not implemented
either, it will try to iterate on X anyway by testing indexes 0, 1, 2,... via __getitem__.
Only if that is not implemented either does it give up.

We shall see more of those specific iteration problems in Sec. 29[p112]: “Iterables, iterators,
and generators”. Just remember, with this example and that of __add__ and __radd__

seen at the beginning of this section, that there is plenty of implicit behaviour involved
in translating what you write into magic method calls.

27.11 Against paradigmatic integralism

The following advice may not be universally accepted, to put it mildly: Do not force
yourself to put everything into objects. While cars and such offer nice examples where
the object abstraction works fairly well, and there are plenty of cases where methods
should belong to specific types, things break down quickly in more complex cases.

For instance, when several types of objects interact, it often becomes difficult to decide
which of the objects should own the actions that are jointly performed; that is, who owns
the method, and who is merely a parameter of it. For instance, should the operation
“concatenating a list of strings” belong to the type of lists or that of strings? What about
operations involving three or four different types?

Use classes where it is clear that the abstraction work, and stick with standard procedural
code for everything else. The ratio of the two will vary widely depending on the
specific problem.

If all you need are namespaces, use modules.

28 Advanced structural pattern matching

Now that we have seen more of OOP, let us come back to pattern matching. Be
sure to have read Sec. 23.6[p65]: “Pattern matching: match..case” and Sec. 27.5[p101]:
“matching attributes” before this.

As a guiding example, we shall implement the transformation of formulæ of proposi-
tional logic into Negation Normal Form (NNF). You should have seen this already in
your Logic course.

If propositional logic does not excite you overmuch in and of itself, understand that, at
the end of the day, what we are doing is manipulating inductive structures by applying
precise structural rules. A considerable number of very interesting things depend on
the very same techniques.

Any arithmetic expression, such as 2 × (x − 1) + 3, is an inductive structure; any
computation done on it is done by breaking down its structure and applying rules to
rewrite it or compute its value.

Any program code is also an inductive structure — refer to the Languages Theory
course, especially the section on grammars — and program compilation proceeds
inductively, by breaking down the code’s structure. You will see that next semester
during the Compilation course.

Therefore, the techniques used there are not at all tied to propositional logic, but are
extremely general and important for a vast class of problems. And the match keyword
provides an extremely good way of tackling such problems. In Sec. 45[p149]: “A smidgen
of Computer Algebra”, you will implement a rudimentary Computer Algebra System
capable of computing derivative functions symbolically.

With this out of the way, recall that formulæ of propositional logic (PL) are those built
with operators ∧,∨,¬, =⇒ , ⇐⇒ , . . . , the first three being the only indispensable
ones, since ≡ and ⇐⇒ can be refined in terms of those three (y).

In other words, PL formulæ φ are generated by the grammar

φ ::= x | φ ∧φ | φ ∨φ | ¬φ | φ⇒ φ | · · · .

For instance, let us consider the formula

φ = ¬
(
x⇒ (y ∨ z)

)
.

A formula is in NNF when it only uses ∧,∨,¬ and all negations appear on atoms (here,
variables). So φ above is not in NNF, since it is the negation of an implication, which is
not an atom — and not even allowed as an operator.

To put a formula in NNF without changing its truth table, it suffices to rewrite it
according to the following rules, until nothing is left to be rewritten:

x⇒ y → ¬x ∨ y

¬(x ∨ y) → ¬x ∧ ¬y

¬(x ∧ y) → ¬x ∨ ¬y

¬¬x → x

The first is the definition of⇒, which we get rid of, the next two are the De Morgan’s
laws, and the last is the elimination of the double negation. Notice that negation is
systematically pushed inwards or removed.

(y)Alternatively, all operators can be defined in terms of a single, less intuitive operator: either NOR or
NAND. But this is just a bit of trivia, outside of the scope of the current discussion.
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Let us implement this transformation. The first question is: “how do I represent my
formulæ?”.

For the purpose of pattern matching, we could take variable names to be strings, define
constants AND, OR, NOT, and represent a formula as a tuple

(<operator>, <left operand>, <right operand>)

so that φ becomes

(NOT, (IMPLIES, "x", (OR, "y", "z")))

That would work quite nicely, using only sequence patterns, but we can do better by
using data classes and their patterns. It would be nice if Or was an object, and we
could write Or("y","z"), nest it in bigger formulæ and enjoy the same kind of pattern
matching as for tuples above. Let’s make it so!

The @dataclass decorator applies to a barebones class definition, just a class name
and a list of (typed (z)) attributes, and automatically generates the magic methods
implementing the obvious constructor and repr. By obvious, I mean that an attribute
x becomes a constructor argument x, and the constructor does self.x = x.

Furthermore, @dataclasse specifies the order of the attributes for the purpose of class
patterns as the order in which the attributes were written in the code.

Let us partake in all this syntactic sugar for the benefit of our formulæ:

from dataclasses import dataclass

@dataclass

class BinOp:

l: object

r: object

class And (BinOp):

symb = "&"
class Or (BinOp):

symb = "|"
class Implies (BinOp):

symb = "->"

@dataclass

class Not:

f: object

f = Not(Implies("x", Or("y", "z")))

(z)The type annotation for the attributes is generally not examined by Python itself, so we can get away
with just :object.

------------------------------------

>>> f

Not(f=Implies(l=’x’, r=Or(l=’y’, r=’z’)))

A binary operator is just something with two attributes l and r — and in practice the
names won’t matter much, since dataclasses have ordered attributes, and we shall
match according to order and not name. And, Or, and Implies, as well as equivalence
and whatever else you want, are particular binary operators, to which I add a symb

attribute that will be useful later on, to prettify the string representation of the formula.

Not is the only unary operator possible, so we don’t bother abstracting it with a class
UnaryOp, that would be overkill.

With this, using the constructors obligingly provided by @dataclass, we can define a
formula f. Thanks to the automatically defined repr — thanks again, @dataclass —
we can visualise it as well, even if in a little verbose form.

Now let us write a function fstr to obtain a nicer string representation of our formulæ,
using pattern matching.

def fstr(f):

match f:

case str(): return f # variable

case BinOp(l,r): return f"({fstr(l)} {f.symb} {fstr(r)})"
case Not(f): return f"-{fstr(f)}"
case _: raise ValueError(f)

--------------------------------------------------------------------

>>> fstr(f)

-(x -> (y | z))

Now that is a little bit more compact and legible. Note that BinOp will match any object
of class And, Or, and Implies. We could have written three case lines

case And(l,r): return f"({fstr(l)} & {fstr(r)})"
case Or(l,r): return f"({fstr(l)} | {fstr(r)})"
case Implies(l,r): return f"({fstr(l)} -> {fstr(r)})"

but that would not have been very elegant. If we had many functions like this, we
would need to add a line to each of them each time we add a new operator. By using
the symb attribute instead, our function will naturally adapt to any new operator, so
long as its symb attribute is defined.
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A quick note. When writing such functions, it is a good idea to begin by writing
something like

case _: raise ValueError(f)

If nothing matches, you get None. It’s a pain to debug if you get Nones you don’t
expect because you forgot a case. Languages like OCaml or Haskell, where structural
pattern-matching is most at home, are capable of telling you when your patterns are not
exhaustive, and give you examples of values that are not matched (at least when there
are no guards). Python cannot do that, beyond detecting obvious capture patterns of
wildcards that are not on the last case.

Let us now write a function rmimp to get rid of implications. It is a simple transformation:
the identity everywhere except where it can apply

x⇒ y → ¬x ∨ y .

We obtain:

def rmimp(f):

match f:

case str(): return f

case Implies(l,r): return Or(Not(rmimp(l)), rmimp(r))

case BinOp(l,r): return type(f)(rmimp(l), rmimp(r))

case Not(f): return Not(rmimp(f))

case _: raise ValueError(f)

--------------------------------------------------------------

>>> fstr(F := rmimp(f))

-(-x | (y | z))

We match Implies(l,r) before BinOp(l,r) because, of course, the latter is strictly
more general than the former; if it were first, Implies would be shadowed, never to be
matched.

We use a nice little trick in

case BinOp(l,r): return type(f)(rmimp(l), rmimp(r))

We match a binary operator, but we don’t know which, aside the fact that it cannot
be Implies. We want to reproduce it identically, recursively transforming its children.
We cannot write BinOp(rmimp(l), rmimp(r)) because that is not even a well-defined
formula. We need to know which operator.

So we use the fact that type(f) returns the class of f, which is callable: the constructor
is called. So type(f)(rmimp(l), rmimp(r)) becomes And(rmimp(l), rmimp(r)) if f
is of type And, and so on, which is exactly what we want.

There remains to apply De Morgan’s laws and negation elimination, and we have our
NNF.

¬¬x → x

Observe that De Morgan’s laws

¬(x ∨ y) → ¬x ∧ ¬y

¬(x ∧ y) → ¬x ∨ ¬y

are of the same form apart from the exchange of ∧ and ∨, a fact we shall exploit to
factorise the two rules into one:

def nnf(f):

z = nnf ; morgan = {And:Or, Or:And}
match f:

case Not(Not(f)): return z(f)

case Not(BinOp(l,r) as g):

return morgan[type(g)](z(Not(l)), z(Not(r)))

case BinOp(l,r): return type(f)(z(l), z(r))

case Not(f): return Not(z(f))

case str(): return f

case _: raise ValueError(f)

--------------------------------------------------------

>>> fstr(f)

-(x -> (y | z))

>>> fstr(F)

-(-x | (y | z))

>>> fstr(N := nnf(F))

(x & (-y & -z))

Note the recursive calls to (z(Not(l)), z(Not(r))) in the De Morgan rule: it would
be wrong to write Not(z(l)), because then the function could forget to simplify
Not(Not(..)) patterns.

28.1 An overlong aside on naming conventions

Apart from the factorisation of the De Morgan’s rules, the other neat little trick in nnf

is z = nnf. What is the point of it? You do a lot of recursive calls in such functions,
and the shorter they are to write, the better for the legibility of the code. With this, we
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have short recursive calls without sacrificing the legibility of the name of the function
exposed to the user.

Furthermore, you should observe by now that all those functions on formulæ are very
similar-looking. Of course they are, since they act on the same inductive structure. Thus
is is often expedient to copy and paste the case patterns of a function to quick-start the
writing of the next — it saves time and helps ensure you don’t miss too many cases.

But if I copy cases from, say, rmimp, into my new function nnf, I get lines of the form

case Not(f): return Not(rmimp(f))

and if I forget to rename every single instance of rmimp into nnf, then I get interesting
errors, whereby nnf escapes into rmimp.

To save the time necessary to rename all those calls, and avoid that type of mistake,
I personally (aa) find it convenient to take the convention of naming the recursive
function z everywhere. It also avoids problems whenever you choose to rename your
functions. . .

Sometimes also, you come to realise that you need to make your pattern-matching a
subfunction to the real function of interest. For instance, in Sec. 45[p149]: “A smidgen
of Computer Algebra”, when you simplify an arithmetical expression, each action
may introduce new opportunities for simplifications; so you gain from repeating the
simplification until a fixpoint is reached. In that case, you have something like

def simp(e):

def z(e):

match e:

case Plus(0,e) | Plus(e,0): return e

...

return fixpoint(z,e)

If you didn’t anticipate that structure, the z convention helps you avoid, again, lots of
error-prone renaming and makes the refactoring trivial.

It can also be that what needs to be called recursively is a multi-argument function,
and the structural recursion is only done on one of them. For instance, in Sec. 45[p149]:
“A smidgen of Computer Algebra” again, you need to evaluate an expression e for a
certain value val of a variable var with a function eval(e,var,val).

The matching only happens on e, while the other arguments remain the same, always.
A nice z = lambda e: eval(e,var,val)) removes quite a lot of clutter.

(aa)Emphasis on I, personally. This is not at all standard; I haven’t seen many people do that.

29 Iterables, iterators, and generators

Let us now look at how iteration works under the hood.

An iterable is any object that can be iterated upon; by that I mean, you can write code
of the form for x in object.

Being iterable entails some other consequences: for instance the in operator is auto-
matically defined, with the default operation “iterate until you find the element”.

In collections with more efficient ways of testing membership, this default behaviour is
overridden via the __contains__ special method.

There are many such patterns in Python, whereby implementing some functional-
ity automatically and implicitly provides default implementations of other, related
functionalities.

The classical way of being an iterable is by implementing the __iter__ method, called
by the iter builtin function, returning an iterator — more on that shortly. However,
that is not strictly necessary, as any indexable object supporting indexes starting at 0
implicitly becomes iterable, thanks to an implicit iteration over its indexes.

class X:

def __getitem__(s,o): # s[o]

if o in (0,1): return ’a’

else: raise IndexError
x=X()

>>> ’a’ in x

True

>>> ’b’ in x

False

>>> list(x)

[’a’, ’a’]

>>> for c in x: print (c)

a

a

Regardless of how an object became an iterable, the iter function returns an iterator
from it. Each time an iterable is iterated over, an iterator is built from it, as it is what
powers an iteration.

Iterators are objects that implement the __next__ method, called by the next func-
tion. It must return a value on each call, and, optionally, at some point, it may
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raise StopIteration, in which case it must continue raising StopIteration on every
subsequent calls. Failing that, the implementation is deemed broken.

Note that iterators produce each value on demand, and have no memory of their
previously generated values, nor memory reserved for their future values. They are
iterated upon once, and once only, and each call of next irreversibly alters their state (ab)

They are merely an object, potentially with a few attributes, waiting for the next call of
a specific method — which may alter their state.

They are thus very memory efficient compared to generating all the values and storing
them in memory in a list or a tuple. They can even describe infinite collections,
simply by never raising StopIteration, and that will not become a problem unless
someone actively tries to loop over all values. This is an instance of lazy, or call-by-need
programming, where values are evaluated only when actually required; this opens up
techniques for elegant and greatly efficient code. However, Python does not have the
full power of lazy evaluation, as this works best in purely functional languages, where
every value is immutable. Haskell is probably the best example of a purely functional,
lazy by default language.

Iterators are iterables as well, and must implement __iter__ so that they return
themselves.

29.1 Explicit class implementation

There are cleaner ways to define iterators than by manually implementing those
methods — yield, and generator expressions — so let us take a running example. Let
us implement an inclusive range function: r(i,j) = Ji, jK, as an iterator.

class r:

def __init__(s,i,j):

s.i, s.j = i,j

s.k = i

def __iter__(s): return s

def __next__(s):

if s.k <= s.j:

s.k += 1

return s.k - 1

else: raise StopIteration

We have:

(ab)— and will do so for all finite iterators. The only iterators whose state is unaltered by next are those that
return the same value on every call, indefinitely. Those that are reversibly altered are infinite and cyclic.

>>> list(r(2,7))

[2, 3, 4, 5, 6, 7]

>>> r(2,7) # different iterator objects each time

<__main__.r object at 0x7fd85ffae860>

>>> r(2,7)

<__main__.r object at 0x7fd85ffb8eb8>

>>> it = r(2,7)

>>> next(it) # each call alters state
2

>>> next(it)
3

>>> list(it)

[4, 5, 6, 7]

>>> list(it)

[]

This is not quite the behaviour of the usual range object, which can be iterated over
any number of times. To achieve that, we have two different classes: a reusable iterable
and the iterators it produces. Let us rename our previous version of r to r_iterator

and define a new class

class r:

def __init__(s,i,j):

s.i, s.j = i,j

s.k = i

def __iter__(s):

return r_iterator(s.i,s.j)

We have:

>>> it = r(2,7)

>>> list(it)

[2, 3, 4, 5, 6, 7]

>>> list(it)

[2, 3, 4, 5, 6, 7]

>>> iterator = iter(it)
>>> list(iterator)

[2, 3, 4, 5, 6, 7]

>>> list(iterator)

[]

This time, it works as usual.
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29.2 yield and yield from

While neither version of the above is very difficult to write, it is still arguably a lot of
code and boilerplate given how trivial the logic of what we are implementing is.

Fundamentally, what we want to do is loop over indexes from i to j, returning each
one in turn. Of course, we cannot do that with a functions return statement, because
that returns just one value and immediately terminates the function and discards any
and all of its local variables.

If only we had a keyword much like return, but that does not terminate the function
after “returning” a value, but instead “freezes” it, with all its local variables and
execution state, so that we can later thaw it, continue looping where we left off, and
thus return value after value, on demand, until the end of the loop. As it happens, that
is exactly what the yield keyword does:

def r(i,j):

while i <= j:

yield i

i += 1

Any function whose body containsyield actually returns an iterator, or more specifically
a generator, which is simply what we call iterators obtained in such a manner:

>>> r

<function r at 0x7f81332aed90>

>>> r(2,7)

<generator object r at 0x7f81332b44c0>

Put another way, r has become the constructor for generators. We call it a generator
function, though by an abuse of language that I shall avoid in this section the function
itself is also often called a generator.

The produced generators behave in all manners exactly as the iterators we defined
previously.

>>> r(2,7) # different objects each time

<generator object r at 0x7f81332b4468>

>>> r(2,7)

<generator object r at 0x7f81332b4410>

>>> it = r(2,7)

>>> next(it) # each call alters state

2

>>> next(it)

3

>>> list(it)

[4, 5, 6, 7]

>>> list(it)

[]

return can appear in a generator function — and in fact, a return or, equivalently,
return None is implicitly present at the end of all functions — and simply forces the
end of the iteration, similarly to a raise StopIteration.

Up to Python 3.6 return <value> s is equivalent to raise StopIteration(<value>).
This behaviour changes in Python 3.7: you must now use return to end the iteration
in a generator function.

Suppose now that you want, in a generator function, to yield values from another
iterator. For instance, let us write a generator function loop(i,j,n) that repeats the
range Ji, jK n times. Our first instinct would be to write something like:

def loop(i,j,n):

for _ in range(n):
yield r(i,j)

but that would be wrong, because then we yield a generator each time, and not the
values produced by it:

>>> list(loop(1,3,3))

[<generator object r at 0x7fa5bc6cd410>,

<generator object r at 0x7fa5bc6cd3b8>,

<generator object r at 0x7fa5bc6cd468>]

We cannot use return either, as that would break the loop. The first approach would
be to iterate over r(i,j) and yield its values:

def loop(i,j,n):

for _ in range(n):
for x in r(i,j):

yield x

---------------------------

>>> list( loop(1,3,3) )

[1, 2, 3, 1, 2, 3, 1, 2, 3]

It would be much more elegant, and probably more efficient, to have a means of saying
“delegate value generation to r(i,j)”.

For this, Python provides another keyword: yield from, which delegates the control
flow to a subiterator:
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def loop(i,j,n):

for _ in range(n):
yield from r(i,j)

---------------------------

>>> list(loop(1,3,3))

[1, 2, 3, 1, 2, 3, 1, 2, 3]

>>> g = loop(1,3,3) # still an iterator

>>> next(g)
1

>>> next(g)
2

>>> list(g)

[3, 1, 2, 3, 1, 2, 3]

While the existence of yield from is always convenient, it shines particularly in
advanced uses of generators, such as coroutines, which we shall not discuss here.

29.3 Generator expressions

You can now return to Sec. 24.5.1[p84]: “Comprehensions for every type; first contact
with generators” and Sec. 24.5.2[p85]: “Loop nesting in comprehensions” to gain a full
understanding of what a generator expression is.

29.4 Understanding deeply lazy computations

Data processing, when boiled down to its essentials, tends to take the following form:

data0 # our data source

data1 = f1(data0)

data2 = f2(data1)

...

dataN = fN(dataNm1)

Some initial data, be it from a file, a database, or whatever else, goes through a number
of transformations until it is ready. Traditionally, when you write code of this form, or
even of the form

dataN = fN(fNm1(... f1(data0)...))

each step must be completed before the next one begins, and each result is integrally
stored in memory.

But perhaps you do not really need all of the resulting dataN, though you may not know
in advance how much of it you might need. In that case, instead of the traditional “left-

to-right, line-by-line” approach, you may prefer a more “vertical” mode of computation,
whereby you compute just a bit of data0, and then out of it, whatever you can of data1,
and so on, and finally look at the little bit of dataN that you obtain, and decide whether
you have what you need, or want to repeat the process to get more.

That seems like a good idea on the surface, and the need for this is obvious; when any
of the dataK are very large and you are looking for something in the fully transformed
data, it is a terrible waste to fully compute any step or store it in memory.

But implementing this seems like it would require a lot of bookkeeping to keep track
of where you are on each level of data processing, and how do you even know how
much of data0 you should process to get enough new data to progress in data1’s
computation, and get enough to progress in data2’s etc?

Each level of data processing may have its own unique requirements of the previous
level in order to progress in its own computation. Perhaps f1 needs 1 byte of data0
in order to produce 1 byte of data1; perhaps f2 needs 3 bytes of data1 in order to
produce 1 byte of data2, except when it encounters a certain rare pattern, say, OPEN in
which case in needs to process an arbitrary amount of data, looking for another pattern,
say CLOSE, and produces 10 bytes; perhaps f3. . .

Keeping track of a multi-layered computation in that way, so as to determine how
much of data0 should be produced to obtain, say, 20 new bytes of dataN seems, if not
impossible, as least very difficult, programmatically.

Let us change our viewpoint a bit. Each level of computation is now naturally lazy. It
knows what it needs to do, but doesn’t actually do any of it unless actually prompted.
When it is asked to produce something, it asks the level below it for stuff, until it has
enough and is ready to produce something; it then returns it, and goes back to sleep
until somebody bothers it again, asking for more. Spoiler alert: this is exactly how
iterators behave.

In this model, if you need 20 bytes of dataN, you just wake up fN, ask for 20 bytes, and
then it is no longer your problem. You need not know or keep track of the needs of
each layer. You know your needs, 20 bytes in that case, and each layer knows its own
needs, and will prod the layer below it for what it needs, and no more.

fN will take what it needs from fNm1, give you the result and go back to sleep, and
during that process fNm1 will do the same with fNm2, and so on, all the way down to
data0.

Let us illustrate that with some code. To simplify and help visualise the vertical aspect
of the computation, each level produces one value for one value of the previous level.
The value produced is simply the computation depth, starting at 0 for the data source.
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def data(m):

for i in range(m):
print(f"Data yields 0; has {m-i-1} left")

yield 0

print("Data is exhausted")

def chaingens(g,lvl):

while True:

print(f"lvl {lvl} gen asks")

d = next(g, None)

if d is None: break
res = d + 1

print(f"lvl {lvl} gen obtains {d}, yields {res}")
yield res

def genchain(n,m):

if n == 0:

return data(m)

else:
return chaingens(genchain(n-1,m),n)

g = genchain(3,3)

for v in g:

print(f"Final computation depth: {v}\n")
-----------------------------------------------------------

lvl 3 gen asks

lvl 2 gen asks

lvl 1 gen asks

Data yields 0; has 2 left

lvl 1 gen obtains 0, yields 1

lvl 2 gen obtains 1, yields 2

lvl 3 gen obtains 2, yields 3

Final computation depth: 3

lvl 3 gen asks

lvl 2 gen asks

lvl 1 gen asks

Data yields 0; has 1 left

lvl 1 gen obtains 0, yields 1

lvl 2 gen obtains 1, yields 2

lvl 3 gen obtains 2, yields 3

Final computation depth: 3

lvl 3 gen asks

lvl 2 gen asks

lvl 1 gen asks

Data yields 0; has 0 left

lvl 1 gen obtains 0, yields 1

lvl 2 gen obtains 1, yields 2

lvl 3 gen obtains 2, yields 3

Final computation depth: 3

lvl 3 gen asks

lvl 2 gen asks

lvl 1 gen asks

Data is exhausted

Play with this code until you fully understand what is going on.

Sec. 46[p160]: “Conway sequence: generating fun” proposes an exercise that relies
heavily on layering lazy computations – in the form of generators – to achieve immense
performance improvements. In that exercise, each level of computation requires an
unpredictable amount of data from the previous one.

29.5 Iterator patterns, tools, and tricks

29.5.1 Itertools module

The itertools module implements a number of very convenient tools acting on iterators.
Read the documentation for yourself.

In the next section, we discuss some common patterns, independently of their imple-
mentation in itertools.

29.5.2 A generator for N and other infinite collections

See itertools.count.

While N is an infinite set, it is countable, which means that its elements can be
enumerated. Thus, we can easily make a generator function for it:

def N():

i = 0

while True:

yield i

i += 1

---------------------------------

>>> g = N()

>>> [ next(g) for _ in range(5) ]

[0, 1, 2, 3, 4]

Could we make a generator for N2? For Z? For Nn, for arbitrary n ∈ N? For R? Why?

29.5.3 Getting (up to) the n-th element

See itertools.islice.
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29.5.3.1 Keep the previous elements

Iterators are generally not indexable. Is there a convenient way to get the n-th element
of an iterator? Not if you care about the previous elements — in that case, convert the
elements you need into a sequence type:

>>> g = r(1,1000)

>>> l = [ next(g) for _ in range(5) ]

>>> l

[1, 2, 3, 4, 5]

>>> next(g)
6

The above code is interesting, because, until Python 3.7, it highlighted the one instance
where it was not actually entirely true that list(<generator expression>) is the same
as [<generator expression>]:

>>> g = r(1,3)

>>> [ next(g) for _ in range(5) ]

StopIteration

>>> g = r(1,3)

>>> list( next(g) for _ in range(5) )

[1, 2, 3] # in 3.6; StopIteration in 3.7+

In the context of a “free” generator expression, StopIteration is captured to. . . stop
the iteration, whereas it bubbles up in any other context. This behaviour was changed
in PEP 479, so that now the exception bubbles up in every context.

From 3.7 onward, to get the same behaviour as 3.6’s ( next(g) for _ in range(i) ),
returning up to i elements without raising an exception even if the generator is
exhausted early, you would need to write something like

def upto(g,i): #3.7

for k,e in enumerate(g):

if k >= i: return
yield e

To my knowledge, it is not possible to get the same behaviour in a lone comprehension
expression anymore.

29.5.3.2 Discard the previous elements

If you don’t care about previous elements, then you can use something like that:

>>> g = r(1,1000)

>>> next(x for k,x in enumerate(g) if k == 5) # or k >= 5

6

>>> next(g)
7

Why does it work?

x for k,x in enumerate(g) if k == 5

is itself a generator expression, and you ask it to produce a value. enumerate, which
we met before in the context of lists and strings, actually produces an iterator, returning
a tuple (index,element) for every element of the input iterable, on demand:

>>> g = r(1,3)

>>> ge = enumerate(g)

>>> next(ge)
(0, 1)

>>> next(ge)
(1, 2)

>>> next(g)
3

>>> next(ge)
StopIteration

The generator expression will loop without producing any value until the if condition
is satisfied. Then, when k == 5, for the first time, it will yield a value, which is returned
by next. The generator expression is then discarded, since there is no binding to it.

This example shows, again, how multiple iterators can be layered, each only soliciting
a value from the layer below when it is itself solicited.

29.5.4 Length of an iterator

Sometimes, one may wish to know how many elements are generated by an iterator.
Unfortunately, len(..) is not defined on iterators:

>>> g = r(1,10)

>>> len(g)

TypeError: object of type ’generator’ has no len()

It is, however, very easy to compute the length using sum(..), but note that this will
consume the iterator:

>>> sum( 1 for _ in g )

10
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>>> next(g)
StopIteration

As usual with iterators, there is no way to get any information on future values,
including how many there are, without exhausting the iterator.

Also note that trying that on infinite iterators will of course mire you in an infinite loop.

118



30 Static typing

31 Parallelism and concurrency

We start by defining a few terms. Going into details is not at all the aim of this course —
nor would I be competent to teach them. You will undoubtedly go much further in the
Systems Programming and Network classes.

For the purposes of the final exam, you will not need to go farther than the contents
of this section. For the project, however, you may need to dig a little deeper in some
aspects.

31.1 Concurrency and parallelism

Multitasking is essential, in particular for GUI programming: if you do everything in a
single thread, your GUI will become unresponsive until whatever computation the
program is performing terminates. This is a problem, especially if you would like to
use the GUI to cancel the operation. . .

Executing several tasks, several execution flows, simultaneously is called concurrency.
This simultaneity may be only apparent; that is, those tasks may not actually be
executed at the same time, but give the illusion thereof by having their executions
interleaved, in very short intervals. This is the role of the part of the operating system
called the scheduler. Thus, you can have effective multitasking on a single CPU core.

If tasks actually execute simultaneously over different cores, then we speak of parallelism.

31.2 Threads and processes

Generally speaking, a thread of execution, or thread, is simply a sequential flow of
instructions that runs on a processor. The term is a bit overloaded.

There are two traditional main kinds of “execution flows”, called processes (“heavy
weight” threads) and light weight threads, or just threads. Processes are full-fledged
executing programs with their own dedicated memory. Threads exist inside a process,
and share its memory with every other thread inside it.

Intermediate notions of “context of execution”, sharing specific parts of the memory —
rather than all or nothing — are supported by some OS kernels, such as Linux, but the

above are the standards. (ac) Keep in mind that those definitions are not universal, and
some sources you might read may speak of “threads” without implying “lightweight”.

Using the terminology defined above, threads are much faster to create and to switch
between than processes. They are executed concurrently “inside” a process. Which
does not mean that they are necessarily being executed on the same CPU core as
their parent process; only that they share its memory. In general, this raises problems
of memory integrity. To avoid those, Python has a Global Interpreter Lock (GIL).
The GIL ensures that the reference counting that is at the center of the runtime’s
garbage-collection is done safely and efficiently. It has a global lock on all resources
shared between threads, and ensures that at most one thread modifies them at any
given time. This is a simple, efficient, deadlock-free solution, with the drawback of
hamstringing Python ability to parallelise tasks: with this restriction, your treads might
as well all run on the same CPU core.

Processes are much heavier than threads, but since they are independent, with their
own copies of all the essential context of execution, they can be spread over CPU cores.
Therefore, multiprocessing can be used to achieve parallelism, whereas multithreading
cannot. They both have their uses, however.

31.3 Python and concurrency: the three ways

There are three main ways to implement concurrency in Python:

⋄ Multithreading.

Accessible trough multithreading and concurrent.futures.ThreadPoolExecutor.

Distribute tasks over light-weight threads. The multitasking is said to be pre-
emptive, because the scheduler can interrupt a task at any time, including right in a
middle of incrementing a variable, and give the CPU to another.

This is most useful with several I/O-bound tasks. That is to say, if you have several
tasks that spend most of their time waiting on the memory, the SSD or hard-drive,
user-driven events, or the network, rather than doing long stretches of complex
computations, then using multithreading can considerably speed things up. While
a task is busy waiting, the scheduler executes another.

Though they are “lightweight”, there is an overhead to multithreading, as we shall
see shortly in our small experiments. It is a very bad idea to use multithreading
on CPU-bound tasks — that is to say tasks that perform heavy computations,
with little if any time spent waiting upon I/O. Since threads are not parallelised
— because of the GIL — adding the overhead of task scheduling and context

(ac)http://lkml.iu.edu/hypermail/linux/kernel/9608/0191.html
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switching on top of things does not improve things at all. You still get one CPU
core’s worth of horsepower, minus the overhead.

For CPU-heavy tasks, you will want to use multiprocessing instead.

⋄ Asynchronous I/O.

Accessible through the asyncio module and the async/await syntax.

asyncio implements cooperative, or non-preemptive multitasking. Everything is run
in a single thread — and thus a single CPU — and each task voluntarily cedes
control to the scheduler whenever it makes sense for it to do so, using the await
keyword. The scheduler is not otherwise at liberty to take control.

Provided the code is well thought-out, this can easily be the most elegant and
highest performing approach, with very minimal overhead when compared to
multi-threading.

Like multithreading, it is highly suitable for wrangling I/O-bound tasks, and worse
than useless for CPU-bound ones.

Within the scope of this course, we can forget about asyncio.

⋄ Multiprocessing.

Accessible through multiprocessing and concurrent. futures.ProcessPoolExecutor.

Distribute tasks over multiple CPU. There is quite a bit of overhead there, as as
the program, complete with the Python interpreter, must essentially be duplicated,
and complex communication must be put into place to share objects between
processes.

Essentially, data must be serialised — that is to say, converted into a bit stream
— for the sake of the transfer, and deserialised by the target process. The pickle

module is used internally for this task. But not everything is cleanly serialisable
by pickle. Anonymous lambda functions, for instance, are not.

These limitations mean that getting multiprocessing to work can be much trickier,
ceteris paribus, than the equivalent multithreading.

Also keep in mind that, while multiprocessing is the only way to get more
performance in CPU-bound tasks, the large overhead means thatN times the cores
does not quite translate into N times the performance, and multiprocessing is
overkill on I/O bound tasks.

31.4 Examples and performance tests

Note: The tests below were run on an Intel Core i7-7700K CPU @ 4.20GHz, with 8 logical and
4 physical cores. It should go without saying that you may get very different results depending
on your hardware.

Note 2: Do not use Idle for those tests; it mishandles the standard output of threads, and does
not display that of processes at all. I suppose that behind the scenes, Idle interacts with the
interpreter process, and knows nothing of other processes it may spawn. The same might be the
case in other editors. Use the console.

Let us try all this out on simple examples, where tasks are independent. We shall use
the high-level interface provided by concurrent.futures.

Since we shall need to do some performance testing, let us begin by defining a nice
decorator (cf. Sec. 25.2[p94]: “Function decorators”) for that purpose:

from time import sleep

import time

import concurrent.futures as cf

import os

def display_time(f):

def F(*a,**k):

x = time.perf_counter()

res = f(*a,**k)

y = time.perf_counter()

print(f"TIME ELAPSED: {f.__name__}{a,k}: {y-x:.3f}s")
return res

return F

It is not very precise, as it can be influenced by many factors including the machine’s
global load, and does not attempt to mitigate those fluctuations like timeit does, but it
is more suitable for complex code, and we only need a rough idea for our purposes. As
you will see, the performance differences are quite stark.

Now, let us simulate an I/O bound task, and a CPU-bound one.

@display_time

def io(id):
print(f"IO-bound operation {id} START {os.getpid()}",flush=True)
sleep(1)

print(f"IO-bound operation {id} STOP {os.getpid()}",flush=True)
return f"{id}X"

@display_time

def cpu(id):
print(f"CPU-bound operation {id} START {os.getpid()}",flush=True)
for i in range(1000):
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x = 2**10**6

print(f"CPU-bound operation {id} STOP {os.getpid()}",flush=True)
return f"{id}Y"

The id argument is just an arbitrary task identifier so we can differentiate the different
“instances” of this task when they run. Running them, we see they both take some time
to execute:

>>> io(0)

IO-bound operation 0 START 61699

IO-bound operation 0 STOP 61699

TIME ELAPSED: io((0,), {}): 1.028s

’0X’

>>> cpu(0)

CPU-bound operation 0 START 61699

CPU-bound operation 0 STOP 61699

TIME ELAPSED: cpu((0,), {}): 2.559s

’0Y’

Note that they have the same Process ID. This is normal, as everything is running in
the main — and so far, only — Python thread.

You may want to comment out the @display_time decorators on those two functions;
we have seen what we need, and we shall have more than enough output to deal with
without them.

Now let us see how to deal with a large number of independent tasks — let us say
ten. There are three ways we can organise the work. First, we can perform the tasks
sequentially; for this, we define:

@display_time

def normalmap(*args): return list(map(*args))

Why do we use a map function? The idea is to associate, to each ID or input, the
corresponding output by the task.

For I/O-bound tasks, imagine that we have a number of URL from which to extract
information, stored in a list. Then we expect as output the list of the extracted data.

For CPU-bound tasks, we could have a list of numbers as input, and do primality
testing on then, yielding a list of Booleans.

Here, we input tasks IDs, and get just enough output to know the task ID and the type
of operation (IO vs CPU). But the architecture is the same for any kind of task — so
long as all instances are independent.

Anyway, what we have here is the sequential strategy: execute all tasks in full, one
after the other. Let us test how we do on I/O-bound tasks:

>>> normalmap(io, range(10))

IO-bound operation 0 START 49672

IO-bound operation 0 STOP 49672

IO-bound operation 1 START 49672

IO-bound operation 1 STOP 49672

...

IO-bound operation 9 STOP 49672

TIME ELAPSED: normalmap((<function io at ..>, range(0, 10)), {}): 10.011s

[’0X’, ’1X’, ’2X’, ’3X’, ’4X’, ’5X’, ’6X’, ’7X’, ’8X’, ’9X’]

Predictably, ten one-second tasks, one after the other, amounts to ten seconds. Now
let us use multithreading. It is actually quite simple to implement; let us replace
normalmap by a multithreaded version of map:

@display_time

def iomap(*args):

with cf.ThreadPoolExecutor() as e: return list(e.map(*args))

The idea is that the Executor will handle a pool of worker threads — the number of
which it determines as a function of the number of CPU cores — and distribute the
tasks among them. It will collect the results, and free all resources when exiting the
with .. as context.

Let us see how this performs:

>>> iomap(io, range(10))

IO-bound operation 0 START 49672

...

IO-bound operation 9 START 49672

IO-bound operation 0 STOP 49672

IO-bound operation 2 STOP 49672

IO-bound operation 1 STOP 49672

...

IO-bound operation 8 STOP 49672

TIME ELAPSED: iomap((<function io at ..>, range(0, 10)), {}): 1.013s

[’0X’, ’1X’, ’2X’, ’3X’, ’4X’, ’5X’, ’6X’, ’7X’, ’8X’, ’9X’]

Note that the order in which the tasks start and stop is a bit random; it depends on
which worker happens to be available, or to finish first. Depending on system load,
tasks may well start in order, and if they do they are a bit more likely to finish in the
same order. Whatever happens in each test, the idea is that the order cannot be relied
on in general.
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The Process ID is still the same for everything, because all the threads are owned by
the same, main, Python interpreter process.

Performance-wise, we are pretty much in the optimal case: we execute ten tasks in the
time needed to complete just one. This scales pretty well; see on a hundred tasks:

TIME ELAPSED: iomap(..., range(0, 100)), {}): 9.017s

Now let us do the same thing with multiprocessing:

@display_time

def cpumap(*args):

with cf.ProcessPoolExecutor() as e: return list(e.map(*args))

No surprises in this implementation; the Executor abstract class is the same for pro-
cesses as for threads — that’s the whole point of having an abstract class in the first place.
So uses of ThreadPoolExecutor and ProcessPoolExecutor are interchangeable. . . or
are they? Restore the @display_time decorator on io, and try

>>> cpumap(io, range(10))

AttributeError: Can’t pickle local object ’display_time.<locals>.F’

Recall what I said earlier about serialisation. Because of pickle’s limitations some
code that multithreads just fine straight up won’t run with multiprocessing,

In our case, fix that by commenting out the decorator again, and let us do it for real
this time:

>>> cpumap(io, range(10))

IO-bound operation 0 START 49735

...

IO-bound operation 7 START 49744

IO-bound operation 0 STOP 49735

IO-bound operation 8 START 49735

IO-bound operation 1 STOP 49738

IO-bound operation 9 START 49738

IO-bound operation 2 STOP 49739

...

IO-bound operation 9 STOP 49738

TIME ELAPSED: cpumap((<function io at ..>, range(0, 10)), {}): 2.057s

[’0X’, ’1X’, ’2X’, ’3X’, ’4X’, ’5X’, ’6X’, ’7X’, ’8X’, ’9X’]

Observe the different Process IDs, as expected for multiprocessing: one per worker
process. If you keep track of the appearing PIDs for a large enough number of tasks,

you will see there are — by default — as many worker processes as you have CPU
cores.

Looking at the performance, things are not too bad, but it takes twice as long as
multitreading. The overhead is amortised for larger numbers of tasks. . .

TIME ELAPSED: cpumap((<function io at 0x7f9f0e8d95a0>, range(0, 100)), {}):
13.065s

. . . but it is still a 44% time increase compared to multithreading. This reinforces the
earlier point: don’t use multithreading for I/O-bound tasks. It works, but it’s just not
the right tool for the job.

Now let us move on to CPU-bound tasks. Sequential execution yields predictable
results:

>>> normalmap(cpu, range(10))

CPU-bound operation 0 START 49672

...

CPU-bound operation 9 STOP 49672

TIME ELAPSED: normalmap((<function cpu at ..>, range(0, 10)), {}): 24.339s

[’0Y’, ’1Y’, ’2Y’, ’3Y’, ’4Y’, ’5Y’, ’6Y’, ’7Y’, ’8Y’, ’9Y’]

Let us see how multithreading fares in that situation:

>>> iomap(cpu, range(10))

CPU-bound operation 0 START 49672

...

CPU-bound operation 7 STOP 49672

TIME ELAPSED: iomap((<function cpu at ..>, range(0, 10)), {}): 40.133s

[’0Y’, ’1Y’, ’2Y’, ’3Y’, ’4Y’, ’5Y’, ’6Y’, ’7Y’, ’8Y’, ’9Y’]

Oh boy! We managed to take nearly twice as long as sequential execution! The extra 16
seconds are basically the time you spent managing your threads instead of doing the
computations. The threads themselves brought nothing at all to the table, since you
can only compute on one CPU core at a time, because of the GIL. The computer spent
all its time trying to do the work while being forced to run like a headless chicken from
thread to thread. Don’t do this to your poor computer. For CPU-bound tasks, do this
instead:

>>> cpumap(cpu, range(10))

CPU-bound operation 0 START 50000

...

CPU-bound operation 9 STOP 50008
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TIME ELAPSED: cpumap((<function cpu at ..>, range(0, 10)), {}): 7.011s

[’0Y’, ’1Y’, ’2Y’, ’3Y’, ’4Y’, ’5Y’, ’6Y’, ’7Y’, ’8Y’, ’9Y’]

Not too bad; let us see how that scales:

TIME ELAPSED: cpumap((<..cpu..>, range(0, 4)), {}): 2.438s

TIME ELAPSED: cpumap((<..cpu..>, range(0, 5)), {}): 3.586s

TIME ELAPSED: cpumap((<..cpu..>, range(0, 6)), {}): 3.642s

TIME ELAPSED: cpumap((<..cpu..>, range(0, 8)), {}): 4.689s

TIME ELAPSED: cpumap((<..cpu..>, range(0, 9)), {}): 6.855s

TIME ELAPSED: cpumap((<..cpu..>, range(0, 40)), {}): 22.917s

You might hear your computer’s fans rev up for the last one, as we are maxing out all
the processor’s cores.

We see a significant jump between four and five tasks, and almost none between five and
six. Recall that my CPU has four physical cores: that’s why. Intel’s “HyperThreading”
lets the CPU pretend to have eight — and ProcessPoolExecutor will use eight workers
by default — and that makes for more efficient context switching in some circumstances,
but there is only so much it can do.

Let us limit ourselves to four workers instead:

def cpumap(*args):

with cf.ProcessPoolExecutor(max_workers=4) as e: return list(e.map(*args))

We obtain:

TIME ELAPSED: cpumap((<..cpu..>, range(0, 4)), {}): 2.451s

TIME ELAPSED: cpumap((<..cpu..>, range(0, 5)), {}): 4.876s

TIME ELAPSED: cpumap((<..cpu..>, range(0, 6)), {}): 4.822s

TIME ELAPSED: cpumap((<..cpu..>, range(0, 8)), {}): 4.861s

TIME ELAPSED: cpumap((<..cpu..>, range(0, 9)), {}): 7.224s

TIME ELAPSED: cpumap((<..cpu..>, range(0, 40)), {}): 24.451s

Note that the cutoffs are much clearer here, with the times being multiples of the 2.4
seconds it takes to do a parallel batch of four tasks.

But. . . let’s also note that the times are systematically worse than with 8 workers. I did
not predict that result. I — being a perfect innocent in matters of CPU design — would
have expected hyperthreading to be irrelevant at best for a purely CPU-bound job
maxing all physical cores.

How can we understand those results? How can you perform five 2.4s jobs on four
cores in only 3.5 seconds? I don’t know, so I asked Dr. Bobelin, who apparently talks
about such things in fifth year (4AS and 2SU options) in his “Architecture Security for

the Cloud” class. Here is the analogy he gave: suppose you have three steaks to cook,
and only two grills, each only large enough for a single steak. A steak must be cooked
one minute for each side, for a total of two minutes, to be done. How much time does
it take to cook all steaks?

The naïve approach is to fully cook two steaks first, fully occupying the grills for two
minutes, then fully cook the last one, occupying a grill for an additional two minutes.
Thus, everything is cooked in four minutes. Schematically, this is the strategy:

Minutes: m1 m2 m3 m4

Grill 1: 1 1 3 3
Grill 2: 2 2

Waiting: 3 3
Done: 1,2 1,2 1,2,3

But there is another strategy: switch a steak after one minute:

Minutes: m1 m2 m3

Grill 1: 1 1 2
Grill 2: 2 3 3

Waiting: 3 2
Done: 1 1,2,3

Everything is cooked in three minutes. So the performance gains observed with eight
workers are more a matter of giving the scheduler more opportunities to spread the
load evenly than a reflection on physical versus virtual cores, specifically.

There are many more considerations that apply to performance gains while multithread-
ing/processing, involving keywords such as “ALU”, “FPU”, “L1 cache”, and more. Dr.
Bobelin said “predicting performance gains from multithreading/multiprocessing is
very difficult”.

Unless you are a specialist in those things, I suggest you don’t blindly tinker with
max_workers. If you feel the need to, perform experiments.

31.5 The dangers of multithreading: race conditions and deadlocks

Even though you should not need to deal with such problems directly for this course
or the Python project, you need to be minimally aware of the kind of difficulties that
arise with multithreading.
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The most common is race conditions, where the outcome is dependent upon the timing
of different threads. Imagine that we have a shared resource. Each threads reads it,
computes, then modifies that resources.

Let us consider threads Alice and Bob; Alice reads the resource first; while she computes,
Bob reads it as well. They both have read the same value, as Alice hasn’t modified the
resource yet. She finishes her computation, and writes the resource. Then Bob finishes,
and writes as well. The problem is, Bob never read Alice’s work; he just overwrote the
result of her work with his.

Let us illustrate that:

shared = 0

def increment_shared(id):
global shared

for _ in range(10): # each threads does shared += 10

x = shared # read resource

time.sleep(0.0001) # computation

shared = x+1 # write to resource

def mciomap(*args): # lots of worker threads

with cf.ThreadPoolExecutor(max_workers=1000) as e:

return list(e.map(*args))

from collections import Counter

c = Counter()

for _ in range(100): # repeat experiment

shared = 0

mciomap(increment_shared, range(10))
c[shared] += 1 # ten threads; shared should == 100

print(sorted(c.items()))
-------------------------------------------------------------

[(13, 6), (14, 27), (15, 39), (16, 17), (17, 6), (18, 1),

(19, 1), (21, 2), (22, 1)]

Morally, we should have seen shared take the value 100, every time. In practice, in a
hundred repetitions of this experiment, we saw values between 13 and 22. Roughly
85% of all attempted incrementations were overwritten by another thread.

This is a bit of an artificial example, because we invoke sleep, which strongly encourages
the scheduler to move to another thread, but still, in theory, preemption may occur at
any time.

You may think that it cannot happen in the middle of a simple instruction such as
x += 1, but it absolutely can. Let us take a look at the bytecode for that:

>>> from dis import dis # disassembler

>>> dis(’x += 1’)

1 0 LOAD_NAME 0 (x)

2 LOAD_CONST 0 (1)

4 INPLACE_ADD

6 STORE_NAME 0 (x)

8 LOAD_CONST 1 (None)

10 RETURN_VALUE

This “simple instruction” is actually quite complex for the interpreter; it may stop
between any of these lines. And going further, each of these bytecode instructions may
well translate into several processor steps.

You just cannot trust, in a threading scenario, that your code will not be preempted
at an inconvenient point. The worst thing is, most of the times, it won’t. Replace the
sleep by a small computation, and you will probably get a perfect [(100, 100)] score.
Observing race conditions is really, really rare, in most code that contains them.

I said this was the worst thing about this. If you find yourself thinking “surely bugs
being rare is a good thing?”, give yourself a sharp rap on the knuckles, this is a terrible
way of thinking. Recall the philosophy of assertions.

We want incorrect programs to fail; we want them to fail obviously and we want them
to fail fast. A student trying to get a passing grade for shoddy work may be thankful
that the bugs stayed under the rug during the demonstration; but subtle bugs like that
are the bane of a developer.

An undiagnosed race condition may cause crashes, or data loss, or more generally
inconsistent behaviour, obvious or subtle, weeks or months after the software is widely
deployed, and can be almost impossible to trigger on purpose unless you already
know exactly where the problem is. There is some weird problem somewhere in our
100 000 lines codebase; sometimes our radiation therapy machines spit out lethal doses
of radiation, and kill the patients. Oops. Go debug that.

Here I am referring to the Therac-25 case (1985–87). This, and other cases concerning
critical systems, are the motivation for the use of formal methods to obtain proofs of
correctness for concurrent systems. This is the object of next year’s Formal verification
class. You can freely join the class and read my lecture notes on the topic if you’re
interested; if not, I shall see you next year. End of sponsor’s message.

Back to race conditions. They can be prevented by using locks (or “mutexes” (ad), or
“semaphores (ae)”). Those are objects whose possession gives you the right to access the

(ad)MUTual EXclusion
(ae)Semaphores are a bit more general, but this is not important at that point.
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resource. A thread can acquire the lock, then release it. When acquiring the lock, you
have to wait until whoever owns it releases it. The lock itself is implemented in such a
way that its fundamental operations are atomic (i.e. non-preemptable) so that at most
one thread may hold the lock at any time. This enforces mutual exclusion: only one
thread may access the resource at any given time.

So thanks to the magic of locks, problem solved, right? Right? Sure, if you are
careful, and use locks every time a shared resource is involved, you won’t have race
conditions. Yipee. You have traded the “race condition” class of annoying, subtle,
perverse problems for the class of annoying, subtle, and only slightly less perverse
problems known as “deadlocks”.

So you have ten threads sharing the Lock A. What happens if one of them decides not
to give it back? Deadlock; nobody else can do anything. Why would a thread decide
not to give a lock back? Is it evil? Well, maybe it has an intrinsic bug, yes. But it need
not have. Imagine that it needs to acquire locks A and B, before doing its thing and
releasing both. B is currently in the hands of another thread, which wants to acquire B,
then A, do its thing, and release.

The first has A, waits on B. The second has B, and waits on A. There are enough
resources for everyone, and everyone is willing to release what they have, nobody is
doing anything intrinsically wrong, yet we find ourselves in a situation where nobody
can do anything anymore. The program grinds to a screeching halt. Deadlock.

Making sure nothing like that ever happens is not easy. By not easy, I mean undecidable
in the general case, and “people who can’t afford to have that happen to their critical
systems spend millions of e on testing and formal methods to ensure that doesn’t
happen”. And it’s not always enough. For more on that, see you next year in the
Formal Verification class.

In the meanwhile, just avoid having to deal with any of that if at all possible. Race
conditions are icky, so global variables + threads =Nope. Locks are tricky, so preferably,
have someone else worry about them.

During the project, if you use a GUI framework, or pygame, or . . . , it will probably hand
you an event queue or something to that effect. This is good, because that means it
falls on the framework to make sure that the various processes and threads involved
do not step on each other’s toes when leaving messages.

Then you can set camp in the main event loop, read the messages, and keep your eyes
down. If you do need to share things with other threads, be careful, and be afraid, be
very afraid.

For projects that involve a global “world state” and several actors/threads — which is
often the case — it may be a good idea to have the world state modified exclusively

through messages sent to the main even queue, rather than having to wrangle a lock
on your world state. Or maybe not. You will have to figure that out.

32 TODO list

slice assignment

cartesian iterable

for elem, ekey in ((e, key(e)) for e in iterable):

gene ngram + timeit compare

eval()

better timeit details

global nonlocal

cProfile snakeviz

GUI

next(,default) object() pattern as in zip() code

profiling

python3 -m cProfile -o profile.prof ./tests.py

snakeviz profile.prof

I raged so much because of this, vs OCaml semantics: https://stackoverflow.com/
questions/2295290/what-do-lambda-function-closures-capture

imports:

if __name__ == ’__main__’:

image pythontutor shallow copy with transparent background instead of white.

Usage of assertion vs exception: recovery possible ?

if __debug__

calendar: proleptic
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@contextmanager

def cd(dir):
currdir = os.getcwd()

os.chdir(os.path.expanduser(dir))
try: yield
finally: os.chdir(currdir)

pattern: singleton binding:

return sum( f(x)*(h-l) for (l,h) in partition(a,b,n) for mid in [mid(l,h)] )

For debugging :

assert all(factorial(X:=n) == forig(n) for n in range(10)), X

section on how to replace bash scripts by Python; os, Path libs etc.

Strange handling of exceptions in comprenhensions:

for a,b,c in range(-5,5):
print(a,b,c)

Traceback (most recent call last):

File "<pyshell#2>", line 1, in <module>

for a,b,c in range(-5,5):
TypeError: cannot unpack non-iterable int object

bool( True for a,b,c in range(-5,5))
True

bool( prinnt(a,b,c) for a,b,c in range(-5,5))
True

bool( print(a,b,c) for a,b,c in range(-5,5))
True

bool( assert False for a,b,c in range(-5,5))
SyntaxError: invalid syntax

bool( 1/0 for a,b,c in range(-5,5))
True

bool( 1/0 for a,b,c in range(-5,1/0))
Traceback (most recent call last):

File "<pyshell#8>", line 1, in <module>

bool( 1/0 for a,b,c in range(-5,1/0))
ZeroDivisionError: division by zero

’REGEXP’: r’/(?!/)(\\/|\\\\|[^/])*?/[%s]*’ % _RE_FLAGS,

random hash salting of sets

http://dabeaz.com/coroutines/ https://stackoverflow.com/questions/

9708902/in-practice-what-are-the-main-uses-for-the-yield-from-syntax-in-python-3-3

https://discuss.python.org/t/structural-pattern-matching-should-permit-regex-string-matches/

22700/9 Personalised str patterns (regexp, prefix, etc) MCre, MCpref, ...

Python versions history

l =["abc","ABC"]

zip(*zip(l)) == l

False

list(zip(*zip(l))) == l

False

list(zip(*zip(l)))

[(’abc’, ’ABC’)]

Theorem ?
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33 Foreword

The sections that follow are your first exercises, and your entry point into this Python
class. Alternate between answering the questions below and reading the lecture notes
in Part II[p26].

Whenever I direct you to a specific section, make sure to read it carefully, and to seek
out, in the lecture notes, whatever information you may be missing to understand
those sections.

Note that you will be expected to have read and more or less understood all of Part
II[p26] by the end of the semester. Points that are a bit beyond the scope of this class and
will not be tested in the exam are indicated as such in the notes; you still need to read
those parts, though.

We have eleven lab classes (three of which are in autonomy) and two lectures, roughly
at the 1

3
and 2

3
marks.

During the lectures, I shall discuss the solution to as many exercises as time allows,
and take your questions.∣∣∣∣∣∣

The new key insights and core competencies targeted by each question or
exercise are written in this format. They should become clear after having

solved the questions and having discussed them with me.

∣∣∣∣∣∣
33.1 An open letter to Python Gods

A note to those who already know Python. Or think they do.

You may skip this diatribe if you don’t think that.

Even if you are already well practised in Python, please do not rush through the exercises
at all speed; do not skip them to get to something more “interesting” more quickly. It is
quite unlikely that you already know everything in Part II[p26], and there is a difference
between (1) having enough tools to be able to cobble together a purported solution to a
problem, and (2) using the right tools to quickly produce short, efficient, reliable, and
well-tested code that fully satisfies its specification. Those exercises, no matter how
trivial some may seem to you, are opportunities for me to engage with you on those
topics, check for bad habits you may have acquired, etc; do not neglect them.

Also note that, during the exams, I often ask questions testing your knowledge
of specific Python idioms and structures, such as comprehension expressions, the
limitations of sets and dictionaries, the specificity of Python’s int type compared to that
of other languages, etcetera. I had some cases in previous years of students entering

the class fully confident that they already knew Python, because they had successfully
completed some project in it. Thus, they paid no attention and did not put any effort
into this class, and learned nothing new. They were then positively outraged to receive
a failing grade in the final exam; dismayed that writing Java or C roughly translated
into Python’s syntax did not satisfy. Do not be them.

34 Basic data types, expressions, and functions

34.1 Conversion Celsius↔ Fahrenheit∣∣∣∣ def <function>; return <expression>; assert for defensive
programming

∣∣∣∣
La formule de conversion entre ces deux unités étant

F =
9

5
C+ 32 ,

nommer, écrire et documenter les deux fonctions de conversion F_to_C et C_to_F pour
passer d’une unité à l’autre.

Quelles sont les conditions d’utilisation de ces fonctions ? As a reminder, the absolute
zero is −459.67◦F and −273.15◦C.

On veillera à utiliser des assertions (cf. Sec. 22.6.6[p58]: “Assertions: cheap unit testing
and preconditions enforcing”) afin de tester ces conditions d’utilisation. Please read
that section very carefully. In particular, do not burden your assertions with redundant
error messages.

Notons que, bien que le type des arguments d’entrées fasse moralement partie des
préconditions de toute fonction, on ne demande pas de le vérifier programmatiquement
dans ces TDs, et il est peu idiomatique de le faire en Python.

Do not use input()! That is what the function’s arguments are for. If I ever want user
interaction, I shall ask for it explicitly. Use prints and, whenever possible, asserts in
your code to test the functions on different values.

Do not confuse return and print: whenever I ask for a function, it must return
something, so that I can use the function in later computation, not print it.

34.2 Floating-point comparison: almost there∣∣∣∣ float has finite precision; bool/predicates are very simple;
assert for cheap unit tests

∣∣∣∣
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Let us check that our two conversion functions are coherent with one another, by
testing that their absolute zeros match.

However, we cannot simply test equality between floating point numbers, for reasons
discussed in Sec. 22.2[p43]: “Floating-point numbers: float”: there may be a loss of
precision:

>>> F_to_C(-459.67) == -273.15

False

>>> F_to_C(-459.67)

-273.15000000000003

Although you may or may not observe it depending on the exact way you performed
the computation:

>>> [ (a,b)

for F in range(20)
for a,b in [[5/9*(F-32), 5*(F-32)/9]]

if a!=b ]

--------------------------------------------

[(-15.555555555555557, -15.555555555555555),

(-12.222222222222223, -12.222222222222221),

(-11.666666666666668, -11.666666666666666),

( -7.777777777777779, -7.777777777777778)]

Instead of running that risk, we shall test whether the two values are very, very close.

(21) Define a predicate isalmost(n,m,d=1e-13) that tests whether n and m are at a
distance at most d (af).

(22) Verify that the following assertions are satisfied:

assert isalmost ( F_to_C(-459.67) , -273.15 )

assert isalmost ( C_to_F(-273.15) , -459.67 )

assert all( isalmost( efc:=F_to_C(C_to_F(c)), ec:=c )

and isalmost( efc:=C_to_F(F_to_C(c)), c )

for c in range(-273, 200) ), (ec, efc)

(Almost) always leave your assertions in your code, to prevent future regressions.

(af)Such a basic tool to manipulate floating-point numbers is of course provided in the standard library.
This function is a simpler re-implementation of math.isclose.

34.3 Taking root

34.3.1 Greatest root∣∣∣∣reading a specification and enforcing valid inputs with assert; None as null
∣∣∣∣

Écrire et documenter une fonction greatest_root telle que greatest_root(a,b,c)

retourne la plus grande racine réelle du polynôme de second degré ax2 + bx + c si
elle existe, et None sinon. See Sec. 22.5[p53]: “Nihilism: NoneType: expression versus
statement”.

Quelles sont les conditions d’utilisation (ou préconditions) de cette fonction ?

Indication: do all tuples (a, b, c) ∈ R3 describe a valid polynomial of the second degree?

Note: as mentioned in Sec. 22[p41]: “Basic data types”, in Python, it is not idiomatic to
test the type of parameters explicitly. While it is true that testing whether a, b, c are
numerical values would be pertinent , let’s not do that.

Once you have worked out what the preconditions are, make sure to enforce them
through an assert.

Quick reminder from high school: the roots of ax2 + bx+ c are given by

−b±
√
∆

2a
,

where ∆ = b2 − 4ac is called the discriminant. They are real if ∆ ⩾ 0.

The following assertions must be satisfied:

assert greatest_root(1,1,1) == None

assert greatest_root(1,-2,1) == 1

assert greatest_root(4,-4,-24) == 3

# we can do direct comparison because we know the results are exact,

# at least in this case, and we only want to prevent regressions

# This is overspecification , and might refuse correct versions of

# the function. However, we can deal with those problems, using

# isalmost, as they arise.

Feel free to add some more.

34.3.2 Real roots∣∣∣∣∣∣
carefully reading and respecting the specification

virtues of homogeneous return types and containers
unit tests on ranges of value to enforce consistency of implementations

∣∣∣∣∣∣
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Write a function roots(a,b,c) returning a tuple containing the real roots of the
second-degree polynomial ax2 + bx+ c, in no particular order.

Note how this specification is formulated: you must always return a tuple. Do not
return a tuple sometimes and None some other times.

The following assertions must be satisfied:

assert roots(1,1,1) == ()

assert roots(1,-2,1) in [ (1,1), (1,) ]

# I didn’t specify whether single roots should be repeated,

# so both versions are valid

assert set(roots(4,-4,-24)) == {-2, 3}
# I did not specify the order of roots, hence the set test

Write an assertion testing, for all valid values of a, b, c ∈ J−5, 5K, that the outputs of
greatest_root and roots are coherent.

This can be done in one or two logical lines if you can have read Sec. 24.5[p83]: “Compre-
hension expressions” and Sec. 23.2[p61]: “Conditional expression: .. if .. else ..

ternary operator”, but I do not require that at this point.

35 Dungeons and magic methods∣∣∣∣∣∣
Object Oriented Programming (OOP)

implementing classes
understanding magic/dunder methods

∣∣∣∣∣∣
You will want to have taken at least a cursory look at Sec. 21.2[p34]: “A few words about Object
Oriented Programming (OOP)” and Sec. 27[p99]: “Object Oriented Programming in Python”.

Let us implement dice rolls, in the style of Dungeons & Dragons (ag):

Dice rolls are described with expressions such as “3d4+3,” which means “roll
three four-sided dice and add 3” (resulting in a number between 6 and 15).
The first number tells you how many dice to roll (adding the results together).
The number immediately after the “d” tells you the type of die to use. Any
number after that indicates a quantity that is added or subtracted from the
result.

(ag)https://www.d20srd.org/srd/theBasics.htm#dice

You will need to use the random.randint function.

Our goal in this exercise is to implement a “function” d such that we can define a dice,
and then roll it as many times as needed, as follows:

>>> d20, d6 = d(20), d(6) # let d20 be a 20-sided die, and d6 a 6-sided one

>>> d20

d20: 14

>>> d20

d20: 4

>>> d20

d20: 7

...

Of course the values displayed must be uniformly random integer values between 1
and 20, inclusive, not necessarily 14, 4, 7, . . ..

What’s going on here is that each time d20 is converted into a string for the purpose of
representing its value (which is what happens when you put a value in the prompt
>>>), the dice is rolled and the value displayed.

Then we will extend this behaviour to support addition and multiplication.

(23) Justify (i.e. write a sentence explaining) that d cannot possibly be a classical function
of the form

def d(n): return random.randint(...)

(24) Implement a class d(N), representing an N-sided die.

For instance, you can declare:

>>> d20, d6 = d(20), d(6) # let d20 be a 20-sided die, and d6 a 6-sided one

Note: see Sec. 21.5.2[p36]: “Parallel variable assignment” if that syntax confuses
you.

d will have an attribute N, giving the number of faces of the dice:

>>> d20.N, d6.N

(20, 6)

To do this, you will need to understand the rough ideas under then notions of
class, object, instance, and attribute, as well as the __init__ method. Sec. 27.4[p101]:
“Constructors: beware of mutable structures” can serve as a good reference point
for the latter — though, again, you will need to understand at least some of what
comes before.
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(25) Implement for d a method .roll() returning the value of a roll (uniformly random
on J1,NK).

You will use randint for this. Throughout this exercise, no other method may call
randint.

You should observe something like:

>>> d20.roll()

13

>>> d20.roll()

8

>>> d20.roll()

1

>>> type(d20)

<class ’__main__.d’>

>>> type(d20.roll())

<class ’int’>

(26) Now let’s implement the behaviour presented in the introduction:

>>> d20

d20: 14

...

As well as things like

>>> f"I roll {d20}"
’I roll d20: 11’

...

(This is a string conversion in an fstring; see Sec. 22.4.10.4[p51]: “The good stuff:
formatted string literals” if you don’t understand this expression; it’s not central
to this immediate exercise.)

In other words, we want that, each time d20 is converted into a string for the
purpose of representing its value, the dice is rolled and the value displayed.

For now out the output looks like:

>>> d20

<__main__.d object at 0x7447d25af680>

To implement what we want, you will need to read and understand Sec. 27.7[p103]:
“String representations str and repr”.

(27) Rather than having to call .roll() explicitly in all circumstances where we want
to use the roll value in a computation, we would like to have dice that can be
converted into integers:

>>> int(d20)
15

>>> int(d20)
16

You well need to read Sec. 27.10[p106]: “Special, magic, dunder methods” and
implement __int__. This is a long and difficult section, so for now be efficient
in skimming through it to get the relevant information for the problem at hand.
Read in more detail during your personal study time.

(28) Now, we would like to be able to perform arithmetic on rolls

>>> d20+100

106

>>> d20+100

101

>>> type(d20+100)

<class ’int’>

Currently, if we try that, we get

TypeError: unsupported operand type(s) for +: ’int’ and ’d’

Just because we can convert to int does not mean that the conversion is done
automatically. . .

Implement the __add__ method to make it work as expected.

(29) So far, so good, but wait, if we try

>>> d20+100

108

>>> 100+d20

TypeError: unsupported operand type(s) for +: ’int’ and ’d’

Isn’t addition commutative? What’s going on?

Take some time to understand the problem, which is explained in great detail in
Sec. 27.10[p106]: “Special, magic, dunder methods” — but do not spend the whole
lab class on this! — then implement the __radd__ method so that things work as
expected:
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>>> 100+d20

111

>>> 100+d20

120

(30) Now let’s do multiplication:

>>> 10*d6

29

>>> 10*d6

34

Which magic method do you need to implement?

Also note that the semantics of 10*d6 is not “roll a d6 once, and multiply the roll
value by 10”, but “roll a single d6 10 times, and add the roll values”, or equivalently
“roll 10 individual d6s, and sum their rolls”.

You can tell because neither 29 nor 34 are multiples of 10 :-)

You will implement the relevant method in one line, using sum. See Sec. 24.5.3.4[p87]:
“Reductions” for examples of how to use sum. You do not need to fully understand
how that syntax works at this point — but you will later, believe that!

Now, this should work:

>>> -100 + 10*d20 + 40

72

>>> -100 + 10*d20 + 40

62

(31) Test the following code, which performs a large number of 3d6 rolls and plots the
values obtained:

from collections import Counter

N = 100000

for v, c in (l :=sorted(Counter( 3*d6 for _ in range(N) ).items())):

print(f"{v:2} {’=’*(c//500)}")

print("\navg", sum(c*v for v,c in l)/N,

"\nexpected avg", 3/6*sum(range(1,6+1)), "=", 3*(6+1)/2)

---------------------------------------------------------------------

3

4 ==

5 =====

6 =========

7 =============

8 ===================

9 ======================

10 =========================

11 ========================

12 =======================

13 ===================

14 ==============

15 =========

16 =====

17 ==

18

avg 10.48865

expected avg 10.5 =10.5

You can have very minor numerical variations in the observed average avg, but it
should be very close to 10.5, which is the mathematical expectancy of 3d6, and the
curve obtained should approximate the form of a nice normal distribution.

Reminder: In case you where wondering, the mathematical expectancy of dN—
that is to say a random variable with outcomes J1,NK with uniform probability 1

N

— is given by

E[dN] =
N∑
k=1

1

N
k =

1

N

N∑
k=1

k =
1

N

1

2
N(N+ 1) =

1

2
(N+ 1) .

Thus the expected average for 3d6 is

E[3d6] = 3E[d6] = 3× 6+ 1
2

= 3× 7
2
= 10.5 .

(32) Now let’s implement another type of multiplication, so that the semantics of d6*10
(as opposed to 10*d6) is indeed “roll a d6 once, and multiply the roll value by 10”.

Replacing 3*d6 by d6*3 in the previous code, you should get something like this:

3 =================================

6 =================================

9 ================================

12 ================================

15 =================================

18 =================================

avg 10.50894

Now 3*d6 and d6*3 are both valid rolls. The expected average is the same, but
the resulting distribution is very different. . .
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Moral: it’s up to you what the operators of the types you define mean. Just because
it’s * doesn’t mean it absolutely has to be commutative. Certainly there is nothing
in Python to enforce that. Pick semantics that make intuitive sense, and document
them properly.

Oftentimes, the functions implemented by operators correspond to clearly and
explicitly named methods which can be used as less compact but more legible
alternatives. For instance, we could have chosen to write things like 3*d6 as
d6.sum_multiple_rolls(3) instead, or in addition.

Again, it’s up to you to define operators as you like, but don’t go overboard with
it. Sometimes the right move is to just use explicitly-named methods and leave all
the weird symbols alone.

(33) Compare the distributions of 3*d6+0 and 3*(d6+0). What’s going on?

Note: while d6 represents a random variable, we chose to implement + so that
d6+0 becomes an integer. This choice has consequences, and one of them is that d6
and d6+0 are very different objects.

That is fine in this context — we just want to write expressions like 10*d6 + 3

to roll the dice and play the game — but if we wanted to implement random
variables more seriously we would need d6+n, where n ∈ N, to be of type “random
variable”. Developing this is much more complicated than what we did, and
beyond the scope of this exercise.

Note that later on, for instance in question (42)[p137] and others, we will be using
mathplotlib to generate graphs and write magic things like

x = np.linspace(-2,2,100) # x varies in [-2,2], 100 uniform samples

and expressions such as 2 * x**2, and magically plot the curves.

What will be going on behind the scenes is the same kind of trickery we just
employed, whereby things that look like simple arithmetical expressions actually
hide something more abstract, here random variables / samplings.

(34) I hope you get the idea, and would be capable of supporting subtraction, division,
etc, without further guidance. . .

36 We all float down here!

It is nice that we can solve the zeroes of a second-degree polynomial. Now let us do
the same thing for the zeroes of any continuous function f. We shall use approximate

numerical methods.

Keep in mind that floating point numbers are dangerous; don’t turn your back on them.
Be sure to read Sec. 22.2[p43]: “Floating-point numbers: float” in that regard.

36.1 The Zero Dichotomy∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

thinking recursively
functions are first-class citizens

less trivial effects of float precision loss
beware false simplicity of int

hide recursion from user with recursive subfunctions
why inclusive/exclusive ranges Ja, bJ are cool

asymptotic complexity vs. small instances

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
Recall the classical theorem of intermediate values:

Theorem 1 (Intermediate Values). If a function f : R→ R is defined and continuous on a
real interval I, then its image f(I) is also an interval.

It has an important corollary:

Corollary 2 (Bolzano’s theorem – BT ). ∀a, b ∈ I, if f(a)f(b) ⩽ 0, then ∃z ∈ [a, b] :

f(z) = 0.

Proof. f([a, b]) is an interval; it contains f(a) and f(b). Therefore it contains [f(a), f(b)]
(or [f(b), f(a)]). We have f(a)f(b) ⩽ 0, which means that if either f(a) or f(b) is positive,
then the other must be negative, and vice versa. Thus we have 0 ∈ [f(b), f(a)] ⊆ f([a, b]).

In short: f changes sign between a and b, so its curve must cross the abscissa. □

We are going to use Bolzano’s theorem to implement a dichotomic search — or more
precisely a binary search; also known as the bisection method — for a zero; that is to
say, a value z such that f(z) = 0. What is a dichotomic search, you ask? That is what
you do when you search for a word in the dictionary — I mean a paper dictionary, not
an online one. (If you are not old enough to have manipulated one of those, use your
imagination).

The principle is simple: you open the dictionary at some place, roughly down the
middle (maybe you have better guesses if the word begins by A or Z, but it matters
little in the end), and you determine, using the alphabetical order, whether the word
you are looking for is to the left, or to the right, or your current position. Therein lies
the “dichotomy”, the “bisection”: you have two mutually exclusive options: left and
right. If you cut exactly in the middle each time, it’s a binary search.
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Then you repeat that process, with either the left or right part of the dictionary, which
is of course much smaller, again and again until you are close enough to your target.

This is a very efficient process: O(log2N) where N is the size of the dictionary — or
more generally of any sorted list. Not convinced of the logarithm? if the dictionary is
twice as big, you open it at the middle, and choose left or right, and you’re back to the
original size. One more step to handle twice the size.

Let us do that to search for zeroes: start with a and b such that f changes sign between
them, cut down the middle of [a, b], and then there must be a zero either left or right;
choose by testing on which side there is a sign change, and repeat until you’re close
enough to your taste. That is to say, until |a− b| is smaller than your desired precision.

(35) TODO VH: Separate into two questions: normal precision and max, with assertions
for each.

Write a function di(f,a,b,d=1e-16), where f : [a, b] → R is continuous and
changes sign on [a, b], that returns an approximation of a zero z, ideally within a
precision d.

In practice R will be approximated by float. You are not required to test whether
the inputs satisfy the assumptions — how would one even test continuity of f?.

By “approximation of a zero z, ideally within a precision d”, I mean any z ′ such
that |z− z ′| ⩽ d, if floating-point precision is sufficient to achieve that, or the best
z ′ you can realistically get if not. Note that f is completely irrelevant to this notion
of precision.

Tip: there are two ways to write a dichotomy: recursively, and with a while loop. Write it
recursively first, it’s simpler. You’ll write it with a while in the next question.

Tip2: Sec. 21.5.5[p37]: “Functions are first-class citizens”.

As an example of how it must behave, let us approximate
√
2 as the positive root

of X2 − 2:

from math import sqrt

def g(x): return x**2 - 2

>>> res = di(g,1,2)

1.414213562373095

>>> sqrt(2)

1.4142135623730951

>>> sqrt(2)-res

2.220446049250313e-16

Printing each step of the process with print(a,m,b, b-a), where m is the middle,
we have:

1 1.5 2 1

1 1.25 1.5 0.5

1.25 1.375 1.5 0.25

1.375 1.4375 1.5 0.125

....

1.414213562373095 1.4142135623730951 1.4142135623730954

4.440892098500626e-16

1.414213562373095 1.414213562373095 1.4142135623730951

2.220446049250313e-16

This also illustrate why I said ideally within a precision d. Observe that our
precision objective is not actually met in the example. Indeed I could run with
d=1e-160 and get the very same result.

This is because we are dealing with floating-point numbers, and thus loss of
precision. It may well be that the middle becomes impossible to distinguish from
a or b— because of loss of precision — before |a− b| becomes quite small enough.
In that case we run the risk of entering an infinite loop, so we must return the
result we have now. That is precisely what happened here: a andm are the same
in the last line, so our current approximation is the best we can do.

Keep that in mind, and be sure your function doesn’t enter infinite loops. Also
keep in mind that you may write a function that is correct, but does not have the
same precision errors as mine because you have not written the computations in
the exact same way, and thus will behave slightly differently on the same examples.
Such are the joys of working with floating point numbers. . .

At the end of the day, the following assertion must hold:

from math import nextafter as na, inf

def neigh(f): return na(f,inf), na(f,-inf)

assert all( abs(n**.5 - (r:=di(lambda x:x**2-n, 0,99,d)) ) <= d

or r in neigh(n**.5) # result is closest float

# for di in [di, di_while]

for n in range(20) for d in [1e-7, 1e-16, 1e-32] ), r

It ensures that either the required precision is achieved, or we are in a case where
there is no representable floating-point value strictly between a and b, like in the
case a=1.414213562373095, b=1.4142135623730951, and so we lack information
to choose between the two.

(36) Now write a function di_while, as in the previous questions, but implemented
using a while loop.
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For assertions, simply uncomment the line

for di in [di, di_while]

in the previous question’s assertion.

(37) So we have made a big deal of float’s precision problems in the last question. Is
the grass greener with int?

Write a function find(x,l) that returns an index of x in the sorted list l, if it exists,
and None if x does not appear in l.

The fact that l is sorted must immediately suggest to you to use a dichotomic
search! Why write a linear algorithm when you can write a logarithmic one?

If an element appears twice, any suitable index may be returned; it need not be
the first or last or anything specific.

The function must implement a dichotomic search and satisfy the following
assertions:

assert find(3,[3]) == 0

assert all( (fe:=find(ie:=i,ir:=r)) == (i if 0<=i<N else None)

for N in range(9) for r in [range(N)]
for i in list(r)+[-1,N] ), (ir, ie, fe)

assert all( l[fe:=find(ie:=i,il:=l)] == i

for N in range(5) for R in [2,3]

for l in [[ e for e in range(N) for _ in range(R) ]]

for i in range(N)), (il, ie, fe)

You will code the dichotomic search recursively.

Warning: while it is tempting to use list slices (e.g. l[:m], l[m:]) in the implemen-
tation, this would be very stupid. Here is an implementation using slices that is
correct (in the sense that it returns the right results and it is a dichotomy) but very
stupid:

def find(x,l,i=0):

match l:

case []: return None

case [a]: return i if a==x else None

case _:

if x < l[m := len(l) // 2]: return find(x,l[:m], i)

return find(x, l[m:], i+m)

It is stupid, in the sense that there is absolutely no point to doing a dichotomic search,
whose selling point is O(logn) complexity, when on the first call you compute a
new list l[:m], of length 1

2
, therefore getting a complexity in O(1

2
n) = O(n). This

search will actually be less efficient than a naive loop on the whole list.

A non-stupid implementation needs to work with the original list, without creating
any new one, and reason on bounds a,b for a lower- and upper-bound on the
indices of the search space, same as in the previous question.

Since the bounds a,b are not parameters of the function, you will need to hide
them from the user. A good approach taken by Python’s library (ah) is to pass them
as optional arguments, but this has two drawbacks as a general solution for that
type of need: (1) each recursive call will need to pass the same x,l again, which is
tolerable here but lacks legibility when there are more arguments to repeat, and (2)
sometimes it makes no sense to let the user see and modify the parameters you
recurse upon. What you will do instead is use a recursive subfunction, here called
z. Your function will thus be of the form:

def find(x,l):

def z(a,b):

....

return z(...)

Now, on to the algorithm itself. If you code the search naïvely, you will probably
use a,b as inclusive bounds, and you are very likely to run into infinite loop
problems because. . . what is the integral middle of J0, 1K? Whether you use floor
or ceiling, you run into the same “the middle is confused with a bound” problem
as in the previous question, except this time, you cannot stop immediately on
grounds that maximum possible precision has been achieved.

It is quite possible to write a correct search that way, but it takes a lot of strategically
placed +1 and -1 to make it correct, and it is not immediately obvious when reading
the code that it is correct. So let’s do things a bit differently, so that correctness is
more obvious.

We shall take a leaf from the “modern” way of representing integer ranges, using
Ja, bJ instead of Ja, bK; that is to say, the lower bound is inclusive, but the upper
bound is exclusive. Note that this is the convention adopted by Python’s range
and slice notation, and used in many other languages as well. It has many good
properties that make working with ranges easier:

⋄ b− a is the length of the range, not b− a+ 1,

(ah)https://docs.python.org/3/library/bisect.html

I have used the same technique for i in my stupid implementation of find, above.
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⋄ 0 and the length of the collection are the starting bounds, not 0 and length −1,

⋄ cutting a range does not require +1 or −1 anywhere either: Ja, bJ = Ja,mJ +
Jm,bJ.

We will take advantage of that here. We shall write the computation of the middle
as

m = a + (b-a) // 2

that is to say, we keep our starting point, but divide the length b-a of the search
space by 2. We test for length 0 and 1 for our stopping conditions, and otherwise,
we know that the remaining range, being of length at least 2, will split nicely.
Note that it does not actually matter whether we use // or floor or ceil in the
computation of b−a

2
.

Last constraint, do not test equality at every loop. Just one inequality will do, until
you only have one element left.

The moral of the story is that, despite having no precision loss problems or even
integer overflows (in Python!), int is not necessarily simpler to handle than float.
Some thought is required to handle bounds correctly, and the inclusive/exclusive
convention makes it much easier.

Let us test the performance of our function: the code below compares the per-
formance of find and that of the default list.index method, which performs a
linear traversal of the list, as does the x in l construct.

def time_test():

from timeit import timeit

print(f"len\tindex\tdicho\tratio")
for N in [10**n for n in range(9)]:

l = list(range(N))
i = [i*N//10 for i in range(10)]+[N-1]
ti = sum( timeit(lambda: l.index(k), number=1) for k in i )

td = sum( timeit(lambda: find(k,l), number=1) for k in i )

print(f"{N}\t{ti}\t{td}\t{ti/td}")

The generated text isn’t pretty but can be pasted into your preferred spreadsheet
software.

However you visualise it, you should get something like that:

len index dicho ratio i/d

1 4.92E-06 9.13E-06 0.5388829451

10 6.00E-06 1.71E-05 0.3514938517

100 7.39E-06 1.79E-05 0.4123655766

1000 3.60E-05 2.29E-05 1.57186566

10000 4.36E-04 3.26E-05 13.38771158

100000 0.004439856 4.32E-05 102.6793683

1000000 0.030203839 4.33E-05 698.1933006

10000000 0.272337098 6.73E-05 4046.012322

100000000 2.78551715 8.81E-05 3.16E+04

From this, the following conclusions can be drawn: index is slightly more efficient
than dicho for small lists. Somewhere between lists of size 100 and 1 000, (from
more testing, the inflection point seems to be around 625) this changes, and dicho

becomes orders of magnitude more efficient for large lists. This is exactly what
you expect when comparing a simple linear algorithm to a more sophisticated
logarithmic one. The latter is more expensive to set up, which does not necessarily
pay on small instances, because there is little time there to gain anyway, but
crushes the simple algorithm on large instances, where the cost of the increased
sophistication is dwarfed by the time gains.

Of course, this discussion elides the question of the cost of making sure the input
list is ordered in the first place. . .

If you run time_test and your version of finddoes not exhibit the same asymptotic
behaviour, you have not correctly implemented the dichotomic search; try again!

36.2 This is all very derivative. . .∣∣∣∣∣∣∣∣
functions are nice objects, easy to pass and return

handling optional arguments
difference between symbolic math function and python function object

mathplotlib for interactive visualisation of data

∣∣∣∣∣∣∣∣
Let’s get back to our search for zeroes in continuous functions. A binary search is quite
efficient, as we have seen, but we can do better. We could use the slope of the tangent
line of the curve at a given point to guide the way, much more efficiently, towards the
zero. But before we can do that, we must be capable of computing — an approximation
of — that slope.

That is to say, we want to numerically approximate f ′(a), the derivative of f at point a.
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It is defined by the classical formula

f ′(a) = lim
h→0

f(a+ h) − f(a)

h
,

and can thus be approximated by

f ′(a) ≈ f(a+ h) − f(a)

h
, (36.1)

for small values of h. (36.1) is called the forward difference formula. There are others
that can be used to the same effect:

f ′(a) ≈ f(a) − f(a− h)

h

is the backward difference formula. And one can average the two and get

f ′(a) ≈ 1

2

(
f(a+ h) − f(a)

h
+
f(a) − f(a− h)

h

)
=

f(a+ h) − f(a− h)

2h
, (36.2)

which is the central difference formula. We shall use mostly (36.1), because it is the
most straightforward, and (36.2), because it is numerically better than the other two, as
we shall see.

Let us use as running example the functions

def f(x): return 2*x

def g(x): return x**2 - 2

Notice that f(x) = g ′(x).

(38) Write a function deriv(f, x, h=.01) that returns the value f ′(x), as approximated
through (36.1)[p137], using the provided value of h.

The following assertion must hold:

assert all( abs(deriv(g,x)-f(x)) <= 0.02 for x in range(100) )

(39) Write a function fderiv(f, h=.01), that returns the derivative function f ′, as
approximated by deriv (with h potentially overridden).

See Sec. 21.5.5[p37]: “Functions are first-class citizens” and Sec. 21.5.6[p37]: “Anony-
mous functions: lambda”.

The following assertion must hold:

assert all( fderiv(lambda x:x**2)(x) == deriv(lambda x:x**2, x)

for x in range(100) )

(40) Define G = fderiv(g), and let us test how well our approximation performs: we
should have G(x) ≈ f(x). Write a procedure test_deriv() whose invocation
yields this:

x f(x) G(x) f(x)-G(x)

-2.0 -4.00 -3.99 -0.01000000000001755

-1.9 -3.80 -3.79 -0.009999999999995346

...

1.9 3.80 3.81 -0.009999999999999343

2.0 4.00 4.01 -0.009999999999888765

You may want to read Sec. 22.4.10[p50]: “Formatting strings” to format the output
properly.

Note: you can’t use floating-point numbers in range. To understand why, please
study Sec. 47[p162]: “Fear the floating-point ranges” (on your own time).

You can see that we have a precision of about 0.01, give or take. You can play with
the values of h, going to 0.001, 0.0001, . . . to see how it affects the precision. Does
adding more zeroes always increase the precision? Why?

(41) Now go back to the original values of h and modify deriv to use the central
difference formula (36.2)[p137] instead of (36.1)[p137]. What do you observe? Does
adding more zeroes to h still increase the precision, even if just at first?

For your information: There are good reasons for the central difference formula to outperform
the others. It can be shown that there are constants K, K ′, and K ′′, such that∣∣∣∣f(a+ h) − f(a)

h
− f ′(a)

∣∣∣∣ ⩽ hK and
∣∣∣∣f(a) − f(a− h)

h
− f ′(a)

∣∣∣∣ ⩽ hK ′ ,

while∣∣∣∣f(a+ h) − f(a− h)

2h
− f ′(a)

∣∣∣∣ ⩽ h2K ′′ .

Of course, for h small, that means a much better precision in general for the central
difference. . .

(42) To make this more fun, let’s visualise the curves using matplotlib. First, you
need to install the relevant packages, for your OS and for Python (via apt, pacman,
or pip3).

Your best bet is to install the package using your package manager. It should be

sudo apt install python3-matplotlib

under Debian / Ubuntu and
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Figure 3: matplotlib visualisation

sudo pacman -S python-matplotlib

under Arch.

If you’re not administrator on your machine or that fails for whatever reasons, run
the following command:

pip3 install matplotlib

If all installs well, good. If not, you may need some libraries for your OS, which
again, requires admin access. Under a Kubuntu 21.04 I installed the packages
below — you may or may not need to do something equivalent. Pay attention to
what pip3 tells you.

sudo apt install libtiff5-dev libjpeg8-dev libopenjp2-7-dev zlib1g-dev \

libfreetype6-dev liblcms2-dev libwebp-dev tcl8.6-dev tk8.6-dev \

python3-tk libharfbuzz-dev libfribidi-dev libxcb1-dev

When all is installed properly we can start to play. Copy the following code after
the function definitions:

import numpy as np, matplotlib.pyplot as plt

x = np.linspace(-2,2,100) # x varies in [-2,2], 100 uniform samples

npf = f(x) ; npg = g(x) ; npG = G(x) # our functions , with special object x

plt.figure(figsize=(12,12))

plt.rcParams.update({"font.size": 18 }) # I need glasses, OK?

plt.plot(x,npf,"b" ,label="f", linewidth=4)

plt.plot(x,npG,"r" ,label="G", linewidth=1)

plt.plot(x,npg,"black" ,label="g", linewidth=3)

plt.title("Visualise Exact and Approximated Derivatives")

plt.legend(loc="best")

plt.axvline(0); plt.axhline(0) # draw abscissa and ordinate axes

# plt.savefig("../derivapprox.pdf", transparent=True)

plt.show()

When executing that, you should get an interactive version of Figure 3[p138]. The
commented plt.savefig line is of course what I used to generate the figure —
plus a run of pdfcrop.

Observe, by zooming on the blue line, that our central approximation, in red inside
the thicker blue line, is indistinguishable from the real thing.

You may amuse yourself by trying more complicated functions.
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36.3 The Newton–Raphson method

Let us come back to our problem of zeroes of f. How can we use our newfound
derivation powers to get even more efficient approximations than with a binary search?

The idea is to start with a guess x0, then to refine that guess by computing the tangent
to f at x0, then following that tangent to where it intersects with the abscissa, and
wherever that is, this is our new and improved guess x1.

After all, a tangent is simply a linear approximation of f at that point. Instead of finding
the zero of f directly, we find that of an approximation.

What happens if f ′(x0) = 0? Well, we are stuck, since the tangent is parallel to the
abscissa. Unlike the binary search, this method is not guaranteed to converge; however,
when it does, it does so very fast, as we shall see.

Let us take it from the top. We have a differentiable real function f, and an initial guess
x0. The tangent line of f at x0 is given by the equation

t(x) = f ′(x0)(x− x0) + f(x0) ,

and crosses the abscissa at x1, solution of t(x1) = 0:

0 = f ′(x0)(x1 − x0) + f(x0)

x1 = x0 −
f(x0)

f ′(x0)

Following the same reasoning, at each step we obtain the next guess by computing

xn+1 = xn −
f(xn)

f ′(xn)
.

When do we stop that process? Unlike before, we lack a well-defined search interval,
so we cannot know how close we are to the solution. We do know, however, how close
f(xn) gets to zero, and we shall use that as a criterion.

(43) Write a function newton(f,x,eps=1e-15) that computes, if possible, a zero of a
differentiable function f : R→ R using the Newton-Raphson method. The function
shall trigger an assertion if it runs into a null derivative, and a guess xn shall
be considered good enough to return if |f(xn)| ⩽ ε. Optionally, for debugging
purposes, you can have it print each of its guesses.

Tip: this function is doable in three lines — at least in its recursive version.

With it, let us compute
√
2 again, with initial guess 1:

>>> res = newton(g,1) # here with optional printing of guesses

-> 1

-> 1.4999999999999996

-> 1.4166666666666667

-> 1.4142156862745099

-> 1.4142135623746899

-> 1.4142135623730951

>>> sqrt(2)

1.4142135623730951

>>> sqrt(2)-res

0.0

Note how fast it is, compared to the binary search!∣∣∣∣Dichotomy is a general approach; specific problems may allow for more
even more efficient specific approaches

∣∣∣∣

37 Comprehension expressions

Read Sec. 24.5[p83]: “Comprehension expressions” with great attention. Do not neglect the
examples in Sec. 24.5.3[p86]: “Common comprehension patterns”.

For nearly each question, you will use a comprehension expression. For instance, if I
ask for the set of all even numbers strictly less than n, then I expect to see

{ i for i in range(n) if i%2==0 }

If I ask you for a function returning the set of all even numbers strictly less than n, I
expect

def evens(n):

return { i for i in range(n) if i%2==0 }

Where a comprehension expression is possible, an answer based on usual constructions
by iteration will not be suitable for the purpose of this exercise.∣∣∣∣ comprehension expressions are compact, legible, and easy to write.

you love comprehension expressions

∣∣∣∣
37.1 Warm-up

(44) Write a function cart_prod(A,B) returning the Cartesian product of sets A and B.
For instance:

>>> cart_prod({’a’, ’b’}, {1,2,3})
{(’a’, 1), (’a’, 2), (’a’, 3), (’b’, 1), (’b’, 2), (’b’, 3)}
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Note that, since the result is a set, the order in which its elements are displayed
is unpredictable; see Sec. 24.3[p77]: “Sets: class set”. If you want to display the
elements in a legible order, you can use sorted(.)

The following assertions should hold:

assert cart_prod(range(3), []) == set()

assert type(cart_prod([1],[2])) is set

assert cart_prod(range(2), range(10, 12)) == {(0,10), (0,11), (1,10), (1,11)}

(45) . . . now compute

>>> cart_prod("ab", {1,2,3})

instead of

>>> cart_prod({’a’, ’b’}, {1,2,3})

What happens, and why? Is it a bad thing?

If in doubt, read Sec. 23.4[p62]: “for .. in .. range loop” again, especially the part
where the keywords iterable and collection appear.∣∣∣∣ what works for an iterable type usually should work for another

∣∣∣∣
(46) Write a function squares(n) returning the list of all square numbers (i.e. integers

that are the square of another integer) in J0, nK.

We deal with integers; make sure to avoid floating point computations; for instance
you must not write sqrt(i) or i**0.5 either. No square root or floating point
number of any kind.

The following assertion must hold:

assert squares(100) == [0, 1, 4, 9, 16, 25, 36, 49, 64, 81, 100]

∣∣∣∣ conditionals in comprehension expressions
comprehension expressions and boolean operators

∣∣∣∣
(47) Write a predicate isprime(n) (N → bool) testing whether a natural integer is

prime, that is to say, whether it is strictly greater than 1 and divisible only by 1
and n.

As usual in this exercise, the body must be written in one line of the form
return <expr>.

Read Sec. 24.5.3.4[p87]: “Reductions”, especially the part about any and all.

The following assertion must hold:

assert [ i for i in range(30) if isprime(i) ] \

== [2, 3, 5, 7, 11, 13, 17, 19, 23, 29]

∣∣∣∣ combine comprehensions with boolean operators
∣∣∣∣

37.2 Palindromes and other one-liners

All of the following functions must be written in one line: that is to say, their body
must be of the form return <expr>.

You may write a first version of them using normal loops as a draft if it helps you,
but the final product must be of this form. Of course the solution will often be a
comprehension expression, but sometimes it can be another simple expression.∣∣∣∣ sequence index manipulation

any, all, and sum reductions

∣∣∣∣
(48) Write a predicate palindrome(s) testing whether the sequence s is a palindrome.

Read Sec. 22.4.6[p47]: “Slicing and dicing, concatenation, repetition”, especially about
negative indexes. Read Sec. 24.5.3.4[p87]: “Reductions”, especially about any and all.

A palindrome is a sequence that can be read either left-to-right or right-to-left: ABCBA
is an example.

You will use a comprehension expression of the form all(...), testing explicitly
that all elements are equal to their mirror: the first to the last, the second to the
penultimate, and so on.

You will absolutely not use a [::-1] slice, a reversed(), or any other way to
compute the inverse of a collection (we’ll do that in the next question)

The following assertions must hold:

assert palindrome(’abba’)

assert palindrome(’abcba’)

assert palindrome(’’)

assert palindrome(’a’)

assert not palindrome(’ab’)

(49) Write a function inverse(s) returning the list of the elements of the sequence s,
in reverse order. For the purpose of this exercise, you will use a comprehension
expression, not a [::-1] slice, a reversed(), or anything else of that nature.

The following assertions must hold:
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assert inverse(’abc’) == [’c’, ’b’, ’a’]

assert inverse(’’) == []

(50) Write a predicate palinv(s) equivalent to palindrome(s), but using inverse.

The following assertions must hold:

assert palinv(’abba’)

assert palinv(’abcba’)

assert palinv(’’)

assert palinv(’a’)

assert not palinv(’ab’)

(51)
∣∣∣∣ for elem in collection versus for i in range

∣∣∣∣
Write a function rmfrom(s,bad) returning the list of the elements of the collection
s that do not appear in the collection bad. The order of elements must be preserved
if s is a sequence.

The following assertion must hold:

assert rmfrom(’esope reste ici et se repose’, ’aeiouy ’) == \

[’s’, ’p’, ’r’, ’s’, ’t’, ’c’, ’t’, ’s’, ’r’, ’p’, ’s’]

(52)
∣∣∣∣ laziness is a virtue: reuse previous functions

∣∣∣∣
Write a function rmspaces(s) returning a list of the elements of the sequence s, in
the original order, from which spaces have been removed.

The following assertion must hold:

assert rmspaces(’esope reste ici et se repose’) == \

[ ’e’, ’s’, ’o’, ’p’, ’e’, ’r’, ’e’, ’s’, ’t’,

’e’, ’i’, ’c’, ’i’, ’e’, ’t’, ’s’, ’e’, ’r’,

’e’, ’p’, ’o’, ’s’, ’e’]

(53)
∣∣∣∣ are you virtuous yet?

∣∣∣∣
Write a predicate palindrome_sentence(s) testing whether the sentence de-
scribed by the sequence s is palindrome. A sentence is palindrome is the sequence
of its letters is palindrome — whitespace is abstracted away.

The following assertions must hold:

assert palindrome_sentence(’esope reste ici et se repose’)

assert not palindrome_sentence(’esope reste ici et se reposes’)

(54)
∣∣∣∣ a lot of maths can be translated in Python almost directly

∣∣∣∣
Write a function fsum(f,i,j) such that

fsum(f,i,j) =

j∑
k=i

f(k) .

The following assertions must hold:

assert fsum (lambda i:i, 0,10) == 55

assert fsum (lambda i:i**2, 0,10) == 385

38 Our generators have character

(55) You will need Sec. 22.4.7[p48]: “Python strings use Unicode”.

Write a function crange(a,b) that returns a generator for all characters from a

to b, in Unicode point order. This can (and must) be done in one line, using a
generator expression.

It must satisfy the following assertion:

assert "".join(crange(’A’,’Z’)) == ’ABCDEFGHIJKLMNOPQRSTUVWXYZ’

assert next(crange("a","b")) == "a"

∣∣∣∣ generator expressions
variadic functions

∣∣∣∣
Read Sec. 24.5.1[p84]: “Comprehensions for every type; first contact with generators”.

(56) This question requires the yield or yield from keywords from Sec. 29[p112]: “Iterables,
iterators, and generators”, as well as Sec. 25.1[p92]: “Variadic function definition”. It is
advised to use Sec. 24.6[p89]: “Packing and unpacking” as well.

Write a variadic function charrange(a1, b1, . . . , an, bn) returning a generator for
all characters of the successive ranges ak, bk, as defined in the previous question.
It need not be written in one line.

It must satisfy the following assertions:

assert "".join(charrange(’A’,’Z’,’a’,’z’,’0’,’9’)) == \

’ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789’

assert next(charrange("a","b")) == "a"

assert "".join(charrange()) == ’’
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∣∣∣∣ yield and yield from, and the difference between them
∣∣∣∣

39 And then there were Nones. . .∣∣∣∣ side effects; order of evaluation
∣∣∣∣

Read Sec. 22.5[p53]: “Nihilism: NoneType: expression versus statement”.

Mentally execute the script below, and write down the output which you expect Python
to produce.

2+2

print(2+2)
print(print(2+2),print(2+2))
l= [ 1+i for i in range(3) ]

pl = [ print(1+i) for i in range(3) ]

print(l,pl)

Execute the code. Compare what was actually produced to what you thought would
be. If they do not match exactly, take the time to understand why.

40 Sets, dictionaries and slices training

If you have not already done so, read Sec. 22.4.6[p47]: “Slicing and dicing, concatenation,
repetition”, Sec. 24.3[p77]: “Sets: class set”, and Sec. 24.4[p78]: “Dictionaries: class dict”.∣∣∣∣∣∣∣∣∣∣

sets are hash tables =⇒ no mutable values
sets are unordered =⇒ not indexable

sequence slicing syntax (on indexable stuff only!)
False == 0, so problems in sets, dicts

comprehensions are loops behind the scenes, so side effects work as usual

∣∣∣∣∣∣∣∣∣∣
Mentally execute the following blocs of code, and write down on a piece of paper what
you think Python will display.

In cases where Python’s output is not entirely predictable, be sure to note that on your
answer, and explain the cause and extent of this unpredictability.

Then execute the code and confront your answer to reality.

(57) print(set(’totto’))

(58) print({’totto’})

(59) print({{’toto’}, {’tata’}})

(60) print(’abcde’[-1])

(61) print({’abcde’}[0][1])

(62) print(’abcdefg’[2:5])

(63) print((list(’abcdefg’)*3)[2:5])

(64) print((list(’abcdefg’)*3)[19:22])

(65) print(’abcdefg’[-5:-2])

(66) print( list(range(12))[13:5:-2] )

(67) print({0:1, None:2, False:5})
(68)

s = { print(i) for i in range(1,3) }
ss = { (i,print(i)) for i in range(1,3) }
sss = { (i,i,print(i)) for i in range(1,3) }
print(s,ss,sss,sep=’\n’)

41 What the what!?

Some days, in my profession, you come across code that you just have to share with the
world. As therapy.

In this exercise, I share with you very special code that I have seen written sincerely,
candidly, by my own students, in answer to questions in this very document, whether
in class or during an exam (ai).

The trick is, I don’t tell you whether it works, or what question it is supposed to answer.
It is up to you to figure out what it does — or purports to do.

Then you must correct it where necessary, and simplify it.

This section is small for now, as I only recently had this idea to systematically weaponise
students’. . . creativity into exercises, but, with the upcoming exams, I have every
confidence that it will grow fast :-)

(69) Courtesy of a student from 3A STI Apprentissage, 2020-2021, who wishes to remain
anonymous:

(ai)It’s less funny during an exam; no points are awarded for being facepalm-worthy.
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def spicy_function(X, Y):

E = set()

{ E.add( (x,y) ) for x in X for y in Y }
return E

This works, and not quite accidentally either, but it’s interesting to understand
why, and to understand what the value of

{ E.add( (x,y) ) for x in X for y in Y }

is, and what happens to it.∣∣∣∣ side effects , the value denoted by the comprehension
∣∣∣∣

(70) 3A STI, 2019-2020. This one was written all in one line. Given the limitations of
the PDF / paper format, I had to wrap it.

This is sad, as some of the poetry is lost.

True if len(p) == 0 else not False in {True if p[j] ==

p[len(p)-j-1] else False for j in range (len(p)//2)}

∣∣∣∣ (C==True)==True is not better in an expression-if
“there has to be a better way to write this”

∣∣∣∣

42 Encapsulating the sparse matrices∣∣∣∣∣∣
encapsulation: hide implementation details behind an interface

tailor your implementation to your needs
test your assumptions regarding performance

∣∣∣∣∣∣
A sparsely populated matrix (or sparse matrix for short) is a matrix in which the vast
majority of the values are 0, null, None, or whatever other value signifies “nothing to
see here!” in the context at hand.

For instance, when implementing a game operating on a map of size 100× 100, if you
have only a couple hundreds of characters on the map, the matrix representing the
situation would qualify as sparse. Sparseness, and its opposite, density, have strong
implications regarding the performance of various implementations of matrices.

In this exercise we shall write two different implementations of matrices, hiding the
dirty details of the implementation from the user behind an interface. This extremely

common technique is referred to as encapsulation (aj) in Object-Oriented Programming
(OOP). You will need to read and understand the basics of Sec. 27[p99]: “Object Oriented
Programming in Python”.

Then, we shall compare the performance of those two interchangeable implementations.

To keep things simple, we are not going to implement matrices in all generality, but
only square matricesMN of size N×N, N ∈ N, of the form

MN =


0 0 0

0 1

0

0 0 N− 1

 ,

which is to say, diagonal matrices defined as

[MN]ij =

{
i if i = j
0 otherwise

.

Furthermore, we shall only implement one operation on those matrices: the computa-
tion of the sum

∑
MN of their elements:∑

MN =
∑
i,j

[MN]ij .

Though we shall not implement that, we shall allow for the possibility of the matrices
being modified by the user; thus our representations and the implementation of our
methods shall remain fully general, and will not take advantage of the extremely
specific form of MN. It just happens that we initialise our matrices to MN, that’s all,
and every bit of code you write should work equally well if we decided to initialise to
random values instead.

While this still appears very restrictive, to go back to the “game” application, this is
sufficient to simulate populating sparse matrices and executing an operation that needs
to take everything on the grid into account. With this, we shall have more than enough
to draw pretty clear conclusions with regards to performance; you’ll see.

Our implementations of matrices shall follow the following interface: the class con-
structor will take as single argument the dimension N, of default value 100, and the
matrix object shall offer:

⋄ the attribute N, storing the dimension,

⋄ the attribute m, storing the internal representation of the matrix, which the user is
not really supposed to interact with directly,

(aj)https://en.wikipedia.org/wiki/Encapsulation_(computer_programming).
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⋄ the method sum, taking no argument, returning the sum of the elements of the
matrix,

⋄ and support a string representation (via repr, cf. Sec. 27.7[p103]: “String representa-
tions str and repr”), for which I’ll provide most of the code.

(71) Let us implement a class matrix providing a naïve “list of list” implementation of
MN.

You might want to refresh your reading of Sec. 24.2.2.2[p73]: “Case study: nested
lists/matrices” on the initialisation of matrices.

Complete the following code to initialise the matrix toMN:

class matrix():

def __init__(s, N=100):

s.N = N

s.m = [ [... for ...] for ... ]

def __repr__(s): return f"matrix({repr(s.m)})"

Yes, as the code indicates, populating the internal representation should be done
in one (logical) line. Remember that Sec. 23.2[p61]: “Conditional expression:
.. if .. else .. ternary operator” exists.

You should obtain

>>> matrix(3)

matrix([[0, 0, 0], [0, 1, 0], [0, 0, 2]])

and the following assertion should hold:

assert matrix(3).m == [[0, 0, 0], [0, 1, 0], [0, 0, 2]]

Aside on repr: Note that our repr does not exactly follow Python convention, in
that it does not return the Python code that would produce the object:

>>> matrix([[0, 0, 0], [0, 1, 0], [0, 0, 2]])

TypeError: ’list’ object cannot be interpreted as an integer

Morally, we should have returned the string "matrix(3)", but we are anticipating
a more general version of matrix, where we can initialise a matrix with whatever
we want, and modify it.

(72) Now, implement the matrix.sum method, by completing the following code:

def sum(s):

return sum(...)

There again, the implementation should be in one line, following the structure of
the code I provide, and the following assertion should hold:

assert all( matrix(N).sum() == N*(N-1)//2 for N in range(10) )

We’re all done with our first implementation.

(73) Intermission:

Pop quiz on something completely different: in the assertion above, how do I
know that N*(N-1)//2will be evaluated as (N*(N-1)) // 2, which works because
maths guarantee that N*(N-1) is even (ak) for all N, and not N * ((N-1)//2) which
introduces a rounding error if N-1 is odd?

>>> [ (a,b) for N in range(10) if (a:= N*(N-1)//2) != (b:= N*((N-1)//2)) ]

[(1, 0), (6, 4), (15, 12), (28, 24)]

Tip: Figure 1[p61].∣∣∣∣ always think of precedence and associativity
when in doubt, don’t write useless parentheses: check, and learn

∣∣∣∣
(74) Now let’s go back to our matrices, and provide another implementation, called

smatrix, with a completely different internal representation. Spoiler alert, it is
called smatrix because it is optimised for sparse matrices.

Instead of a natural “list of lists” representation, we’ll use a “mapping” represen-
tation, whereby we store a mapping from coordinates of non-zero cells to their
value. Any cell not appearing in the mapping is assumed to contain 0.

For instance,

M3 =

0 0 0

0 1 0

0 0 2


is represented as{

(1, 1) 7→ 1, (2, 2) 7→ 2
}

.

You will implement this mapping using a dictionary. More specifically, you will
use a defaultdict, so that any coordinate not in the dictionary is associated with
0. See Sec. 24.4.1.2[p82]: “defaultdict, from collections”.

You will complete the following code:

(ak)The product of an even integer with any other integer is even. Of two consecutive numbers, one is even.
Therefore. . .

144



class smatrix():

def __init__(s, N=100):

s.N = N

s.m = defaultdict(..., { ... for ... })

def __repr__(s): return f"smatrix({repr(s.m)})"

You should get something like

>>> smatrix(3)

smatrix(defaultdict(<function smatrix.__init__.<locals>.
<lambda> at 0x7f54f0748220>, {(1, 1): 1, (2, 2): 2}))

which is not pretty to look at — we’ll fix that later — and the following assertions
must hold:

assert type(smatrix(3).m) is defaultdict

assert smatrix(3).m == { (1, 1): 1, (2, 2): 2 }
assert smatrix(3).m[(999, 999)] == 0

(75) Now, implement the smatrix.sum method, by completing the following code:

def sum(s):

return sum(...)

As usual, in one line.

For this first implementation, I add the constraint that it must be a pretty naïve
implementation of

∑
i,j[MN]ij, following the structure of matrix.sum, explicitly

asking the internal representation for the values of all the cells in the matrix.

If you see a much better way of doing this, don’t worry, we’ll get there in a couple
of questions. If you don’t, and wonder what I’m talking about, don’t worry, your
first instinct will probably be the naïve implementation I’m asking for, so all is
well :-)

assert all( smatrix(N).sum() == N*(N-1)//2 for N in range(10) )

(76) Write a method smatrix.full_matrix() that returns the “list of lists” representa-
tion of the matrix.

You should have

>>> smatrix(3).full_matrix()

[[0, 0, 0], [0, 1, 0], [0, 0, 2]]

and the following assertion must hold:

assert all( smatrix(N).full_matrix() == matrix(N).m for N in range(10) )

∣∣∣∣ translate from one representation to another
∣∣∣∣

(77) Now let us fix our repr so it doesn’t look too ugly. Change what needs to be
changed so that we see

>>> smatrix(3)

smatrix([[0, 0, 0], [0, 1, 0], [0, 0, 2]])

instead of

>>> smatrix(3)

smatrix(defaultdict(<function smatrix.__init__.<locals>.
<lambda> at 0x7f54f0748220>, {(1, 1): 1, (2, 2): 2}))

The following assertion should hold:

assert all( repr(smatrix(N)) == "s"+repr(matrix(N)) for N in range(10) )

∣∣∣∣ hide dirty internal structure from the user
∣∣∣∣

(78) It’s time for some performance testing.

Here is some code for performance testing:

def test():

from timeit import timeit

for desc,f in [

("matrix init", lambda: matrix()),

("matrix init+sum", lambda: matrix().sum()),

("sparse matrix init", lambda: smatrix()),

("sparse matrix init+sum", lambda: smatrix().sum()),

]:

print(f"{desc:<25}{timeit(f,number=1000):.3f}")

Execute it, and you should see numbers telling a story similar to this:

matrix init 0.183

matrix init+sum 0.446

sparse matrix init 0.005

sparse matrix init+sum 1.208
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At the risk of stating the obvious, these are performance numbers and will vary
from machine to machine; they should lead to the same conclusion, however.

And what is that conclusion? We see that smatrix initialises massively faster than
matrix. This is not surprising, as the former allocated all cells into memory, even
if zero, and almost all of them are zero, whereas the latter only allocates memory
for non-zero cells. All good.

However, we are disappointed to see that sum performance is actually worse for
smatrix. How come?∣∣∣∣ good structure + bad algo = bad performance

∣∣∣∣
(79) If you had a better idea for implementing smatrix.sum, now is your time to shine.

If not, now is your time to think one up.

Tip: just sum over the non-zero values of the internal representation. See
Sec. 24.4[p78]: “Dictionaries: class dict” to find a useful method of dict, beginning
by v, that you might want to use. . .

With the new implementation, the performance profile should match

matrix init 0.185

matrix init+sum 0.467

sparse matrix init 0.005

sparse matrix init+sum 0.006

In other words, smatrix is now massively more efficient than matrix for all
supported operations.

I hope you appreciated in passing how convenient it is that we can just completely
change the implementation of a method at the drop of a hat, and still trust in the
correctness of the code because we have unit-test assertions in place. Isn’t it nice?
(You do have assertions in place, right? Right?)∣∣∣∣ good structure + good algo = good performance

∣∣∣∣
(80) What performance profile would you expect from those two implementations on

dense matrices, that is, matrices in which most values are non-zero?∣∣∣∣ error 404: universal perfect structure not found
∣∣∣∣

43 Power to the sets!

We recall the notion of powerset of a set S, denoted by ℘(S), 2S, P(S), P(S), etcetera.

s ∈ ℘(S) ⇐⇒ s ⊆ S or ℘(S) = { s | s ⊆ S } .

In other words, the powerset of S is the set of all (non-strict) subsets of S. For instance:

℘({ 0, 1 }) =
{
∅, {0}, {1}, { 0, 1 }

}
Further recall the property |℘(S)| = 2|S|, which is one of the reasons for the use of the
notation 2S: we have |2S| = 2|S|; the other reason is of course the bijection between the
powerset and the set of functions { 0, 1 }S — both reasons boil down to the same thing,
in the end.

It is interesting to see a proof of that property:

Theorem 3 (Cardinality of Powerset). Let S be a set; then |℘(S)| = 2|S|.

Proof sketch. By induction on |S|.

If |S| = 0, then S = ∅, and |℘(∅)| = |{∅ }| = 1 = 20.

Let S = {e} ∪ T , with |T | = n, and assume |℘(T)| = 2n. Let s ⊆ S; then either e ∈ s or
e < s, and in either case s− {e} ∈ ℘(T). So we have in total 2n powersets containing e,
and 2n not containing e, so |S| = 2n+1 = 2|S|. □

Note that the proof suggests a recursive definition of the powerset. . .

(81) Define a function powerlist(l) returning the list of the positional sublists of the
list (or any other iterable) l, in no particular order.

By “positional sublist”, I mean a list containing some elements of l, based on their
positions, not on their values. Thus, if values are repeated in the list l, they are
still treated as distinct.

The following assertions must hold:

assert powerlist([]) == [[]]

assert sorted(powerlist([1,2,3]), key=lambda x:(len(x), x)) == \

[[], [1], [2], [3], [1, 2], [1, 3], [2, 3], [1, 2, 3]]

assert sorted(powerlist([1,1,1]), key=len) == \

[[], [1], [1], [1], [1, 1], [1, 1], [1, 1], [1, 1, 1]]

assert all( len(powerlist(range(n))) == 2**n for n in range(5) )
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You will implement this recursively and take care to avoid repeating redundant
recursive calls.

This can easily be done in three lines (excluding function declaration).

The cardinality proof above hints at the recursion you need to apply.

You may — no, you most definitely will — want to apply some pattern-matching or
packing/unpacking, here: see Sec. 23.6[p65]: “Pattern matching: match..case” and
Sec. 24.6[p89]: “Packing and unpacking”. Hint: what does e,*l = l or *l,e = l

do?∣∣∣∣ using packing/unpacking for recursion on lists
∣∣∣∣

(82) Now write powerlist2, another version of powerlist, implemented non-
recursively.

There again, this can easily be done in three lines (excluding function declaration).

It must satisfy the same assertions as powerlist; you can have the assertions apply
to both functions like so:

for powerlist in (powerlist, powerlist2):

assert powerlist([]) == [[]]

assert sorted(powerlist([1,2,3]), key=lambda x:(len(x), x)) == \

[[], [1], [2], [3], [1, 2], [1, 3], [2, 3], [1, 2, 3]]

assert sorted(powerlist([1,1,1]), key=len) == \

[[], [1], [1], [1], [1, 1], [1, 1], [1, 1], [1, 1, 1]]

assert all( len(powerlist(range(n))) == 2**n for n in range(5) )

∣∣∣∣ a recursive definition can also suggest an easy loop implementation
∣∣∣∣

(83) Can you implement a function powerset(s) in Python that naively matches ℘(·)
and returns a set of sets? Why?

Tip: Sec. 24.3[p77]: “Sets: class set”, Sec. 24.3.1[p78]: “Frozen sets: class frozenset”.

(84) Implement a function powerset(s) corresponding to ℘(·), and returning a set of
frozensets. The parameter s may be of any iterable type, and must not be altered
by the call.

Reminder: packing/unpacking works on sets, and set.pop exists as well.

The following assertion must hold:

assert all( powerset(r:=range(n)) == { frozenset(s) for s in powerlist(r) }
for n in range(5) )

∣∣∣∣ sets of sets are common in maths; need thought in Python
∣∣∣∣

(85) Write a generator function powergen(s), where s is again any iterable, than
generates all subsets of s.

The following assertions must hold:

assert type(powergen([])) is type(_ for _ in [])

assert all( type(s) is set for s in powergen(range(5)) )

assert all( set(map(frozenset, powergen(r:=range(n))))
== { frozenset(s) for s in powerlist(r) }
for n in range(5) )

You can use yield from if you want, but in that instance it is simpler not to.∣∣∣∣ recursion in generator functions
∣∣∣∣

44 Let’s get primitive!

In Sec. 36.2[p136]: “This is all very derivative. . . ”, we computed numerical approx-
imations of derivatives. Let us now do the same thing for integral calculus and
primitives.∣∣∣∣ apply comprehension expressions to

solve a seemingly nontrivial problem in a few lines

∣∣∣∣
Our goal is to compute a numerical approximation of a primitive (or antiderivative) of
any given continuous function of type R → R. That is to say, given a function f, we
want to obtain a function F such that F ′ ≈ f.

Because constants disappear during derivation, every function f has infinitely many
primitives, differing only up to an additive constant. Each can be written F or

∫
f(x)dx.

Primitives and definite integrals, which represent the area beneath the curve of the
function, are related by the following equation:∫b

a

f(x) dx = F(b) − F(a) .

Thus, if we can compute a definite integral, we can obtain a suitable primitive via

F(x) =

∫
f(x)dx =

∫x
0

f(t) dt .
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Figure 4: General idea of Riemann integration

Our first objective will therefore be to implement definite integrals. The simplest way
to do that is to use Riemann integrals.

The general idea is to approximate the area under the curve by partitioning the abscissa
into many smaller intervals, and approximate the area under the curve on each smaller
interval by a rectangle. Then you can sum all rectangles. The smaller each small
interval, the better the approximation.

There are different possible choices regarding the selection of the smaller intervals, and
of the value used for the height of each rectangle, but they all give the same result
when the intervals get infinitesimally small. This is illustrated visually in Figure 4[p148].

Definition 4 (Riemann integral). Let f : [a, b]→ R and

P =
[
(x0, x1), (x1, x2), . . . , (xn−1, xn)

]
,

a partition of [a, b]. That is to say, we have

a = x0 < x1 < x2 < · · · < xn = b

The Riemann sum of f on P is
n∑
i=1

f(x∗i )∆xi ,

where ∆xi = xi − xi−1 and x∗i ∈ [xi−1, xi].

The Riemann integral is the limit of the Riemann sum as the maximal size of partitions
∥∆x∥ = maxi ∆xi goes to 0:∫b

a

f(x)dx = lim
∥∆x∥→0

n∑
i=1

f(x∗i )∆xi.

The choice of x∗i can produce different sums, but does not matter at the limit, for the
integral.

For our purposes, we shall take uniform partitions, that is to say all ∆xi are equal, and
select x∗i as the middle of its interval:

x∗i =
xi + xi−1

2
, ∀i ,

this is called a middle Riemann sum.

(86) Write a function partition(a,b,n) that, given two floating point values a and b,
and n ∈ N, returns the partition of the interval [a, b] into n equal parts.

Specifically, you must return a list of couples [ (a1, b1), ..., (an, bn) ] such
that a1 = a, bn = b, and all intervals [ai, bi] are of the same size.

It should be written in one or two lines using a comprehension expression, and it
must satisfy the following assertions:

assert partition(-1, 1, 1) == [(-1.0, 1.0)]

assert partition(0,30,3) == [(0.0, 10.0), (10.0, 20.0), (20.0, 30.0)]

assert partition(30,0,3) == [(30.0, 20.0), (20.0, 10.0), (10.0, 0.0)]

assert partition(-1, 1, 4) == [(-1.0, -0.5), (-0.5, 0.0),

(0.0, 0.5), (0.5, 1.0)]

(87)
∣∣∣∣ Applying for a,b in l: multiple assignment in iteration

∣∣∣∣
Write a function riemann(f, a, b, n=100) that returns an approximation of∫b

a

f(x)dx ,

the definite integral of f on the interval [a, b], performed by middle Riemann sum,
with a partition of [a, b] in n equal parts.

This function can and should be written in one line, of the form
return sum ( ... ), and should satisfy the following assertions:
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assert abs(riemann(lambda x:x, 0,1) - 0.5) < 1e-9

assert abs(riemann(sqrt, 0,1) - 2/3) < 1e-4

(88) Write a function primitive(f, x, n=100) returning the value

F(x) =

∫x
0

f(t) dt ,

as approximated by a middle Riemann sum on a uniform partition in n equal
parts.

The following assertion must hold:

assert all( abs( primitive(lambda x:x, x) - (x*x / 2)) < 1e-9

for x in [-32, 0, 1, 2, 8, 64] )

(89) Write a function fprimitive(f, n=100) returning F, the approximated primitive
function of f, as per the previous question.

The following assertion must hold:

assert all( fprimitive(sqrt)(x) == primitive(sqrt, x) for x in range(100) )

(90) Let us visualise this. Using the same example functions f and g as in Sec. 36.2[p136]:
“This is all very derivative. . . ”, graph the functions g, g+ 2, and F =

∫
f(x)dx, as

given by F = fprimitive(f).

You should obtain something similar to the nearby figure. You should, as for
derivatives, see that the error due to the numerical approximation is imperceptible.

We shall come back to derivation in Sec. 45[p149]: “A smidgen of Computer
Algebra”, using symbolic methods instead of numerical ones. Note that computing
primitives symbolically is a vastly more difficult problem than computing derivatives
symbolically. Many primitives of rather simple functions do not even have a
closed form! For instance,∫

e−x2

dx,
∫
xx dx,

∫
1

ln x
dx,

∫
sin x2 dx,

∫
sin x
x

dx, . . .

Thus, we shall not come back to integration from a symbolic standpoint.

45 A smidgen of Computer Algebra

This exercise requires a good understanding of Sec. 23.6[p65]: “Pattern matching:
match..case”, Sec. 27.5[p101]: “matching attributes”, and Sec. 28[p109]: “Advanced structural
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Visualise Exact and Approximated Primitives
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Figure 5: matplotlib visualisation of primitive
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pattern matching”. For the second section, Sec. 27[p99]: “Object Oriented Programming in
Python” is also required.∣∣∣∣ apply advanced pattern matching to a rather complex problem

∣∣∣∣
In Sec. 36.2[p136]: “This is all very derivative. . . ”, we used numerical methods to
approximate the values of derivatives at any point, which is all well and good but. . .
didn’t you wish we could get exact answers? For instance

d
dx

(
x2 − 2

)
= 2x ,

or

d
dx

(
1+ 2 ln(x2 − 1)

)
=

4x

x2 − 1

or

d
dx

(
ln x(3x2 + 1)

)
= 3x+

1

x
+ 6x ln x .

How do we get that kind of answers out of the computer? Well, one way is to fork
out the money for Computer Algebra Systems (CAS) such as Maple, Mathematica, or
MATLAB, or install free and open-source alternatives such as SageMath (al), Axiom,
or Maxima, or even just look up the solution on https://www.wolframalpha.com/ . . .
but where is the fun in not reinventing the wheel?

Instead, we shall implement our own rudimentary CAS. We will need to manipulate
mathematical expressions symbolically to compute derivative functions.

First step, what is the formal grammar of those expressions? We shall limit ourselves to

e ::= x | e+ e | e− e | e÷ e | e× e | f(e) | ee | −e | v ,

where v ∈ R is a constant value, x is a variable name and f a function name. In practice
we shall support only ln.

45.1 A perfect match

(91)
∣∣∣∣ implementing an inductive type definition in Python

∣∣∣∣
Define a class system in the style of Sec. 28[p109]: “Advanced structural pattern
matching” for the type of mathematical expressions.

(al)If we had a serious Python project involving symbolic computation, the sane thing would be to use Sage
and SymPy. SymPy is a Python library for symbolic computation, and Sage, which includes SymPy, is partly
implemented in Python, and interoperates with it.

Note that every construct is binary, even function calls and exponentiation that
are not typically thought of as “operators”. Thus I suggest defining a larger type
BinExpr to handle all of theses, and only defining +,−,×,÷ as proper BinOp. This
will enable the factorisation of some rules. Thus I propose that you copy this

@dataclass

class BinExpr:

a: object

b: object

class BinOp (BinExpr): pass

@dataclass

class UnOp:

a: object

and define each operator by inheritance of those types. Variable and function
names shall be strings.

For instance, you should be able to write

>>> x = "x" # our main variable name

>>> f1 = Plus(1, Mul(2,Call("ln",Minus(Pow(x,2),1))))

>>> f1

Plus(a=1, b=Mul(a=2, b=Call(a=’ln’, b=Minus(a=Pow(a=’x’, b=2), b=1))))

>>> f2 = Mul(Call("ln",x), Plus(Mul(3,Pow(x,2)), 1))

>>> f2

Mul(a=Call(a=’ln’, b=’x’), b=Plus(a=Mul(a=3, b=Pow(a=’x’, b=2)), b=1))

Make sure to define f1, f2, and x in your source file, we shall use them as running
examples.

(92)
∣∣∣∣ implementing recursive functions on inductive types

∣∣∣∣
Ok, we have formulæ, but they are ugly to look at. Write a function estr such that

TODO ADD ASSERTIONS THROUGHOUT EXERCISE

>>> estr(f1)

’(1 + (2 * (ln(x^2 - 1))))’

>>> estr(f2)

’((ln x) * ((3 * x^2) + 1))’

Recall the trick from Sec. 28[p109]: “Advanced structural pattern matching” to use
an attribute symb to associate a symbol to each operator.
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There are still a lot of parentheses, but analysing operator precedence to get rid
of some of them would be a more difficult exercise. This is good enough for our
purposes.

(93)
∣∣∣∣ embedding semantics in inductive type definitions

catching specific exceptions

∣∣∣∣
We have symbolic expressions, which is nice. But at some point we want nu-
merical results as well, if only to be able to graph them. Write a function (am)

eval(e,var,val) that produces the numerical value of the evaluation of the
expression e when the variable var is affected the value val.

For instance, you should obtain:

>>> eval(f2, x, 0)

inf

>>> eval(f2, x, 0.1)

-2.371662645783867

>>> eval(f2, x, 1)

0.0

>>> eval(f2, x, 2)

9.010913347279288

>>> eval(f2, x, 1.4)

2.3149289879539445

>>> eval(f2, "y", 1)

... an error of some sort

For graphing purposes, in case of division by zero or domain error — for instance
ln is not defined everywhere — you will return the value float(’inf’), which
is to say ∞. For this, you will need to use try/except. Note that you should be
precise in which exceptions you catch:

>>> log(0)

ValueError: math domain error

>>> 1/0

ZeroDivisionError: division by zero

We specifically want to intercept math domain error, not all ValueErrors.
ValueErrors can arise in many other cases, in fact it is probably a ValueError

(am)Note that a function named eval is already defined in Python, but it does something quite different — it
evaluates a string containing Python code. There is no harm in masking its definition, as we do not use it.

which we want to raise if we evaluate an improper expression. To avoid catching
unwanted exceptions, use something like

except ValueError as e:

if str(e) =="math domain error":

return float(’inf’)
raise e

Thus, we do not interfere with our ability to raise ValueErrorwhen faced with an
expression which we cannot evaluate:

>>> eval([],x,1)
ValueError: []

Note that it is possible to use the same trick as for string conversion to handle all
BinExpr in one line. Just as we have an attribute symb that contains the symbol of
a construct, we can have an attribute sem that contains its semantics.

For instance I have

class Plus (BinOp):

symb = "+"

sem = lambda x,y:x+y

You can do the same thing not only for all operators, but also for Call and Pow.

There is a niggling little difficulty to it, though. In Sec. 28[p109]: “Advanced
structural pattern matching”, we could write directly

match e:

case BinOp(l,r): return f"({fstr(l)} {e.symb} {fstr(r)})"

Since sem is a function, and not a constant like symb, when BinOp (or BinExpr) is
instantiated it becomes a bound method, and thus takes self as a first argument.
Recall that e.sem(a,b) is a notational shortcut for BinExpr.sem(e,a,b), if e is of
type BinExpr.

To avoid this, you need to get the attribute sem not from the instance e, but from
the type BinExpr. Thus you will write something like type(e).sem(a,b).

If you run into the error

TypeError: Call.<lambda>() takes 2 positional arguments but 3 were given

That is probably the origin of the problem.
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Another potential difficulty is the handling of Call. We restrict ourselves to things
like Call("ln", e), where the left-hand side is a constant function name — and
we have only need of ln, specifically, but would like to be able to extend to sin, cos,
etc. You need to write a semantics attribute of the form λf, e : JfK(e), where, for
instance, J·K :"ln"7→ ln. Think carefully about how to do that.

Or, you could just write one line per operator and not have to think about any of
that, but that’s just no fun at all.

Recall as well the trick of using z = lambda e: eval(e,var,val) for the recursive
calls, explained at the end of Sec. 28.1[p111]: “An overlong aside on naming
conventions”.

(94) Now that eval is all set, let us graph our functions. This time we do not get to cheat
with numpy to define the functions — recall the magical x in question (42)[p137]:

x = np.linspace(-2,2,100) # x varies in [-2,2], 100 uniform samples

npf = f(x)

— we do it the hard way instead, by generating sequences of couples (x,f(x)),
and graphing that.

import matplotlib.pyplot as plt

plt.figure(figsize=(12,8))

plt.rcParams.update({"font.size": 18 })

X = [-2 + i/100 for i in range(500) ]

Yf1 = [eval(f1,x,X) for X in X]

Yf2 = [eval(f2,x,X) for X in X]

plt.ylim([-5, 10]) # limit the y axis

plt.plot(X,Yf1,"b",label=estr(f1), linewidth=2)

plt.plot(X,Yf2,"r",label=estr(f2), linewidth=2)

plt.legend(loc="best")

plt.axvline(0); plt.axhline(0)

##plt.savefig("../excasf1f2.pdf", transparent=True)

plt.show()

You should obtain this:

2 1 0 1 2 3

4

2

0

2

4

6

8

10
(1 + (2 * (ln(x^2 - 1))))
((ln x) * ((3 * x^2) + 1))

(95) Now we can move on to the very heart of the matter: symbolically computing
the derivative. Your goal is to write a function D(e,x), where e is an expression
and x a variable name — in practice "x" — that returns an expression for d

dxe, the
derivative of e with respect to x.

For instance, we should get

print("f2:", estr(f2), "\n\t->")

print(estr(D(f2,x)))
---------------------------------------------------------------------

f2: ((ln x) * ((3 * x^2) + 1))

->

(((1 / x) * ((3 * x^2) + 1)) + ((ln x) * (((0 * x^2)

+ (3 * (2 * x^1))) + 0)))

For now we shall not make any attempt at simplifying the expressions thereby
obtained — e.g. multiplications and additions by 0— that will be the goal of the
next question.

To achieve the computation of the derivation, recall (some of) the rules of derivation.
We have:

d
dx
c = 0 c ∈ R

d
dx
xn = nxn−1
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d
dx

ln x =
1

x

as well as, using f ′ as short for d
dxf(x):

(cf) ′ = cf ′ c ∈ R

(f+ g) ′ = f ′ + g ′

(f− g) ′ = f ′ − g ′

(fg) ′ = f ′g+ fg ′

Those rules should be enough to handle f2. For f1, you will also need to support
the chain rule, or composition rule:

(g ◦ f) ′(x) = g ′(f(x))f ′(x) .

Don’t do that for now, we shall come back to it later, once we have a complete
chain for f1. . .

(96) We can now compute derivatives, and they are correct, but there are many obvious
simplifications left on the table. We want to define a function simp(e) to simplify
the expressions e we obtain.

Simplifying mathematics equations is actually a very difficult topic in all generality,
where most questions become undecidable. Indeed there are so many ways to
manipulate the expressions, and no clear criterion of when the expression is
“fully simplified ”. Think of all the possibilities when applying associativity and
commutativity rules to all operators, and so on. That way lies madness.

We shall instead only pick up on the most obvious simplifications involving the
constants 0 and 1. For instance, we want to obtain:

print(estr(D(f1,x)))
print(estr(Df1 := simp(D(f1,x))))

---------------------------------------------------------------------

(((1 / x) * ((3 * x^2) + 1)) + ((ln x) * (((0 * x^2)

+ (3 * (2 * x^1))) + 0)))

(((1 / x) * ((3 * x^2) + 1)) + ((ln x) * (6 * x)))

Even this is not fully straightforward to code. Consider the expression

(0× x2) + (3× e) ,

where e is some sub-expression. When doing your recursive descent into the
structure, you only see something of the form

Plus( Mul(..), Mul(..) )

you don’t know yet that the left-hand side is zero, so you cannot simplify. You
will need to come back later, from the top, and do another pass. The alternative
would be to write deep patterns, like

Plus( Mul(0, e)), Mul(..) )

Plus( Mul(e, 0)), Mul(..) )

...

but the number of rules explodes exponentially with the number of simplifications
you want to detect as well as the depth of detected patterns. This is not sustainable.

So, you are not going to write simp immediately. First, write a function
fixpoint(f,e) that applies a function f on e repeatedly, until a fixed point
e∗ is reached: that is, until fn(e) = fn+1(e) = e∗. It then returns e∗.

In other words, f is applied on e until it can find nothing left to change.

(97) Now that we have fixpoint, we can code simp. The idea is that we shall have the
architecture suggested at the end of Sec. 28.1[p111]: “An overlong aside on naming
conventions”:

def simp(e):

def z(e):

match e:

case Plus(0,e) | Plus(e,0): return e

...

return fixpoint(z,e)

The sub-function z does only one pass, but it is applied repeatedly until all
simplifications are exhausted. For the patterns themselves, start with the simplest
identity function you can write, then add the special patterns — Plus(0,e) etc —
on top. Make it so.

We obtain

(((1 / x) * ((3 * x^2) + 1)) + ((ln x) * (6 * x)))

for the derivative of f2, which matches

d
dx

(
ln x(3x2 + 1)

)
= 3x+

1

x
+ 6x ln x .

(98) Using our eval, simp, and D functions, produce a plot of f2 and its derivative:
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f2 = ((ln x) * ((3 * x^2) + 1))
f2'=(((1 / x) * ((3 * x^2) + 1)) + ((ln x) * (6 * x)))

(99) Now let us deal with f1. Recall that g ◦ f(x) = g(f(x)) and that we need the chain
rule

(g ◦ f) ′(x) = g ′(f(x))f ′(x) ,

which we are going to write more compactly as

(g ◦ f) ′ = (g ′
◦ f)f ′ .

How does that apply here? We have ln(x2 − 1); g = ln and f = λx : x2 − 1. Let
us simplify that view and consider any expression as a function — by default, a
function of x.

Under that view, we have two expressions g = ln x and f = x2−1. We already have
the machinery necessary to derive either expression. There remains to implement
the composition ◦.

It is actually very simple: g ◦ f it is the substitution of all instances of x in g by the
expression of f. In our example:

g ◦ f = (ln x)[x← f] = (ln x)
[
x← x2 − 1

]
= ln(x2 − 1) .

Likewise we can compute

(g ′
◦ f)f ′ =

(
(ln x) ′

)[
x← x2 − 1

]
· (x2 − 1) ′

=

(
1

x

)[
x← x2 − 1

]
· 2x

=
1

x2 − 1
· 2x

=
2x

x2 − 1
,

and indeed

d
dx

ln(x2 − 1) =
2x

x2 − 1
.

That means we have already all the tools we need except for a substitution function.
Let us remedy that.

Write a function sub(e,x,f) that returns the expression obtained by substituting
in e every instance of x by the expression f. For instance, we should have

>>> estr( sub(Minus(Mul(2,x),x), x, Plus(1, Pow(x,3))) )

’((2 * (1 + x^3)) - (1 + x^3))’

This is not a difficult function to write: it is the identity function, with just one
more rule.

(100) Now you can extend the differentiation function D to support the chain rule. All
you need is a single new case line.

You should obtain

print("f1:", estr(f1), "\n\t->")

print(estr(D(f1,x)))
print(estr(Df1 := simp(D(f1,x))))

---------------------------------------------------------

f1: (1 + (2 * (ln(x^2 - 1))))

->

(0 + ((0 * (ln(x^2 - 1))) + (2 * ((1 / (x^2 - 1))

* ((2 * x^1) - 0)))))

(2 * ((1 / (x^2 - 1)) * (2 * x)))

which is as expected:

d
dx

(
1+ 2 ln(x2 − 1)

)
=

4x

x2 − 1
.

(101) Now that all is said and done, plot f1 and its derivative:
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f1 = (1 + (2 * (ln(x^2 - 1))))
f1'=(2 * ((1 / (x^2 - 1)) * (2 * x)))

45.2 I object!

Reading Sec. 27[p99]: “Object Oriented Programming in Python” is required for this part of the
exercise.∣∣∣∣ OO wrappers around procedural/functional implementations

∣∣∣∣
Let us make our CAS more user-friendly by setting up a layer of object-oriented
syntactic sugar around it. The goal is to set up a wrapper class F — for Formula —
around our expression type, so that the user can employ the usual syntax to define
symbolic expressions. For instance, we should be able to write

X = F(’x’) # declare a symbolic variable

ln = lambda x: F(Call("ln",x.f)) # declare a symbolic function

F1 = F(f1); F2 = F(f2)

FF1 = 1 + 2*ln(X**2 - 1)

-----------------------------------------------------------------

>>> FF1

(1 + (2 * (ln(x^2 - 1))))

>>> F1(X,2)

3.1972245773362196

>>> FF1.D(X)

(2 * ((1 / (x^2 - 1)) * (2 * x)))

(102) Begin by creating a class F that acts as a wrapper for string conversion. We should
be able to do

>>> f1

Plus(a=1, b=Mul(a=2, b=Call(a=’ln’, b=Minus(a=Pow(a=’x’, b=2), b=1))))

>>> F1

(1 + (2 * (ln(x^2 - 1))))

>>> F1.f # the expression is stored internally as attribute f

Plus(a=1, b=Mul(a=2, b=Call(a=’ln’, b=Minus(a=Pow(a=’x’, b=2), b=1))))

>>> repr(F1)

’(1 + (2 * (ln(x^2 - 1))))’

>>> str(F1)

’(1 + (2 * (ln(x^2 - 1))))’

(103) Extend the class to support

>>> F1 + F1

((1 + (2 * (ln(x^2 - 1)))) + (1 + (2 * (ln(x^2 - 1)))))

(104) Extend the class to support

>>> F1 + 10

((1 + (2 * (ln(x^2 - 1)))) + 10)

(105) Extend the class to support

>>> 10 + F1

(10 + (1 + (2 * (ln(x^2 - 1)))))

(106) At this point imagine what the code is going to look like once you support
every operator. There is some factorisation to do. Write a “dispatch” function
disp(op,s,o) and a function rdisp(op,s,o) so that your implementation of +
support looks like

class F:

...

def __add__(s,o): return disp(Plus,s,o)

def __radd__(s,o): return rdisp(Plus,s,o)
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(107) Using this, quickly add support for *, **, -, so that we can handle

X = F(’x’) # declare a symbolic variable

ln = lambda x: F(Call("ln",x.f)) # declare a symbolic function

FF1 = 1 + 2*ln(X**2 - 1)

-----------------------------------------------------------------

>>> FF1

(1 + (2 * (ln(x^2 - 1))))

(108) Extend the class so that we can write

>>> FF1.D(X)

(2 * ((1 / (x^2 - 1)) * (2 * x)))

(109) Extend the class so that we can write

>>> F1(X,2)

3.1972245773362196

instead of

>>> eval(f1,x,2)
3.1972245773362196

You should be getting the idea by now. . . Using these techniques, we can completely
hide our underlying datatype from the end user.

(110) (Perspectives) The exercise stops there, but there is no end to the interesting things
we could do to improve and extend our CAS. Extensive automatic simplification,
handling of integration, an interactive mode where the user chooses which rules
to apply to their system, LATEX output and display, and so on, and so forth.

If you are interested in this, that can be the object of an “Application Projet" at the
end of the year — one week full-time projects done in groups of four. Ask me
about it if that kind of thing is your cup of tea.

46 Conway sequence: generating fun

Completing this exercise requires a good understanding of Sec. 29[p112]: “Iterables, iterators,
and generators”, in particular Sec. 29.4[p115]: “Understanding deeply lazy computations”.

∣∣∣∣ lazy evaluation = performance (often)
implementing lazy evaluation in a complex problem

∣∣∣∣
In this section, we shall play with Conway sequences (an), also called look-and-say
sequences. Mostly, we shall focus on the Conway sequence with seed C0 = 1. Here are
the first few elements of this sequence:

C0 = 1

C1 = 11

C2 = 21

C3 = 1211

C4 = 111221

C5 = 312211

C6 = 13112221

C7 = 1113213211

C8 = 31131211131221

C9 = 13211311123113112211

C10 = 11131221133112132113212221

C11 = 3113112221232112111312211312113211

. . .

How is it defined? Cn+1 is defined recursively from Cn as the sequence of numbers
obtained by reading the digits of Cn out loud, organised by groups of identical digits,
announcing first the number of digits, then the digit in each group.

For instance:

⋄ 1 is read as “one 1” : 11.

⋄ 11 is read as “two 1s” : 21.

⋄ 21 is read as “one 2, followed by one 1” : 1211.

⋄ 1211 is read as “one 1, one 2, and two 1s” : 111221.

⋄ 111221 is read as “three 1s, two 2s, and one 1” : 312211.

⋄ and so on. . .

We want not only to generate this sequence, but to do so efficiently, getting only the
first few digits of each number up to a high rank, even though the length of Cn grows

(an)Following Stigler’s law of eponymy, Conway sequences are actually due to. . . errrr, ok, Conway really
did invent that. The exception to the rule, I guess. Never mind, then. Carry on.
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exponentially with respect to n. It is clear that the last digits of, say, C10 are not
involved in the computation of the first digits of C11, so if that’s what we really need,
why compute C10 all the way?

Of course, we shall also write a more traditional, sequential implementation as well,
for comparison purposes.

You may not use anything from itertools, as I ask to to reimplement some of its
functionality.

(111)
∣∣∣∣ mixing yield and return in a generator function

using enumerate

∣∣∣∣
Write a function upto(g,i), returning a generator for the first i elements generated
by g.

Note: prior to version 3.7, this could and should have been done in one line. This is no
longer the case due to changes in the semantics of generator expressions.

The following assertions must hold:

assert next(upto(range(3),8)) == 0

assert list(upto((x for x in range(3)),8)) == [0, 1, 2]

assert list(upto((n*n for n in range(100)),7)) == \

[0, 1, 4, 9, 16, 25, 36]

(112) For fun, write a function nth(g,n), returning the n-th element of an iterator g.

This can and should be done in one line.

The following assertion must hold:

assert all( nth(g,i) == i*i

for i in range(7)
for g in [(n*n for n in range(7))] )

(113) Write a function powers(f,s), where f is a unary function, that returns a generator
for the successive powers s, f(s), f2(s), f3(s), . . . , where

f0(x) = λx.x (identity function)

fn(x) = f ◦ fn−1, n > 0

The following assertion must hold:

assert next(powers(lambda x:2*x,1)) == 1

assert list(upto(powers(lambda x:2*x,1),7)) == \

[1, 2, 4, 8, 16, 32, 64]

(114) Write a function group(l), with l being an iterable, that returns a generator for
the groups of successive identical elements appearing in l. Each group shall be
returned as a list.

The following assertions must hold:

assert next(group(’a’)) == [’a’]

assert list(group(’’)) == []

assert list(group(’a’)) == [[’a’]]

assert list(group(’aaba’)) == [[’a’, ’a’], [’b’], [’a’]]

assert list(group(’aabbbcdaaaa’)) == \

[[’a’, ’a’], [’b’, ’b’, ’b’], [’c’], [’d’], [’a’, ’a’, ’a’, ’a’]]

This is a simpler version of itertools.groupby.

(115) For our purposes, it is probably more efficient to generate the groups as couples
(length,element) rather than as lists of identical elements. Write a function
groupn(l), similar to group(l), but generating said couples.

The following assertions must hold:

assert next(groupn(’a’)) == (1, ’a’)

assert list(groupn(’aabbbcdaaaa’)) == \

[(2, ’a’), (3, ’b’), (1, ’c’), (1, ’d’), (4, ’a’)]

(116) For fun, bridge the gap between groupn and group by writing a function groupl

that takes as input the output of groupn, and converts it into the output of group.

This can and should be done in one line.

The following assertions must hold:

assert next(groupl(groupn(’aa’))) == [’a’, ’a’]

assert all ( tuple(group(s)) == tuple(groupl(groupn(s)))

for s in (’’,’a’,’aaba’,’aabbbcdaaaa’) )
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(117) Using groupn — since it is the most efficient — write a function say(s) that
transforms any string s into its “look-and-say” version. That is to say, a function
that transforms a string representing Cn into a string representing Cn+1.

This can and should be done in one line.

The following assertion must hold:

assert list(upto(powers(say,’1’),7)) == \

[’1’, ’11’, ’21’, ’1211’, ’111221’, ’312211’, ’13112221’]

assert list(upto(powers(say,’22’),7)) == \

[’22’, ’22’, ’22’, ’22’, ’22’, ’22’, ’22’]

(118) Write a procedure conway(seed=’1’,maxrnk=100,maxlen=30) that displays the
Conway sequence of seed seed, up to and including rank maxrnk.

As elements of the sequence grow exponentially in size, we truncate their display
to the first maxlen digits.

The output of a call of conway() should look like this:

0 1

1 11

2 21

3 1211

4 111221

5 312211

6 13112221

7 1113213211

8 31131211131221

9 13211311123113112211

10 11131221133112132113212221

11 311311222123211211131221131211...

...

60 132113213221133112132123123112...

61 111312211312111322212321121113...

Spoiler alert: the display should begin to slow down around rank 50, and slow
down to a crawl around rank 60, making it impractical to go much farther.

To understand why, recall that our implementation of say needs the whole of Cn

to begin computing Cn+1. C50 has 1 166 642 digits; C60 has 16 530 884. Keeping
up with this quickly becomes impractical.

Yet, we only need a few digits from the beginning of each element, and it is clear,

from the way the sequence is constructed, that those depend only on the first few
digits of the previous ranks. Thus we only actually make use of an infinitesimal
fraction of the digits we compute.

To exploit that fact, we shall overhaul our computation to make sure that there are
generators every step of the way.

(119) Write a function sayg(s) playing the same role as say, except that instead of taking
and returning strings, it takes an iterable and returns a generator.

This can and should be done in one line.

The following assertion must hold:

assert list(sayg(’’)) == []

assert list(sayg(’1’)) == [’1’, ’1’]

assert list(sayg(’1211’)) == [’1’, ’1’, ’1’, ’2’, ’2’, ’1’]

(120) Write a function nthpowerg(f,n,s), where f is a unary function, n an integer, and
s a seed value, that returns

⋄ a single-value generator for s if n = 0

⋄ an iterator for fn(s) otherwise, assuming f is an iterator function.

This can be done either iteratively or recursively.

The following assertion must hold:

assert "".join( upto(nthpowerg(sayg,6,’1’),8) ) == ’13112221’

(121) Write a procedure conwayg, equivalent to conway, but using generators exclusively
to achieve the same result. This time, performance should not be an issue. A call
to conwayg() should look like this:

0 1

1 11

2 21

3 1211

4 111221

5 312211

6 13112221

7 1113213211

8 31131211131221

9 13211311123113112211

10 11131221133112132113212221
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11 311311222123211211131221131211...

12 132113213211121312211231131122...

...

60 132113213221133112132123123112...

61 111312211312111322212321121113...

...

99 132113213221133112132123123112...

100 111312211312111322212321121113...

and take no time at all.

Note that we have achieved this considerable speedup without in any way
lessening the generality of our code, or increasing its complexity — excepting the
fact the generators require somewhat more abstraction from the programmer.

Conventional programming could possibly achieve a similar speedup by simply
computing the first digits in a fixed-length (maxlen) array. This should work,
because the sequence visibly “inflates” with each step, so that the maxlen first
digits of each rank can be computed with at most maxlen digits of the previous one.

However, we would need to prove that mathematically to have confidence in such
code. Moreover, we would need to do so for all possible seeds. Furthermore,
we shall see later on that this would be futile because you cannot prove that:
experimentally, we quickly find values of maxlen for which the hypothetical
property stated above is simply false. Perhaps we could show that maxlen plus
some constant would work? Perhaps it holds for all values of maxlen greater than
some constantM? I don’t know.

And still, even if it worked, which it doesn’t, it would be inefficient when asking
for a large amount of digits from high ranked values, as we would compute many
unneeded digits.

And of course, while such an approach might plausibly have worked – or could
maybe be tweaked into working – for Conway sequences, it would flat out fail with
any sequence deprived of anything resembling this supposed inflation property,
whereas, using generators, we simply don’t have to care about the behaviour of the
sequence. We know our code is correct, in the sense that we know we are going to
compute what we need, and hopefully no more.

There is a cost, of course: a little more thinking is required to manipulate generators
correctly, and there is an overhead computational cost to having all those objects
messaging each other saying “hey! wake up! I need a value!”. If you need all the
values all the time anyway, there is no point in using this; but if not, it is usually a
very good investment to make your code as generator-friendly as possible.

(122) Let us quantify the gains from using generators. More specifically, supposing we
want to get the first j digits of CR, the questions are:

⋄ How many digits need I compute, manually, to obtain that, globally and for
each previous rank k ⩽ R?

⋄ How many digits are actually computed by the generator-based method?

⋄ How many digits are computed by the non-generator method?

⋄ What is the ratio between those quantities?

First, as an example, let us see manually what is strictly needed to get the first
digit of C5:

C0 = 1

C1 = 11

C2 = 21

C3 = 1211

C4 = 111221

C5 = 312211

To compute C5’s 3, we need four digits from C4, as we cannot conclude as to the
number of ones until we see a different digit. (ao)

To compute C4’s 1112, we need 121 from C3; indeed, without the final one from
C3, we don’t know whether C4 begins with 1112 or 1122 or 1132, etc. And so on,
you get the idea.

Back to the generators. Write a procedure perf(R,j) evaluating the performance
of generator-based versus classical approach on the computation of the first j digits
of CR. The output must look like this:

>>> perf(5,1)

Performance analysis: rank 5, 1 digit.

First 1 digit of C_5 = ’3’

C_0 : 0 of 0

C_1 : 2 of 2

C_2 : 2 of 2

C_3 : 3 of 4

C_4 : 4 of 6

C_5 : 1 of 6

(ao)Actually, we could show mathematically that no repetition longer than three can occur, and conclude
upon seeing the third one. However, we haven’t shown that, our say and sayg algorithms do not take that
into account, and thus for now we don’t know whether 1111 may occur, so we need to see the next digit.
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Total: 12 of 20, or 60.0%

For instance the line C_4 : 4 of 6 means that generators computed four digits
of C4, whereas the classical approach computed all 6 — the classical approach
computes the entirety of each rank. In total, generators computed 12 digits,
whereas the classical approach computed 20. The seed is ignored in both counts.

Note that the generator approach should exactly match the manual reasoning
above!

On higher ranks, you should get:

>>> perf(55,30)

Performance analysis: rank 55, 30 digits.

First 30 digits of C_55 = ’111312211312111322212321121113’

C_0 : 0 of 0

..

C_4 : 6 of 6

..

C_10 : 5 of 26

..

C_20 : 4 of 408

..

C_30 : 4 of 5808

..

C_40 : 5 of 82350

..

C_50 : 12 of 1166642

C_51 : 12 of 1520986

C_52 : 17 of 1982710

C_53 : 20 of 2584304

C_54 : 21 of 3369156

C_55 : 30 of 4391702

Total: 343 of 18858434, or 0.0018188148602370697%

Tips:

Implementing this is a bit tricky.

I advise creating lists to store the needed numbers of digits, one for generators
and one for the classical approach, and writing “hacked” versions of nthpowergp
and saygp so that the list concerned with generators is updated each time a digit
is computed, as a side-effect.

Note that these hacked versions of nthpowergp and saygp can and should be
subfunctions of perf.

(123) Find a simple counterexample for our earlier hopeful assertion that perhaps

“The j first digits of each rank can be computed with at most j digits of
each of the previous ranks.”

(124) Perspectives: for those of you interested in going (much) farther in your under-
standing of lazy evaluation, I recommend implementing the Conway sequence in
Haskell. Haskell is a pure functional language with lazy evaluation.

An implementation of Conway every bit as powerful as our generator version can
be obtained completely transparently in just a few lines of code.

Of course, this is far outside the scope of this class; or of your curriculum, for
that matter. You will not be taught Haskell — or OCaml, or Scheme (Lisp), or
indeed any functional language — at INSA CVL. I would recommend studying
this in your own time if (and only if) you wish to acquire a larger understanding
of programming paradigms and techniques, and are not afraid of maths and
abstraction.
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Part IV

Additional Python Exercises

The following are retired exercises; some are made redundant by new material, some
are interesting but not enough to spend the time in class, some are archives from
various tests and non-INSA training sessions. They are provided in no particular order.

They can provide additional fun to any student who may prematurely run out of stuff
to do during classes. . . Idle hands are the Devil’s playthings, after all.

Part V[p184]: “DIU EIL: Récursivité” contains even more additional exercises, specifically
geared around the concept of recursiveness, which you are encouraged to practice on.
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50 The cheapest DBMS ever 168
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47 Fear the floating-point ranges

Many of you, while answering question (40)[p137], wrote something like
range(-2, 2, .1), and were surprised to learn that range does not support floating-
point steps:

>>> range(-2, 2, .1)

TypeError: ’float’ object cannot be interpreted as an integer

Some students’ reactions even implied that they deemed it quite lazy indeed of the
Python developers not to have bothered implementing that trivial use-case.

If you are among them, I regret to say that in spite of my best efforts so far, you have
not yet learned to fear floating-point numbers. Not properly. Not enough. Not yet.
But you will,... you will.

Since floating point-ranges are so easy, let’s implement them ourselves. . . what’s the
worst thing that could happen?

(125) Write a generator function frange_inc(i,f,s) returning all the floating points
numbers between the initial value i (inclusive) and the final value f (exclusive), by
successive increments of the step value s.

In other words, it should generate all numbers i ⩽ i+ ks < f, for k ∈ N.

This is basically the behaviour of range, but extending to floating-point numbers.

For instance, frange_inc(0, 1, 0.1) should be expected to yield
0, 0.1, 0.2, . . . , 0.9. Note that 1.0 is not generated, as the upper bound is ex-
clusive; just like for range.

At least that’s what we hope to obtain. . .

This specific implementation will proceed in the most natural way, by incrementing
the current value by s at every step, hence the _inc in the name, and stopping
when the value exceeds f.

If you implement it correctly (ap), the following assumptions should hold:

assert list(frange_inc(0,0,1)) == []

assert next(frange_inc(0,1,1)) == 0

assert list(frange_inc(-5,5,1.0)) == [-5, -4, -3, -2, -1, 0, 1, 2, 3, 4]

assert list(frange_inc(.7,.8,.1)) == [0.7, 0.7999999999999999]

assert list(frange_inc(0,.8,.1)) == [0, 0.1, 0.2, 0.30000000000000004,

0.4, 0.5, 0.6, 0.7, 0.7999999999999999]

(ap)or as correctly as possible given the constraints, see next question. . .

(126) Looking at the assertions of the previous question, you may notice a slight problem:
not only are there approximation errors in several places (who could possibly have
seen this coming?), but some of them even change the number of values returned:

list(frange_inc(.7,.8,.1)) == [0.7, 0.7999999999999999]

where we expected [.7], as .8 is excluded. But we got a value slightly smaller
than .8, so it passed. This is not an error in the logic of the implementation of
frange_inc, mind you; the incrementation and test were correct, it is just a raw
fact that, for instance

>>> .7 + .1

0.7999999999999999

>>> .7 + .1 < .8

True

>>> .2 + .1

0.30000000000000004

What are we to do about it? The obvious solution is to detect and correct such
mistakes by separately computing how many numbers are expected. The formula
is fairly easy:⌈

f− i

s

⌉
. (47.1)

In case you don’t know, ⌈·⌉ is the ceiling function:

⌈x⌉ = min
{
n ∈ Z

∣∣ n ⩾ x} .

So, for our problematic example, we expect, by this formula,
⌈
.8−.7
.1

⌉
=
⌈
.1
.1

⌉
= 1

number, which is coherent with our expected result of [.7].

All there remains to do is to implement (47.1) in frange_inc, and count how many
numbers have been returned. Problem solved!

If that sound good to you, YOU STILL DON’T FEAR FLOATING-POINT
NUMBERS ENOUGH, YOU SORRY FOOL!

Let’s test our brilliant idea in Python on our example:

>>> ceil((.8-.7)/0.1)

2

Wait, what? (Please insert “record scratch” sound effect here) Is our formula
wrong? Does ceil not implement the ceiling function?
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>>> (.8-.7)/0.1

1.0000000000000009

Nope, it’s just that our galaxy-brained, 300 IQ master plan had a tiny, niggling,
piffling little flaw: in order to bypass the inherent inability of a floating-point
computation to provide exact answers, we double-checked with another floating-
point computation. Can you spot the flaw yet? Do you fear float yet?

How do we solve this? Easy. We don’t. We just don’t. We do not solve this because
it is not solvable. Not without using computationally expensive computer algebra.

It is not possible to implement a floating point range function that behaves as range
does because loss of precision makes the very act of predicting and controlling
the number of returned elements unpredictable. Therefore, a range and a frange

on the same numbers have no guarantee to return the same number of values, let
alone the same values.

If that’s not big enough of a problem for you (who cares about consistency between
functions that do essentially the same thing!), try this on for size:

>>> list(frange_inc(10**16, 10**16+2, 1.0))

I did not write a return value beneath, because there is none; you’ve got an
infinite loop. Use CTRL+C in the terminal or interactive mode to interrupt the
computation:

KeyboardInterrupt

What now?

>>> g = frange_inc(10**16, 10**16+2, 1.0)

>>> next(g)
10000000000000000

>>> next(g)
1e+16

>>> next(g)
1e+16

...

It returns 1016 in a loop, as though it forgot to increment at all. . . How is this even
possible?!

>>> 10**16 + 1.0

1e+16

>>> 10**16 + 1.0 == 10**16

True

Oh. Oh! Right! Precision problems! Did you see that coming? You should have.
For large enough numbers, the precision loss is so great that you can lose entire
units. Or more; wanna see a magic trick, kid? I’ll make the number 10 disappear:

>>> 1e+18 + 10 == 1e+18

True

Poof! You like that? You want more? Let’s do 1000!

>>> 1e+19 + 1000 == 1e+19

True

POOF! Are you afraid of big bad float yet?

Let’s re-evaluate my earlier statement in light of this: never mind consistency, we
don’t have a frange function with the same behaviour as range because it would
randomly get into infinite loops, depending on the respective sizes of i, f, s. And that
is why range runs away screaming when you feed it a floating-point number.

By the way, did I ever mention that floating-point numbers are scary?

(127) Lest you believe that I sabotaged us by enforcing a specific implementation based
on successive incrementations by s, let us write frange_mul(i,f,s), with the same
expected behaviour, but using multiplication instead to compute the i ⩽ i+ks < f,
for k ∈ N. That is to say, you will literally compute i+ ks in a loop.

If this is done correctly, you should obtain:

assert list(frange_mul(0,0,1)) == []

assert next(frange_mul(0,1,1)) == 0

assert list(frange_mul(-5,5,1.0)) == [-5, -4, -3, -2, -1, 0, 1, 2, 3, 4]

assert list(frange_mul(.7,.8,.1)) == [0.7, 0.7999999999999999]

assert list(frange_mul(0,.8,.1)) == [0, 0.1, 0.2, 0.30000000000000004,

0.4, 0.5, 0.6000000000000001, 0.7000000000000001]

Rejoice, for we have traded one set of approximation errors for a slightly different
one, and fixed. . . absolutely nothing.

Note that no implementation will solve the 1e+19 + 1000 == 1e+19 problem.

No implementation based on an indefinite loop (while) can work, because you
can’t know when or even whether to stop. No implementation based on a definite
loop (for) can work, because you can’t compute how many values you should
return. No implementation can work, full stop.

Floating-point ranges based on a “step” are fundamentally flawed, regardless of
implementation.
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(128) Must we give up on floating-point ranges altogether? Of course not; we merely
need think about them differently. Instead of giving a “step”, we’ll just give the
number of values we expect.

Write a function frange(i,f,n) returning n floating point numbers uniformly
spaced (within approximation error) on the interval [i, f].

If n = 1 it shall return the middle of the interval.

assert list(frange(0,0,1)) == [0]

assert next(frange(0,1,1)) == 0.5

assert list(frange(0,1,1)) == [0.5]

assert list(frange(0,1,2)) == [0, 1]

assert list(frange(-5,4,10)) == [-5, -4, -3, -2, -1, 0, 1, 2, 3, 4]

assert all( len(list(frange(0,1,n))) == n for n in range(100) )

assert list(frange(0,1,11)) == [0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6,

0.7, 0.8, 0.9, 1.0]

This looks much nicer.

That doesn’t mean we don’t still have precision problems. You can rely on obtaining
however many numbers you asked for, but not on them being distinct:

>>> len(set(frange(10**15, 10**15+10, 10)))

10

>>> len(set(frange(10**16, 10**16+10, 10)))

6

>>> len(set(frange(10**17, 10**17+10, 10)))

2

>>> set(list(frange(10**17, 10**17+10, 10)))

{1e+17, 1.0000000000000002e+17}

This is the best you can hope for when you only have 264 floating point numbers
(they occupy 64 bits) to represent |R| =∞ real numbers (and that’s a dense infinity:
|R| = ℵ1 > |N| = ℵ0

(aq)).

In other words, the above is the most sensible implementation of a floating-point
range you can get. At least, that I know of. Feel free to share your brilliant ideas.

Oh,. . . do you fear floating-point numbers yet? Just checking.

(aq)https://en.wikipedia.org/wiki/Aleph_number

48 Let’s decorate!

Be sure to read and understand Sec. 25.2[p94]: “Function decorators” before tackling this
exercise.

(129) Sometimes, you might want to slow code down; either because you want the time
to read the messages, or because some function is hammering a resource too hard,
refreshing a web page 10 times a second, something like that.

To that effect, let us write a parametric decorator slow(n) that forces a function to
wait for n seconds every time it is called. It must work on recursive function calls:

For instance:

@slow(1)

def verbose(n=100):

if n <= 0: return
print(n, "I do stuff and I talk about it!")

verbose(n-1)

---------------------------------------------------

# wait a second

100 I do stuff and I talk about it! # wait a second

99 I do stuff and I talk about it! # wait a second

...

(130) Following the same principle, write a parametric decorator slow_scroll(n) that
allows a function to be called n times without delay, but then stops everything,
waiting for the user to press ENTER. When he does, the function can again be
called n times before being stopped, and so on.

Applying @slow_scroll(3) on our verbose function, we have:

100 I do stuff and I talk about it!

99 I do stuff and I talk about it!

98 I do stuff and I talk about it!

---------------------------------------------------------------------------

# user presses ENTER

97 I do stuff and I talk about it!

96 I do stuff and I talk about it!

95 I do stuff and I talk about it!

---------------------------------------------------------------------------

# user presses ENTER

94 I do stuff and I talk about it!

....

2 I do stuff and I talk about it!

---------------------------------------------------------------------------

# user presses ENTER
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1 I do stuff and I talk about it!

49 Rage against the virtual machine

ex_vdisks.tex WORK IN PROGRESS! SKIP FOR NOW !

In this exercise, we will implement functionality inspired by virtual machine sparse
disks and snapshots.

Disclaimers: Note that I use VirtualBox and will stay close to its terminology, so some
details and terminology may differ in other software, but the ideas here are universal.
I’ll also abstract away a lot of details, and my objective is not to write a reference
document on Virtual Box or any other implementation, so do not take it as such.

If you have use modern virtual machine software, you have noticed that they have
some pretty nifty functionalities. Among other things:

(131) Virtual disks can be much smaller on the host than on the guest (unless you
select “Fixed Size” when creating them as opposed to the default “Dynamically
Allocated”, which you probably shouldn’t, even for performance reasons.

(132) You can take snapshots of the current state of the machine (here we’ll focus on
the main disk) at any point, and restore them later. If at some point you decide
to restore a snapshot, you don’t even have to lose your current state: you can
snapshot it as well, and then restore the earlier snapshot.

Thus you can create “alternative timelines”. You can install linux, snapshot (let’s
call the state s), install Apache, snapshot (s ′), restore s, install NGinx, snapshot
(s ′′), and now s ′ and s ′′ represent two diverging timelines, sharing the past up to
state s, and no further.

This would not be terribly impressive if the implementation just took full copies of
the disks each time, but in practice, taking snapshots is virtually instantaneous
and consumes very little disk space at first! However, deleting a snapshot takes
some time, and snapshots that “live” long take more and more space.

What’s going on under the hood? I think most of you should have no difficulty
imagining an implementation for (1), especially if you’ve ever met the keyword sparse
in Maths or CompSci. The idea is obviously to only store data when it is actually
written by the guest, as opposed to preallocating everything. You just need a data
structure of the form “sector X→ data, sector Y→ data, ...”. (ar) The file starts empty

(ar)You might notice a slight resemblance with a certain Python data structure. . .

and fills up as sectors are written in over time. When reading, any sector not appearing
in the file is considered empty. We’ll call that structure a sparse disk.

Note that in practice, “sectors” might be 1MB pages, as for the VDI format (as), or
anything else. We’ll ignore that kind of gritty details.

Now, understanding what’s going on with snapshots in (2) takes a little bit more work,
but the fundamental idea is actually the same as (1): only write in that which changes.

When a snapshot is taken, the current disk file goes read-only, and a new, empty,
differencing disk is created, which takes all writes from that point on. That is to stay, it
stores only the changes compared to the original disk. It actually has the same structure
as a sparse disk, and we shall not concern ourselves with the distinction between the
two any longer.

When reading, the machine first looks in the differencing disk, and if the sector it is
looking for is not there, it looks in the “older”, read-only disk — which we shall call its
parent. Further snapshots can be created and chained in this way.

Whereas taking a snapshot is instantaneous, because we merely create a new, empty
differencing disk, deleting one involves merging disks. At this point, things become
non-trivial and, if Virtual Box’s forums are anything to go by, there is a lot of confusion
among users as to what’s going on, the most common error being not understanding
the distinction between snapshots, which are merely points in time which we have
interest in preserving, and differencing disks. Snapshots are deleted, not merged. Disks
are merged, and the effect of that is deleting a snapshot.

To alleviate any confusion, we shall formalise things a bit.

We see a disk as an array (or Python list) of data. Let N ∈ N be the size of our disk,
X = J0,N− 1K our sectors and Y some target data space. For instance, if N is the size in
bits, then Y = { 0, 1 }. A disk is a total function D : X→ Y.

A differencing disk is a partial function ∆ : X↛ Y. Differencing disks ∆1 and ∆2 can be
chained, which we shall write multiplicatively, with the following semantics:

∆1∆2 :

∣∣∣∣X −→ Y

i 7−→ ∆2(i) if defined, else ∆1(i)

To translate the concept of sparse disk, all we need is to chain a differencing disk after
the empty disk, defined as

ε :

∣∣∣∣X −→ Y

i 7−→ 0

(as)https://forums.virtualbox.org/viewtopic.php?f=35&t=8046
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which returns 0— or, frankly, any placeholder value, for every sector. We shall use "_"
as placeholder value in the implementation. Note that ε is just an abstraction, and we
do not imply that the implementation explicitly allocates and zeroes out every sector.

We’ll speak of “global state” to mean not just the state of the disk at a given point in
time, but the whole chain of disks and snapshots for the machine. Our default global
state, with one sparse disk and no snapshot, is therefore of the form ε∆0. In practice
only ∆0 actually occupies space on the disk, ε is just the concept of what happens when
a sector is not defined in ∆0.

Note that this, and by extension any chain of the form ε∆0 . . . ∆n, describes a disk, that
is to say a total function X → Y, because ε is total. If none of the ∆k has data for a
sector, then in the end ε always does. By convention, when writing such chains we
understand that each ∆k corresponds to one physical file on the host.

Taking a snapshot means that∆0 goes read-only, and a new differencing disk is chained:
ε∆0∆1. To denote snapshots, or other states of interest, like the current state, we’ll use
the letters s and c, respectively, and insert them in the chain. They do not change its
semantics, but help us to keep track of what’s going on. Thus, we would write the
global state above ε∆0s1∆1c, with our snapshot named s1, and our current state c.

The act of taking a snapshot therefore translates into “substitute s∆c for c”, with a fresh
differencing disk ∆.

We now have the requisite notations to explain snapshot deletion clearly. Suppose we
are in state ε∆0s1∆1c and no longer need the snapshot: then we can combine ε∆0∆1c

into ε(∆0∆1)c, that is to say, merge the two differencing disks into one. Note that, in
terms of semantics, trivially ε∆0∆1c = ε(∆0∆1)c, so we have not altered our current
state, and in terms of implementation, computing a disk representing ∆0∆1 is easy: it
suffices to overwrite all data of ∆0 with ∆1. We say that we merge ∆1 into its parent ∆0.

The act of deleting a snapshot s therefore translates, in general, as replacing a pattern
∆s∆ ′ in the chain by (∆∆ ′).

We will not deal with snapshot restauration or trees of snapshots in this exercise,
because at this point we have all the main mechanics and the rest is just a matter of
careful bookkeeping when moving the current state around. You are free to extend the
exercise with this on your own, if you like.

The preliminaries are done, let’s get to the implementation.

(133) We’ll create a class disk for differencing disks (in fact, arrays or lists) with "_" as
placeholder value for undefined sectors.

The first and only mandatory argument of the class constructor should be the size
of the array. The class will use a Python dictionary as its internal data structure,

and not store all the array in memory.

Furthermore, we need to be able to print the state of the disk, displaying its contents
in extenso, what’s really stored in the dictionary, and optionally a comment, all on
one line.

As the start of our running example, the following code

D = disk(10)

D.print("ε ∆0 c (untouched)")

should yield:

__________ {} | ε ∆0 c (untouched)

That is to say, we create an empty disk of size 10, and see that internally it’s just an
empty dictionary, despite “containing” ten instances of "_".

There is quite a lot to do to get there. You’ll need an __init__ method, of course,
but for the purposes of printing, you will need several things, besides obviously
a print method. First, you will need a way to query the disk for the value of a
given sector. You will use index notation for this, so that for instance

>>> D[10]

’_’

For this, you’ll implement a __getitem__method. No need to think about chaining
for now, we can take care of that later. You might want to add a defensive assertion
to ensure that the index is in X.

You’ll implement __repr__ and __str__ such that

>>> repr(D)

’{}’

>>> str(D)

’__________’

Each of the two can and should be implemented in one line.

Do not duplicate the reading logic in str! We’ll need to alter that logic later, and
it’s bad practice in general to duplicate logic. You have one method that does the
reading, and that’s __getitem__. Everything else should use it if they need to
know what’s on a disk sector.

Will all this, you can at last implement print.
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(134) Let’s implement write support. For instance we should have:

>>> D = disk(10)

>>> D[5] = ’A’

>>> print(D)
_____A_____

>>> D

{5: ’A’}

For this, you’ll need to implement the __setitem__ method. The logic is trivial so
this should be a very short line, not counting the assertion about the index being
in X, which is probably good to have.

Since any differencing disk that is being written to is the only one that can be
written to — the ancestors are read-only — the writing logic is complete, we won’t
have to come back to this method.

(135) For our convenience, let’s implement a method D.writeat(i, l) that writes the
elements of l starting at index i of the disk. For instance,

>>> D = disk(10)

>>> D.writeat(2, "blah")

>>> print(D)
__blah____

This should be done in one or two short lines.

Please do not duplicate the writing logic in this method: use D[..] = ...

(136) Let’s prepare the ground for chaining. Add an optional parameter parent=None
to __init__, which is to be stored as attribute.

While we’re at it, let’s also add an attribute children, initialised to []. It will be
useful later for the merging operation.

We’re now ready to implement snapshotting. . . Write a method D.diff() that
takes a snapshot of the current state.

That is to say, if our current global state is . . . ∆c, it must become . . . ∆s∆newc.

Make sure that ∆new knows that its parent is ∆, and that ∆ knows that ∆new is
among its children.

diff() must return the new differencing disk ∆new. Taking a snapshot will
basically be done by writing

D = D.diff()

This method can easily be implemented in three short lines.

(137) We are very close now; all that remains is to implement the chaining logic in
__getitem__. Go and do so now. Any request the current disk can’t immediately
satisfy must be passed to its parent. If it has no parent, then the placeholder value
"_" is returned.

If everything is done right, the following instructions

D = disk(10)

D.print("ε ∆0 c (untouched)")

D.writeat(5, "AA")

D.print("ε ∆0 c (written to)")

D = D.diff()

D.print("ε ∆0 s1 ∆1 c (snap just taken)")

D.writeat(4,"BB")

D.print("ε ∆0 s1 ∆1 c (written)")

D = D.diff()

D.print("ε ∆0 s1 ∆1 s2 ∆2 c (snap just taken)")

D.writeat(5,"C")

D.print("ε ∆0 s1 ∆1 s2 ∆2 c (written)")

should produce

__________ {} | ε ∆0 c (untouched)

_____AA___ {5: ’A’, 6: ’A’} | ε ∆0 c (written to)

_____AA___ {} | ε ∆0 s1 ∆1 c (snap just taken)

____BBA___ {4: ’B’, 5: ’B’} | ε ∆0 s1 ∆1 c (written)

____BBA___ {} | ε ∆0 s1 ∆1 s2 ∆2 c (snap just taken)

____BCA___ {5: ’C’} | ε ∆0 s1 ∆1 s2 ∆2 c (written)

The method should be around three of four lines long at this point, discounting
assertions.

(138) Before getting into merging, let’s give ourselves a way to check the global status
of the current chain. Write a method D.history() that returns the list of of its
ancestors, in chronological order.

That is to say, our current disk ∆2 in the chain ε∆0∆1∆2 should return the list
[∆0,∆1,∆2] for its history. For instance, after executing the instructions of the
previous question, we should have:

>>> D.history()

[{5: ’A’, 6: ’A’}, {4: ’B’, 5: ’B’}, {5: ’C’}]
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Note that the elements you see here are the repr of each disk, which we set earlier
to that of its internal dictionary.

history should be written in two of three lines.

For a nicer visualisation of that history, write a method D.printhistory()printing,
still in the same context as above, the following:

####################

_____AA___ {5: ’A’, 6: ’A’}
____BBA___ {4: ’B’, 5: ’B’}
____BCA___ {5: ’C’}
####################

(139) merging

50 The cheapest DBMS ever

You will need to read Sec. 23.6[p65]: “Pattern matching: match..case”. Sec. 22.4.10.4[p51]:
“The good stuff: formatted string literals” will come in handy as well.

So you need a Database Management System, but installing MariaDB or PostgreSQL is
too easy for you? You want to implement your own? Good news, you will get to do so
in the various Database courses at the end of the third year and during your fourth
year.

Before those happy days come, let us ease into it by implementing an exceedingly
barebones DBMS accepting a few simple commands. The aim is more to practice a few
simple match/case statements than to think about databases. You will continue this
exercise in the DB courses.

Download our tiny toy database db.ods from Celene, and run the command

pip install pyexcel-ods3

To import the spreadsheet into Python, begin your program with this code:

#!/usr/bin/env python3

from pyexcel_ods3 import get_data

dbr = get_data("db.ods") # raw database

If all goes well, dbr now contains a dictionary of the form

table name (str) → table (list of list) .

The first line of each table contains the column names. We shall work with the data
structure as it is.

(140) Our system must have an interactive command-line interface, and implement a
tiny subset of SQL. Use the input function to implement a prompt, prefixed by
db>. To interpret the commands in the main loop, you will use str.split and a
match/case.

If a command is unrecognised, the prompt simply shows the list of words that
were passed, separated by whitespace.

db> some arrant nonsense 10

? [’some’, ’arrant’, ’nonsense’, ’10’]

Unlike true SQL, our language need only accept lowercase versions of the keywords.
It is also case sensitive when it comes to table names, column names, etc.

(141) Let us implement the show tables command:

db> show tables

* students

* origins

(142) Now, implement a (non-SQL) view <table name> command, showing the con-
tents of a table:

db> view students

Name Age Python TL Origin

+------+-----+--------+----+--------+

| Toto | 20 | 15 | 5 | L2M |
| Tata | 21 | 8 | 10 | DUTG |
| Titi | 20 | 15 | 18 | L3I |
| Bibi | 20 | 12 | 15 | L2M |
| Baba | 18 | 15 | 11 | L2M |
+------+-----+--------+----+--------+

db> view origins

Origin OriginName Tutor

+--------+-----------------+-------+

| L3I | Licence 3 Info | No |
| DUTG | DUT GEII | Yes |
| L2M | Licence 2 Maths | Maybe |
+--------+-----------------+-------+

db> view InvalidTable

KeyError(’InvalidTable’)
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Note that any exception raised during the execution of a command must be caught
and displayed by the prompt.

Also note that whatever procedure you use to pretty-print the tables will have to
be used for select queries as well.

(143) Finally, let use implement a very restricted version of select <columns> from

<table> where <conditions>. We can of course use * to select all columns:

db> select * from students

Name Age Python TL Origin

+------+-----+--------+----+--------+

| Toto | 20 | 15 | 5 | L2M |
| Tata | 21 | 8 | 10 | DUTG |
| Titi | 20 | 15 | 18 | L3I |
| Bibi | 20 | 12 | 15 | L2M |
| Baba | 18 | 15 | 11 | L2M |
+------+-----+--------+----+--------+

Otherwise, column names must be separated by commas, without any whitespace.
Note that this means our column names must not contain spaces either.

The reason we do not allow spaces is that doing so would make parsing the select
command with a simple split + match/case impossible. The aim of the exercise
is not to implement an general parser for SQL, that would be in the scope of the
Languages Theory or the Compilation course, not this Python course. We can do
quite enough for our immediate purposes by keeping things simple.

For instance, we have:

db> select Name,Python from students

Name Python

+------+--------+

| Toto | 15 |
| Tata | 8 |
| Titi | 15 |
| Bibi | 12 |
| Baba | 15 |
+------+--------+

Finally, we must implement filtering conditions. A condition is of the form
<column name>=<value>, no spaces allowed, and there may be several of them,
separated by commas, with, again, no spaces allowed. For instance:

db> select Name,Origin from students where Python=15,Age=20

Name Origin

+------+--------+

| Toto | L2M |

| Titi | L3I |
+------+--------+

(144) (optional, for DB course) Now we shall extend the power of select so that it
supports inner joins. We shall use a non-SQL syntax for this. Instead of a standard
table name, we can write <table name1>|<column name>|<table name2> to join
two tables on a common column.

For instance, we have:

db> select * from students|Origin|origins
Name Age Python TL Origin OriginName Tutor

+------+-----+--------+----+--------+-----------------+-------+

| Toto | 20 | 15 | 5 | L2M | Licence 2 Maths | Maybe |
| Tata | 21 | 8 | 10 | DUTG | DUT GEII | Yes |
| Titi | 20 | 15 | 18 | L3I | Licence 3 Info | No |
| Bibi | 20 | 12 | 15 | L2M | Licence 2 Maths | Maybe |
| Baba | 18 | 15 | 11 | L2M | Licence 2 Maths | Maybe |
+------+-----+--------+----+--------+-----------------+-------+

Of course we can combine this with filters and column selection:

db> select Name,Tutor from students|Origin|origins where Python=15,Age=20

Name Tutor

+------+-------+

| Toto | Maybe |
| Titi | No |
+------+-------+

51 Cryptanalyse amusante

This exercise is not focused on any particular Python technique. Use what you have got, and
what makes sense.

In this exercise we implement and break the 1553 Vigenère cipher — actually due to
Bellaso, and misattributed to Vigenère, following Stigler’s law of eponymy.

This polyalphabetic substitution cipher maintained a strong reputation for unbreaka-
bility – earning the nickname le chiffre indéchiffrable, “the unbreakable cipher” – from its
inception until 1863, when Kasisky – a Prussian infantry officer – published a general
method to break it.

Sir Charles Babbage – whose 1837 Analytical Engine pioneered the concept of a full,
programmable computer – had actually broken it, even in a stronger, autokey version
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of it, nine years earlier, during the Crimean War, but did not publish his work, as the
technique was classified as a military secret.

Even a few decades after that, it was still thought of as unbreakable by many laymen
and non-specialist mathematicians — not too surprising, given that it endured for over
three centuries.

You should be able to break it in at most three TDs :-)

The Enigma machines that famously formed the core of German military communication
during the Second World War implemented a much stronger, but related, polyalphabetic
substitution cipher. With a lot of work and more than a fair bit of luck, the Allies were
able to crack it, turning the tide of the War.

51.1 Une grille de chiffrement

Ecrire une procédure pour afficher la grille suivante:

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

-------------------------------------------------------

A | A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

B | B C D E F G H I J K L M N O P Q R S T U V W X Y Z A

C | C D E F G H I J K L M N O P Q R S T U V W X Y Z A B

D | D E F G H I J K L M N O P Q R S T U V W X Y Z A B C

E | E F G H I J K L M N O P Q R S T U V W X Y Z A B C D

F | F G H I J K L M N O P Q R S T U V W X Y Z A B C D E

G | G H I J K L M N O P Q R S T U V W X Y Z A B C D E F

H | H I J K L M N O P Q R S T U V W X Y Z A B C D E F G

I | I J K L M N O P Q R S T U V W X Y Z A B C D E F G H

J | J K L M N O P Q R S T U V W X Y Z A B C D E F G H I

K | K L M N O P Q R S T U V W X Y Z A B C D E F G H I J

L | L M N O P Q R S T U V W X Y Z A B C D E F G H I J K

M | M N O P Q R S T U V W X Y Z A B C D E F G H I J K L

N | N O P Q R S T U V W X Y Z A B C D E F G H I J K L M

O | O P Q R S T U V W X Y Z A B C D E F G H I J K L M N

P | P Q R S T U V W X Y Z A B C D E F G H I J K L M N O

Q | Q R S T U V W X Y Z A B C D E F G H I J K L M N O P

R | R S T U V W X Y Z A B C D E F G H I J K L M N O P Q

S | S T U V W X Y Z A B C D E F G H I J K L M N O P Q R

T | T U V W X Y Z A B C D E F G H I J K L M N O P Q R S

U | U V W X Y Z A B C D E F G H I J K L M N O P Q R S T

V | V W X Y Z A B C D E F G H I J K L M N O P Q R S T U

W | W X Y Z A B C D E F G H I J K L M N O P Q R S T U V

X | X Y Z A B C D E F G H I J K L M N O P Q R S T U V W

Y | Y Z A B C D E F G H I J K L M N O P Q R S T U V W X

Z | Z A B C D E F G H I J K L M N O P Q R S T U V W X Y

Note aux “astucieux”: on ne se contentera pas de copier-coller depuis le PDF et faire
print.

En utilisant cette grille, on peut chiffrer des messages. Par exemple "IAMASECRETMES-
SAGE", crypté par "IAMTHEKEY", devient "QAYTZIMVCBMQLZEQI". L’idée est de
répéter la clef jusqu’à ce qu’elle soit de même longueur que le message, ce qui donne

IAMASECRETMESSAGE

IAMTHEKEYIAMTHEKE

puis de coder lettre à lettre via la grille: grille(I,I) = Q, grille(A,A) = A, grille(M,M) = Y,
grille(A,T) = T, etcetera, et on obtient finalement

IAMASECRETMESSAGE

IAMTHEKEYIAMTHEKE

QAYTZIMVCBMQLZEQI

On note que, contrairement à des chiffres naïfs, où l’on substitue un symbole (par
exemple une autre lettre) à une lettre, dans ce cas, une lettre peut être chiffrée de
différentes manières selon sa position. Ici, les trois instances de A dans le message sont
chiffrées par A, T, et E, respectivement.

Convainquez-vous que le déchiffrement est aussi facile que le chiffrement. . . quand on
a la clef.

51.2 On automatise tout ça

Écrire une fonction pour chiffrer et déchiffrer du texte sans aucune ponctuation (on
considérera uniquement les lettres A..Z, que ce soit pour le message ou la clef). La
fonction utilisera un argument booléen optionnel pour passer du mode codage au
mode décodage: crypt(msg,key) chiffre, et crypt(cmsg,key,True) déchiffre.

msg1 = "THESTUDENTSARENICEANDHARDWORKING"

key1 = "ORARETHEY"

cyp1 = crypt (msg1,key1)

>>> cyp1

’HYEJXNKILHJAIIGPGCOEDYEKKAMFBIEK’

>>> crypt(cyp1, key1 ,True)

’THESTUDENTSARENICEANDHARDWORKING’
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On ne s’amusera pas à lire ça sur la grille de la question précédente; on ne construira pas
de liste de liste ou autre grosse structure. In what follows, we shall need to crypt and
decrypt thousands of messages every second to perform cryptanalysis in a reasonable
time; the efficiency of this function is therefore of paramount importance.

Je conseille d’utiliser les fonctions ord et chr pour réduire ça à un peu d’arithmétique.
Il faut que cette fonction soit efficace pour la suite.

On pourra s’aider du fait que, sous la représentation 0..25 pour A..Z, et en notant M, K,
et C le message, la clef (répétée), et le texte chiffré, on a pour tout indice k

Ck =Mk + Kk mod 26

pour le chiffrement, et il s’ensuit donc que

Mk = Ck − Kk mod 26 ,

pour le déchiffrement.

51.3 Cryptanalyse. Ça ne rigole plus

C’est la guerre entre l’Empire des Méchants Professeurs (EMP), et les GentilZ Zétudiants
RebellZ (ZZZ). Vous êtes un cryptanalyste des ZZZ. De nombreux Bothans sont
morts (at) pour intercepter des transmission impériales; les voici (les transmissions, pas
les Bothans):

2017:

MVUDHIVKSMREKSGMMEKOZXSVZVNMTATSLZTOITYGIROLZWMGFRIMIQCLXECSIXLASULCR

2018:

GVVMFEMMCTKYQBPZBDPYHJYYZIYSOHZRMNIOXMIQPYGBPMLUKVWZRFHAIWECJC

2019:

LXATDEMAFLIDVVFZKZHPBWARJEWXMAHSMZATGWPCJIDIWFSSVTMNAUTVJCYFDVVL

2019 bis:

LXATDEMAFLIDVVFZKZHPBWARJEZEHWQTIINWRMNUWEXMTTPMQZXHQDLIPKZSYMDHREVVXCZPX

2020:

XCZJLWVGIKEYQRBVTQNSPAFMWJEICSIHXNVRPLDIAKENVHFTAMTNGIGIDPWMPRCYUDIBKWHKW

... TEWEXUCIGOCQAVS

Damned ! Elles sont chiffrées; et probablement avec des mots de passe différents.

On sait toutefois que l’Empire utilise la grille de chiffrement des questions précédentes,
et rédige toujours ses messages en anglais. De plus, ses officiers n’utilisent jamais des

(at)On ignorera les nouveaux Star Wars made in Disney pour évaluer la coolness de mes références de
pop-culture. Merci. D’ailleurs quels nouveaux Star Wars ? Il n’y a pas de nouveaux Star Wars. That’s crazy talk.

clefs de plus de 10 lettres. En revanche on ne sait rien de la façon dont les clefs sont
choisies; c’est probablement aussi de l’anglais, mais rien n’est certain.

Ca fait tout de même

10∑
k=1

26k = 146813779479510 ≈ 1.4× 1014

mots de passe possibles, ce qui est un peu trop pour tous les essayer.

Nous allons malgré tout casser ce chiffre!

La première chose à faire est d’automatiser la reconnaissance de texte en anglais
(probablement) valide, par opposition à une suite aléatoire de lettres. Une bonne
façon de faire est d’analyser un large corps de textes anglais, en notant la fréquence
d’apparition den-grammes (sous-mots àn lettres). Par exemple, TION est un 4-gramme
apparaissant beaucoup plus souvent que AAZS.

Une telle base de données de fréquences permet alors de donner un score à du texte,
qui a de bonnes chances d’être plus élevé sur du vrai texte que sur du charabia.

Construire cette base serait un exercice intéressant, mais heureusement le Célène
(vaisseau-mère de la Rébellion) dispose déjà du matériel nécessaire à l’analyse des
quadgrams anglais (sur la base d’une analyse d’un vaste corps de textes anglais). On
l’utilise comme suit — après avoir téléchargé et extrait les fichiers (au):

import ngram_score as ns

fitness = ns.ngram_score()

>>> fitness.score(’THISISACOHERENTSENTENCE’)

-79.75074906594747

>>> fitness.score(’LKFJLSDFJIOJZOJMIOFJNZA’)

-176.05856134934515

L’idée pour casser le code est la suivante: les effets du mot de passe étant locaux, plus
on se rapproche du bon mot de passe, plus on va avoir de bonnes lettres et fragments
de mots se rapprochant de l’anglais. En effet, si j’ai deux lettre consécutives correctes
sur le mot de passe, alors deux lettres consécutives seront déchiffrées en clair dans le
message, et ce autant de fois que le mot de passe est répété pour couvrir le message.

On va donc essayer de muter des mots de passe lettre à lettre, afin de se rapprocher du
bon mot de passe. On ne va donc visiter qu’une toute petite fraction des possibilités,
guidés par notre heuristique des fréquences de 4-grammes.

(au)Those are due to a guy called James Lyons. (Though I’m not sure who made the 4gram database.) Since
using somebody else’s code and database feels a lot like cheating, we shall make our own later on. . .
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Supposons que la clef soit de longueur 5, et partons de AAAAA, par exemple; essayons
toutes les lettres à la première position, et choisissons celle qui donne le meilleur score,
par exemple SAAAA. Ensuite on passe à la deuxième, et on obtient SUAAA. Au bout
du compte, on obtient SUGER. On recommence à la première lettre. Elle ne bouge
pas. Puis la seconde. Puis la troisième; ah! celle-là bouge, on a SUPER. Les autres
ne changent pas. On fait encore un tour, plus rien ne bouge. SUPER est donc notre
optimum local, en partant de AAAAA. On regarde le message correspondant; c’est
soit le vrai message, soit du charabia qui se trouve sonner pas mal comme de l’anglais.
Rien ne garanti qu’on aura la même chose en partant de BBBBB.

Dans le doute, on essaye de partir des 26 candidats AAAAA à ZZZZZ, et on garde le
meilleur résultat, qui est notre candidat pour une clef de longueur 5. Reste à faire la
même chose pour toutes les longueurs de clefs possibles (1..10).

On ecrira une fonction autobreak(<cyphertext>) qui affiche le meilleur candidat
(clef, message, et score) pour chaque intervalle 1..n de longueur de clef possible. Grâce
à cela, on déchiffrera le message de l’Empire.

Par exemple,

>>> autobreak (cyp1)

W LCINBROMPLNEMMKTKGSIHCIOOEQJFMIO -215.1410845557442

XW KCHNARNMOLMELMJTJGRIGCHONEPJEMHO -192.46846034100733

HEA AUECTNDELAFABEGICCHADRAKDWMYXIXG -182.68686138209173

XUMC KESHATYGONXYLOUNJICCGESINGADEOSI -165.81846421022996

WYAIT LAEBERMIDONCIANTICGLHAECREOFTPIM -157.3321135527277

WYAIT LAEBERMIDONCIANTICGLHAECREOFTPIM -157.3321135527277

GETYXAR BULLANTCHOLDIRALNEREMSARMDMOVELM -142.23665938186278

GETYXAR BULLANTCHOLDIRALNEREMSARMDMOVELM -142.23665938186278

ORARETHEY THESTUDENTSARENICEANDHARDWORKING -112.42451600254101

ORARETHEY THESTUDENTSARENICEANDHARDWORKING -112.42451600254101

Notons que la solution à -142 commence à ressembler fortement à de l’anglais. Si on
n’a pas de chance (et on a plus de chance de ne pas avoir de chance quand le message
est petit), on peut obtenir par hasard un “message” encore plus anglais que le message
réel: considérons

>>> c = crypt(’THISISATEST’,’K’)

>>> c

’DRSCSCKDOCD’

>>> autobreak (c)

K THISISATEST -30.663467249176005

K THISISATEST -30.663467249176005

K THISISATEST -30.663467249176005

K THISISATEST -30.663467249176005

LKKKZ SHISTRATEDS -29.063122550537994

DZKPMJ ASINGTHEENR -27.47716321489606

ZOKPMJD EDINGTHEASO -26.043436663213683

KKKKZVGM THISTHEREST -25.225017010062118

KKKKZVGM THISTHEREST -25.225017010062118

KKOLOPRVBW THERENTINGT -25.003927573660018

La solution finale, “the renting T”, a un meilleur score que le message original, et peut
nous faire croire qu’il est question de la location de quelque-chose par un mystérieux
monsieur “T”. “This, the rest”, est aussi un message convainquant. Un indice pour
préférer “this is a test” est que quitte à choisir un mot de passe long, on choisit rarement
des mots de passe avec des lettres répétées. Le reste est une question d’interprétation.

Évidemment, plus le message est long, moins on risque d’avoir ce genre de soucis.

Note en passant: on pourrait aussi utiliser des algos génétiques sur ce problème. ;-D
Les résultats seraient probablement meilleurs, mais ça serait plus compliqué à mettre
en place.

51.4 n-gram analysis

It is advised to read Sec. 24.4[p78]: “Dictionaries: class dict”, and in particular Sec. 24.4.1.3[p83]:
“Counter, from collections”, quite carefully before proceeding. Some material from
Sec. 26[p98]: “Reading and writing files” will also be necessary.

Han Solo is loosely allied with the ZZZ RebelZ, and shares their need for codebreaking
tools, but he goes his own way in the traditional lonesome cowboy fashion, and is far
too proud to ask for their help.

Consequently, he needs to decrypt the messages, but has no access to ZZZ’s n-gram
database and scoring function. He has a bad feeling about this, because that means he
must make his own. While he does not have access to a vast corpus of texts on which
to train his database, he does have access to a copy of Tosltoï’s War and Peace, pilfered
from Chewbacca ’s nightstand.

He also has access to you, and goes to take a nap while you do all the work. Typical.
You still have the code you wrote for the ZZZ, but you can’t use the ngram database or
the ngram_score code previously provided. Better get going.

(145) Download War and Peace (WP.txt) to your R2D2 unit. (av)

(146) Your first task will be to clean it up for ngram analysis. We only take alphabetic
characters into account, so everything else must go.

To prepare for this, write a predicate isalpha(c) testing whether c is a character
of A..Za..z.

(av)You’ll find it on Celene, as usual.
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It must satisfy the following assertions:

assert all ( isalpha(chr(n)) == chr(n).isalpha() for n in range(128) )

assert all (not isalpha(chr(n)) for n in range(128,256) )

The reason we do not use str.isalphadirectly is that it accepts accented characters.

(147) Will shall need to iterate on the cleaned text ngram by ngram. Write a function
gramiter(s,n=4) that returns an iterable over each successive ngram in the string
s.

Preferably, return a generator.

(To do things optimally, we would accept any iterable; thus we could accept a
generator as well, and lazily process ngrams as we read the file. However, I have
not written the section presenting the tools for that yet, so for now we’ll put the file
in a string first and process that in a second time. It’s less elegant, but it works.)

In any case, the following assertions must be satisfied:

assert tuple(gramiter("ATTACK")) == (’ATTA’, ’TTAC’, ’TACK’)

assert tuple(gramiter("ATTACK",n=1)) == (’A’, ’T’, ’T’, ’A’, ’C’, ’K’)

(148) We have all the tools we need to create our database. Write a procedure

process(text="WP.txt", out="quads.txt"):

which processes the file text.

That means loading it up to memory in a string (again, there are more elegant
ways, but this works) containing only the alphabetic characters — all in uppercase.
You can use str.upper() for uppercase conversion.

Then, you can count the number of occurrences of each 4gram in the text, and
write them to a file out. Each line of that file should be of the format

<4GRAM> <nb of occurrences>

and the lines should be sorted in order of decreasing occurrences.

The beginning of the output file should therefore look like this:

THAT 8285

THER 8187

WITH 6538

DTHE 6295

NTHE 5728

OTHE 5590

...

Friendly Tip: Counters seem like wonderfully topical things, don’t you think? So
does their most_common method. . . Just sayin’.

Run process() once, creating the database file out. Then comment out the call,
for loading the database from out will be much faster than recomputing it from
scratch each time.

(149) Write a function load_grams(fname="quads.txt") that returns a counter contain-
ing all 4gram/occurrences data in the file.

Define a variable C = load_grams()

(150) Define a function score(s,C=C) returning the sum of all 4gram occurrences in the
string s, according to the counter C. Since Python does not suffer from integer
overflow problems, and we only intend to sum over relatively short sentences,
we can affort that computation. Of course, any 4gram that does not appear in the
database is interpreted as having 0 occurrence.

We now have a function returning a numerical value which can rightly be expected
to increase with the “typicality” of the text — length being equal:

>>> score(’THISISACOHERENTSENTENCE’)

13537

>>> score(’BLAHIBLAHBLOBYAAKNOWAHH’)

1623

>>> score(’LKFJLSDFJIOJZOJMIOFJNZA’)

0

We are done! Huzzah! Replace your old fitness function by this one, and get
codebreaking again. How does it work out for you? Spoiler alert: not great.

Note: test on the Empire’s messages, and on the provided cyp1 example.

This fitness function does not seem up to snuff. Why do you think that is?

(151) Let’s inject a little maths into this party and come up with a better score function.

We have a database of K ngrams g1, . . . , gK, of respective occurrences
o(g1), . . . , o(gK). Let

N =
K∑

k=1

o(gk)

be the total number of 4gram occurrences.
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Under the – very, extremely questionable – modelling hypothesis that 4grams
occurrences are independent in text, the probability of an ngram is therefore given
by

P(gk) =
o(gk)

N

and the probability of a string s is given by

P(s) =
∏

g∈ngrams(s)

P(g) .

However, that would mean that any 4gram that does not appear in our database
would instantly set the probability of the sentence to zero. Zero (and one) are
very strong probabilities — in Laplacian/Bayesian (aw) terms, they mean literally
infinite evidence against or for a proposition. We know our database is woefully
incomplete. Therefore we assign a small probability

P0 =
1

100N

to any 4gram not appearing in the database.

Alter your score function to return P(s). You should get something like this:

>>> score(’THISISACOHERENTSENTENCE’)

9.52447211241367e-85

>>> score(’BLAHIBLAHBLOBYAAKNOWAHH’)

7.907084778567561e-146

>>> score(’LKFJLSDFJIOJZOJMIOFJNZA’)

9.26233860365592e-169

>>> score(’LKFJLSDFJIOJZOJMIOFJNZA’*2)

0.0

>>> score(’THISISACOHERENTSENTENCE’*4)

0.0

Test the codebreaker with this.

Spoiler alert: disappointment awaits you.

This probability-based approach is not an altogether bad one in principle. There is
a trick to implementing it properly, however. If you kept your ears open during
class, and read the part of this document on floating point numbers, you know
that I am more than a tad skittish about them. Here, we are blithely multiplying a
whole bunch of very, very tiny floating point numbers.

(aw)Following Stigler’s law of eponymy, Bayesian probability theory is really due to Laplace.

How trustworthy are those infinitesimal results, really? Given the danger of
arithmetic underflow, not very much. As a reminder, the smallest representable
floating-point value in Python is

>>> sys.float_info.min

2.2250738585072014e-308

Mathematically, what will happen to P(s) as s grows longer, regardless of how
“English” that sentence may be? How will it play out with sys.float_info.min?

(152) Let us keep the very same method, but use a mathematical trick to alleviate the
loss of precision. If only we could add numbers, instead of multiplying them, the
overall loss of precision would be much less. If only there was a well known
mathematical Jedi mind-trick we could use to turn those × into +. . .

Oh wait, there is:

log(xy) = log x+ logy .

Let’s select base 10 arbitrarily – just so you can compare your numerical values to
those of others:

from math import log10 as lg

Now let us transform our probabilities into log probabilities: we have

L(gk) = lg
(
P(gk)

)
= lg

(
o(gk)

N

)
and the log probability of a string s is given by

L(s) = lg(P(s)) =
∑

g∈ngrams(s)

L(g) .

Let us note in passing that log probabilities have uses far beyond a “mere”
numerical computation trick; they are well-known in probability theory and in
information theory, as they represent (minus) the information content of an even.
As we are now discovering, they are central to natural language processing.

Update your score function to use L(s). You should get something like:

>>> score(’THISISACOHERENTSENTENCE’)

-84.02115908547061

>>> score(’BLAHIBLAHBLOBYAAKNOWAHH’)

-145.10198360473777

>>> score(’LKFJLSDFJIOJZOJMIOFJNZA’)

-168.03327934653242
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Test the codebreaker again. And rejoice! This time, it is supposed to work fairly
well, though not quite as well as it did when we had the larger database.

Speculate on why that matters for some messages and not others.

(153) To confirm that the difference in codebreaking performance stems from the database
and not your implementation of the scoring function, without touching the code,
swap your Tolstoï-based database for the previous one, english_quadgrams.txt:
it is written in exactly the same format.

You should obtain the same codebreaking performance as before. Not only that,
but you should obtain exactly the same numerical values for the score, as we now
use exactly the same scoring principles as before.

>>> score(’THISISACOHERENTSENTENCE’)

-79.75074906594747

>>> score(’BLAHIBLAHBLOBYAAKNOWAHH’)

-119.3170079814685

>>> score(’LKFJLSDFJIOJZOJMIOFJNZA’)

-176.05856134934515

If that is not the case, there is something wrong with your code.

(154) This is not a question, but thoughts on how to improve the method.

⋄ We could extend the database both in size and in breadth of styles of English
which it represents. As a test, I used a Python web scrapper to extract the text
of the humongous Worm web-serial, written in modern, casual American
English, and combined it with War and Peace — Worm is about thrice as long
as War and Peace, so this substantially reinforced the database. Judging by
the number of occurrences of the most common 4grams, we are still a long
way off.

For comparison, the War and Peace database offers THAT as the most common,
at 8285 occurrences. The War and Peace + Worm database offers THER at
31 921 occurrences, while the original database offers TION at a whopping
13 168 375 occurrences; obviously, it must have been made with a very large
corpus of text. (I still don’t know who is the original source for that file.
Anyone finding out, please tell me!)

The addition of Worm did improve the quality of the partially cracked keys,
but not to the point of cracking them completely. Equaling the quality of the
larger database would mean processing a few thousand books.

⋄ We could move up to 5grams. The received wisdom in that domain is that
4grams are a sweet spot beyond which the marginal increase in performance
does not justify the significant increase in database size.

⋄ If improving the database is not realistic, perhaps we can improve the scoring
function instead. The formula

P(s) =
∏

g∈ngrams(s)

P(g)

rests on the assumption of independence of the successive 4grams. I described
this assumption as extremely questionable, which was a polite way of pointing
out that it is, plainly, false. Convenient, yes. A decent approximation,
certainly. But false in glaringly obvious ways.

A better approximation would be a Markov process. Consider ATTACK: the
first 4gram is ATTA; having read that, the next is necessarily of the form
TTAx, for some x. Thus the probability of any 4gram not of that form being
the second one is zero. Literally zero this time, not “a very small probability”.

The probability of TTAx, given that the previous 4gram was ATTA, or, put
another way, the probability of the next letter being x given that we just read
ATTA, is given by

P(x | ATTA) = P(TTAx | ATTA) =
o(TTAx)∑

TTAy∈D

o(TTAy)
,

where D is our database. P(s) is then obtained by multiplying the successive
conditional probabilities, starting from the probability of the first 4gram:

P(s) = P(g0g1 . . . gn) = P(g0)

n∏
k=1

P
(
gk | gk−1

)
.

Of course, we would still require a log probability implementation. I haven’t
had the time to test that, but I assume that this new version of score would
be noticeably slower, but much more precise. I would expect (hope?) the
codebreaker to succeed on all messages, even using only the War and Peace
database.

⋄ We could also simply test more keys in the same timeframe by making use of
multiple processors. This would offset our more complicated scoring method.

I shall get around to writing a section on that eventually.

52 Be there or be square!

In this section, we focus on the computation of the integer square root isqrt(n) =⌊√
n
⌋
, which we shall perform in many different ways, and compare with respect to
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performance.

Rappel: ⌊k⌋ est la partie entière inférieure de k.

52.1 The easy way: isqrt_builtin∣∣∣∣ enforcing consistency of multiple implementations
∣∣∣∣

Write a function isqrt_builtin(n) using math.sqrt and math.floor. It shall serve
as a reference implementation.

The following assertion must hold:

assert [ isqrt_builtin(n) for n in range(30) ] == \

[ 0, 1, 1, 1, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3,

3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5 ]

In the next questions, for every subsequent function f computing the integer square
root — you will implement isqrt_hard, isqrt_dicho, and more. . . — the following
assertions must hold:

for n in range (100):

assert f(n) == isqrt_builtin(n), n

Note that the error message nwill enable you to know on which value f failed, as it
will be displayed in the interactive mode.

Note that you could factorise all those tests, like so:

for f in (isqrt_hard, isqrt_dicho,...): # replace by your functions

for n in range (100):

assert f(n) == isqrt_builtin(n), (f,n)

No other use of isqrt_builtin is allowed in the next questions. Nor can you use
math.sqrt, or pow(n,0.5), or n ** 0.5, or n ** (1/2), or any other direct way of
computing the root. You must implement the algorithms suggested by the question,
and use integers exclusively.

52.2 Racine carrée entière, the hard way!

Note: On utilisera la syntaxe x * x pour coder x2, car c’est plus efficace que x ** 2.

Écrire une fonction isqrt_hard(n) calculant
⌊√
n
⌋
, pour tout entier naturel n.

On utilisera impérativement une boucle while, testant les carrés 02, 12, 22, 32, . . .
successivement, jusqu’à trouver la bonne valeur.

52.3 Racine carrée entière, 20% cooler!!

If I am not there to help you or this takes too much time, skip this section. The important thing
is to get to the empirical comparison of your solutions, at the end — it does not change much if
you have one fewer version of isqrt to compare.

Let us compute a closed form (ax) of the sum Sn of the n first odd numbers:

Sn =
n∑

k=1

(
2k− 1

)
= 2

n∑
k=1

k−

n∑
k=1

1 (52.1)

= 2
1

2
n(n+ 1) − n

= n(n+ 1) − n

= n(n+ 1− 1)

= n2 .

This gives us an idea to compute isqrt more efficiently. What if, instead of doing
a multiplication at each iteration, we replaced that multiplication by additions —
additions are less expensive, in processor time, than multiplications.

The idea is to use the same logic as isqrt_hard, except that instead of computing the
next square from scratch at each iteration of the main loop, you can take advantage
of Equation (52.1) to use the previously computed n2 to obtain (n + 1)2; you just
need to increment your previous result by the next odd integer. That integer itself
can be maintained from one iteration to the next by adding 2. Thus you replace a
multiplication, which can be fairly expensive in terms of computation time, by two
additions, which may be less expensive — further testing will determine how well that
works out in practice.

With this in mind, write a function isqrt_sum(n) computing
⌊√
n
⌋
, behaving funda-

mentally like isqrt_hard, but using the ideas above to be (hopefully) more efficient.

52.4 Racine carrée entière, par dichotomie∣∣∣∣ dichotomy on int has its own logical difficulties
using a recursive subfunction

∣∣∣∣
On est toujours, jusqu’à présent, dans un nombre d’opérations linéaire en la taille de
n. Écrivons donc maintenant une fonction isqrt_dicho(n) calculant

⌊√
n
⌋

de façon
similaire à la version “hard” mais en procédant cette fois par recherche dichotomique
au lieu de tester toutes les valeurs. On s’attend dont à un nombre logarithmique
d’opérations.

(ax)A closed form is an expression using only a fixed number of straightfoward operations, such as +, −, ×
etc, but no

∑
,
∏

,
∫

etc. Put another way, “compute the value of Sn as a function of n”, or “solve the sum”.
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You will write two versions: the first one using while, and then the second one,
isqrt_dicho_rec(n), using recursion. Note that both versions must present the same
interface to the user. Unlike in question (35)[p134], where the search interval [a, b] was
expected as arguments, you have no room in the function’s signature for that.

Tip: Use a recursive subfunction.

Both versions must be tested.

52.5 Empirisme forcené: Ultimate Showdown of Ultimate SQRT∣∣∣∣∣∣
performance testing of multiple implementations

recognising the futility of reinventing the wheel and premature
optimisation

∣∣∣∣∣∣
Utilisez la fonction timeit du module éponyme pour tester si les versions par somme et
dichotomie sont réellement meilleures (ou pires ?) que la version brutale, et à quel point
– on utilisera également, comme base de comparaison, la fonction isqrt_builtin(n). .

On expliquera brièvement mais clairement ce qu’on fait, pourquoi, ce que l’on obtient,
ce que ça veut dire, et si ça nous surprend.

Si l’on perçoit une morale à cette exercice, on l’exprimera succinctement.

Pour illustrer les résultats, on produira (au moins) un joli petit graphe montrant le
comportement de nos quatre approches en fonction de la taille de n. Le graphe pourra
être fait avec matplotlib, gnuplot, Libre Office, Word, Google Sheets, ce que vous
voulez, mais vous en fournirez dans tous les cas une version PDF ou PNG, lisible par
tout un chacun.

Note: on utilisera l’interface Python du module timeit — par opposition à la ligne de
commande — dont la documentation est ici.

Begin by importing the function:

from timeit import timeit

The timeit function executes a small snippet of code a large number of times, and
returns the total time taken, in seconds, as a float. Execution times of small snippets
of code are highly variable, depending on system activity; repeating the execution
ensures that measures are reasonably precise.

timeit has two interfaces; one using strings, and one using callables (via lambdas),
which is what we shall use.

The “callable” interface expects a nullary function, whose execution is timed, and an
optional argument number, defaulting to 106. Timeit returns the total time taken by the

execution of the callable, repeated number times.

For instance, let us say we want to time the execution of isqrt_hard(1000) and
isqrt_hard(1000000):

>>> N = 10000 # repetitions

>>> timeit(lambda: isqrt_hard(1000) , number=N) / N

9.853858899987244e-06 # average time, in seconds

>>> timeit(lambda: isqrt_hard(1000000) , number=N) / N

0.00029428713969991804

53 Prime numbers and sieve of Eratosthenes

In this section, you cannot reuse the results of previous questions unless explicitly
mentioned, since the goal is to do the same thing with many different approaches.∣∣∣∣ more complex comprehension expressions

∣∣∣∣
(155) Écrire un prédicat isprime(n) (N→ bool) testant si un entier natureln est premier,

c’est à dire s’il est strictement supérieur à 1 et divisible seulement par 1 et n.

The body must be written in one line of the form return <expr>.

Read Sec. 24.5.3.4[p87]: “Reductions”, especially the part about any and all.

The following assertion must hold:

assert [ i for i in range(30) if isprime(i) ] \

== [2, 3, 5, 7, 11, 13, 17, 19, 23, 29]

(156) Reminder: Composite numbers are positive integers that are not prime. Put
another way, they are formed by the multiplication of two smaller numbers, other
than 0 or 1.

With a comprehension, build the set comp of composite numbers in J1, nK, using
the following method: use a filter to retain only those integers which have a divisor.
Again, do not reuse isprime for this.

Note that I merely ask for a set, written with a comprehension expression, not for
a function returning a set. Assume that n is defined; for instance n = 100.

The expression will thus be of the form
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comp = { i for i in range(...) if any(......) }

or

comp = { i for i in range(...) for j in range(...) if ... }

For bonus points, try and write a version for each of those two forms. Might there
be a notable difference in efficiency between the two for large values of n?

(157) Again, build the set comp2 of composite numbers in J1, nK, but this time build the
multiples of 2, then the multiples of 3, and so on.

For this question, recall that the multiples of i can easily be computed through
range(i, n+1, i), thanks to the optional third argument of range.

Thus the expression will be of the form

{ j for i in range(...) for j in range(...) }

(158) Again, build the set comp3 of composite numbers in J1, nK, but this time by noting
that they are the set of numbers of the form i× j, for i, j in suitable ranges.

Thus the expression will be of the form

{ i*j for i in range(...) for j in range(...) }

The following assertion must hold:

assert comp == comp2 == comp3, (comp^comp2, comp^comp3)

Note that the error message gives you the symmetric difference between those
sets, making debugging easier.

(159) Build the tuple primes of prime numbers in J1, nK. Use comp, as defined in previous
questions; do not use isprime, however.

The following assertion must hold:

assert primes == tuple( k for k in range(1, n+1) if isprime(k) )

54 For me it was a Tuesday. . .

In any calendar-related question, it is forbidden to use the datetime module or anything
similar, unless explicitly required by the question.

The only permitted use of datetime is to verify your answers through assertions, as shown in
question 165[p181].

In this section, we shall represent dates as triplets of integers y,m, d, for years, months,
and days, respectively. Months are represented as integers in J1, 12K.

In some later questions, it might be useful to note that, with this representation, the
order between two dates can be tested naturally through

(y,m,d) < (Y,M,D)

thanks to the lexicographical order on tuples (cf. Section 22.4.9[p50] and Equation
24.1[p70]).

54.1 Suis-je bissextile ?

Dans le calendrier grégorien, qui a pris effet le 15 octobre 1582, une année bissextile est
une année qui est divisible par 4 mais pas par 100, ou alors qui est divisible par 400.

Nommer, documenter, et écrire une fonction pour tester si une année est bissextile.
Comme toujours, on réfléchira aux conditions d’utilisation. . .

Obviously, this must be a predicate (the return value is a Boolean). Try to write it in a
single line of the form

return <Boolean expression>

If you really feel the need to use an if, by all means do so at first, but then spend time
rewriting it into the single-expression form.

54.2 Le mois le plus long

On écrira (nommera, documentera, testera, etcetera) une fonction donnant le nombre
de jours dans un mois. On rappelle que février a 28 jours dans une année normale et
29 dans une année bissextile.

Tip: you can use the in/tuple syntax (cf. Sec. 22.6.2[p54]: “in and is”):

x in (1,3,7,10)
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replaces

elif x == 1:.. elif x == 3.. etc

A match/case can also serve:

match x:

case 1|3|7|10: ...

Depending on how you choose to write the function, an expression-if / ternary operator
(cf. Sec. 23.2[p61]: “Conditional expression: .. if .. else .. ternary operator”) may
also be convenient.

54.3 Aide aux jours invalides

Bien que toute date soit représentable par un triplet d’entiers y,m, d, tout triplet ne
représente pas une date valide. Par exemple 2015, 29, 2 et 2015, 2, 29 sont toutes deux
invalides, pour des raisons différentes.

On écrira une fonction is_valid_date pour tester cela.

There again, this is a simple predicate, and should be written in a single line of the form

return <Boolean expression>

Now you can — nay, must — use this convenient predicate in every function taking
dates as inputs, as a precondition assertion.

54.4 Comptons les jours, approximativement

On veut compter les jours entre deux dates.

Écrire une fonction days_between_approx(y,m,d,Y,M,D) renvoyant le nombre (ap-
proximatif) de jours entre les deux dates représentées dans les paramètres.

Elle doit donner un résultat cohérent quelque-soit l’ordre dans lequel les dates sont
données. Il est utile de penser à cela comme une difference entre deux dates.

On ignorera (le temps de cet exercice) les questions d’années bissextiles: on considérera
qu’un an a 365.2425 jours en moyenne, et que les mois, au nombre de 12 par ans, ont,
aussi en moyenne et approximativement, le même nombre de jours.

54.5 days_between, exact version

We shall now perform an exact computation. days_between(y,m,d,Y,M,D) has the
same parameters and meaning as days_between_approx , but must return the exact
number of days.

This question is quite difficult, and it is advised to spend some time on paper breaking
the difficulty into subproblems before starting to code. Do not hesitate to define
additional helper functions for clearly-identified sub-problems.

The following assertions must be satisfied:

assert (days_between(1985,10,21, 1985,10,21) == 0)

assert (days_between(1985,10,20, 1985,10,21) == 1)

assert (days_between(1985,10,21, 1985,10,20) == -1)

assert (days_between(1985,10,21, 2017,9,19) == 11656)

assert (days_between(2017,9,19, 1985,10,21) == -11656)

assert (days_between(1999,12, 5, 2000,3,1) == 87)

54.6 weekday, the hard way

Sachant que le premier janvier 1900 était un lundi, écrire, à l’aide de la fonction
days_between, une fonction weekday(y,m,d) permettant de déterminer le jour de la
semaine de n’importe quelle date du calendrier grégorien — y compris avant 1900.

On utilisera les entiers suivants pour représenter les jours de la semaine:

Dimanche Lundi Mardi Mercredi Jeudi Vendredi Samedi
0 1 2 3 4 5 6

Note: la fonction doit bien renvoyer ces entiers, et non imprimer les noms des jours.

Here are a few tests that your function must pass:

assert weekday(1900,1,1) == 1

assert weekday(1985,10,21) == 1

assert weekday(2017,9,19) == 2

assert weekday(1899,12,31) == 0

assert weekday(1700,1,1) == 5

assert weekday(2019,9,14) == 6

54.7 Impression calendrier

À l’aide de la fonction précédente, on écrira une procédure cal imitant le comportement
du programme cal d’Unix (qui, évidemment, affiche un calendrier). En particulier, un
appel à cal(2018,9) doit imprimer ceci:

Septembre 2018

di lu ma me je ve sa

1

2 3 4 5 6 7 8
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9 10 11 12 13 14 15

16 17 18 19 20 21 22

23 24 25 26 27 28 29

30

54.8 Merci, Delambre !

La formule de Delambre est une manière plus directe de calculer le jour de la semaine.
Une date y,m, d correspond, selon cette formule, au jour de la semaine

K = d+m+

⌊
21

4
y ′′

⌋
+

⌊
5

4
y ′
⌋
+ 2 mod 7

où

y ′′ =
⌊ y

100

⌋
est la partie séculaire de l’année, et

y ′ = y mod 100

en est l’année dans le siècle courant; de plus, le code du moism est donné par

m 1 2 3 4 5 6 7 8 9 10 11 12

m, année normale 4 0 0 3 5 1 3 6 2 4 0 2
m, année bissextile 3 6 0 3 5 1 3 6 2 4 0 2

Par exemple, pour le 21 octobre 1985, on a

K = 21+ 4+

⌊
21

4
19

⌋
+

⌊
5

4
85

⌋
+ 2 mod 7

= 232 mod 7

= 1 = lundi ,

ce qui est correct.

Implement a function weekday_delambre, as a replacement for weekday.

Vérifier que les deux méthodes implémentées pour calculer le jour de la semaine
donnent bien les mêmes résultats pour tous les jours de 1900 à 2100.

Adaptez cal de manière à ce qu’elle accepte, comme argument optionnel, la fonction
déterminant le jour de la semaine. Un appel à cal prendra donc la forme, par exemple:

cal(1985,10, weekday=weekday)

ou

cal(1985,10, weekday=weekday_delambre),

54.9 Approximating the approximation error

(160) Vérifiez qu’entre le 21 octobre 1985 et aujourd’hui et, l’erreur encourue par l’usage
d’approximations dans la fonction days_between_approx est de l’ordre de 0.01%.

By this I mean that the following must hold:

def approxrat(*p):

ex = days_between(*p)

ap = days_between_approx(*p)

#print(ex,ap,ap/ex)

return ap/ex

assert isalmost (approxrat(1985,10,21,2020,9,19) , 1 , 0.0001)

Of course, isalmost is the function defined in question 21[p129], which you can
write again or import.

(161) Verify that, between 1900 and 2100, the error is of the order of 0.0005%.

That is to say, it must hold that

assert isalmost (approxrat(1800,1,1, 2100,1,1) , 1 , 0.000005)

(162) En y réfléchissant, proposez et testez un intervalle pour lequel l’erreur due à
l’approximation sera beaucoup plus importante.

In fact, you can – and must – find two dates so that the following holds:

assert approxrat(....) > 1.7

54.10 Effects of approximations on weekday

A question in this section requires some understanding of Sec. 29[p112]: “Iterables, iterators,
and generators”.

Sec. 24.6[p89]: “Packing and unpacking” can also be quite useful on occasion.

Your weekday function must imperatively be correct for that part.

Since the approximation is so good, did we really need to go to the trouble of writing
the exact days_between function, or could we just have used the approximation
days_between_approx instead?

(163) Write a function weekday_approx, similar to weekday but using
days_between_approx instead of days_between, and rounding the result
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in an integer. See whether it fails any assertions which its exact counterpart
satisfies.

Spoiler alert: it does.

(164) Let us quantify the degree to which the approximation fails to yield the correct day
by computing the ratio of weekdays correctly computed through approximation
over a few centuries.

Write a generator function daysgen(y,m,d,Y,M,D) generating all successive days
– as triplets – starting from y,m,d and ending just before Y,M,D — the end point is
excluded.

The following assertions must pass:

assert next(daysgen(1899,12,31,1900,1,4)) == (1899, 12, 31)

assert list(daysgen(1899,12,31,1900,1,4)) == \

[(1899, 12, 31), (1900, 1, 1), (1900, 1, 2), (1900, 1, 3)]

assert list(daysgen(2020,2,28,2020,3,2)) == \

[(2020, 2, 28), (2020, 2, 29), (2020, 3, 1)]

assert list(daysgen(2019,2,28,2019,3,2)) == \

[(2019, 2, 28), (2019, 3, 1)]

assert sum(1 for _ in daysgen(1985,10,21, 2017,9,19)) == 11656

(165) Check that the following assertion holds, that checks the correctness of weekday
quite exhaustively:

from datetime import date

assert all( (date(*t).weekday()+1)%7 == weekday(*t)

for t in daysgen(1800,1,1, 2100,1,1) )

For once you can comment this assertion out after verifying it, as it might take a
second or two to execute.

(166) Extend daysgen to accept a seventh optional argument, defaulting to False and
which, if True, causes the function to produce not just date triplets t, but couples
t, weekday(t). For performance reasons, this should be done with only one
invocation of weekday, regardless of the number of days generated.

All previous assertions must remain satisfied, along with the following:

assert list(daysgen(1899,12,31,1900,1,4,True)) == \

[((1899, 12, 31), 0), ((1900, 1, 1), 1),

((1900, 1, 2), 2), ((1900, 1, 3), 3)]

assert list(daysgen(1899,12,31,1905,1,4,True)) == \

[ (t,weekday(*t)) for t in daysgen(1899,12,31,1905,1,4) ]

(167) Verify that the approximation computes about 49% of weekdays correctly
in the interval 1985,10,21, 2017,9,19 and about 35% in the interval
1800,1,1, 2100,1,1.

Those percentages may vary greatly depending on the way in which you choose
to round days_between_approx; for instance it may be 38% instead of 49%, and
so on. So long as you find something roughly in the same ballpark, it’s okay.

The assertions that must hold are thus of the form

def approxdayrat(*p):

N = days_between(*p)

n = sum( 1 for (t,d) in daysgen(*p,True) if d == weekday_approx(*t) )

#print(n,N,n/N)

return n/N

assert isalmost( approxdayrat(1985,10,21, 2017,9,19), .49, .001 )

assert isalmost( approxdayrat(1800,1,1, 2100,1,1), .35, .01 )

(168) If you like, write a concluding haiku about the treacherousness of floating-point
approximations, even slight, when applied to integral, exact computations.

55 Dichotomie

On veut réaliser une recherche de zéro d’une fonction continue f sur l’intervalle [a, b],
i.e. résoudre f(x) = 0. On suppose que f change de signe entre a et b.

L’étudiant Toto propose le code suivant pour résoudre le problème par dichotomie:

def sign(x):

return 1 if x >= 0 else -1

def di(f,a,b):

m = (a+b)/2

if f(m) = 0:

return m

if sign(a) == sign(m):

return di(f,m,b)

else:
return di(f,a,m)
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Ce code contient (au minimum) trois erreurs: une d’ordre syntaxique (sans se prononcer
quant à savoir si Python la détecte en tant que SyntaxError), une d’ordre numérique, et
une d’ordre logique.

(169) Quelles sont-elles ? On expliquera le problème succinctement (une ligne max par
erreur).

(170) Proposer un code corrigé pour di.

(171) Le if dans sign et ceux dans di jouent-ils le même rôle syntactique pour Python ?
Le(s)quel(s) ? (Réponse en deux lignes au plus).

56 En sommes. . .

Nous allons écrire différentes versions de la fonction sum, déjà prédéfinie en Python.
On a

sum([e1, . . . , en]) =
n∑

k=1

ek ,

et la fonction s’applique en fait à n’importe quel type d’itérable fini; une propriété que
l’on souhaiterait (optionellement) préserver dans nos implémentations.

(172) sum_while: on utilisera une boucle while.

(173) sum_for_range: on utilisera une boucle for utilisant un range.

(174) sum_for: on utilisera une boucle for n’utilisant pas de range.

(175) Ces implémentations sont-elles équivalentes ? Pourquoi ? (Donner l’argument en
une ligne.)

(176) Donnez la sortie de Python lors de l’exécution du bloc de code suivant:

l = list(range(1,6))
s = set(l)

print(l, sum_while(l), sum_for_range(l), sum_for(l))

print(s, sum_while(s), sum_for_range(s), sum_for(s))

(177) Définir une fonction reduce, applicable à tout itérable fini [e1, . . . , en], telle que

reduce([e1, . . . , en], e0, f) = f(· · · f(f(e0, e1), e2), . . . , en)

(178) Compléter le code suivant pour obtenir une implémentation de sum en une ligne.

def sum_reduce(l):

return reduce(## COMPLETER ##)

On rappelle l’existence de la construction

lambda x1, . . . , xn : f(x1, . . . , xn)

en Python pour coder une fonction “anonyme” de paramètres x1, . . . , xn, renvoyant
f(x1, . . . , xn) – où f(x1, . . . , xn) peut être n’importe quelle expression Python
utilisant (ou pas) les variables x1, . . . , xn. Cette construction joue le rôle syntaxique
d’une expression.

(179) Implémenter en une ligne (sans compter l’entête def union(l):) une fonction
union réalisant l’union des ensembles contenus dans un itérable fini:

union([S1, . . . , Sn]) =
n⋃

k=1

Sk .

(180) Donner la sortie de Python pour le code:

print(union([set(’abc’), set(’baba’), set(’coucou’)]))

57 Enter the Matrix: find your paths!

Note:

I gave this exercise in a second-sitting examination, at the end of the year. Consequently I
made use, for flavour, of notions of Graph Theory which are only tackled during the second
semester. Those notions are neither advanced nor strictly necessary to answer the questions,
but the exercise will undoubtedly be more fun for you if you understand what concrete problem
we are solving.

I would therefore advise you to take a cursory look at the notions of "directed graph" and
"adjacency matrix" before proceeding with the questions.

Soit par exemple la matrice d’adjacence suivante, entendue pour un graphe de nœuds
A,B,C:

M =

0 1 1

1 0 1

0 1 0
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Nous allons jouer à calculer tous les chemins de longueur n sur des graphes. J’espère
que cela vous évoque des souvenirs. . .

It is advised to recall the existence of the builtin sum function, as well as that of the
union function defined in question 179[p182]. Both might come in handy in this exercise.

(181) Définir une variable Python M telle que M[i][j]=Mij. De plus, chacune des cases
de M doit être mutable.

(182) Définir une procédure mprint pour afficher une matrice; par exemple

>>> mprint(M)

[0, 1, 1]

[1, 0, 1]

[0, 1, 0]

(183) Définir une fonction check_squares prenant deux matrices carrées (de même
dimensions n× n) en argument, et renvoyant n. Si les matrices ne satisfont pas
cette propriété, check_squares doit provoquer une AssertionError.

(184) Compléter le code suivant afin de réaliser une fonction mmul permettant de
multiplier deux matrices carrées contenant des valeurs numériques.

def mmul(A,B):

n = check_squares(A,B)

res = ## completer ##

## completer ##

## completer ##

res[i][j] = ## completer ##

return res

On rappelle que le produit matriciel est défini par

[AB]ij =
n∑

k=1

AikBkj .

De plus, on ne pourra pas rajouter des lignes de code en le complétant. Par là
j’entends que chaque instance de ## completer ## doit être remplacée par du
code qui tient naturellement en une ligne.

(185) Donner une fonction letter qui à un nombre de 0..25 associe la lettre de A..Z
correspondante. (Une ligne, hors entête.) On définit pour la suite Σ = {A, . . . , Z }.

(186) Donner une procédure to_path_mat qui transforme sur place une matrice
d’adjacence M classique en une matrice P contenant des ensembles de mots
telle que Pij = ∅ si Mij = 0 et { letter(i)letter(j) } sinon. Dans le cas de notre

M, on a

P =

 ∅ {AB } {AC }

{BA } ∅ {BC }

∅ {CB } ∅


(187) Nous appelons ceci des matrices de chemins, pour lesquelles nous définissons la

concaténation de chemins, notée �:

[A � B]ij =
n⋃

k=1

Aik � Bkj ,

où � est définie sur les langages et les mots (chemins) comme suit:

L�M = { l�m | l,m ∈ L,M } ua� av = uav, ∀a ∈ Σ, u, v ∈ Σ∗

Écrire en deux lignes une fonction pconcat qui réalise � sur les mots. Elle doit
déclencher une AssertionError si les chemins ne sont pas compatibles.

(188) Écrire en une ligne une fonction psetconcat qui réalise � sur les langages.

(189) Écrire une fonction pmul qui réalise � sur les matrices. Elle doit comporter le
même nombre de lignes que mmul.

58 Générateur de nombres premiers et autres

(190) Ecrire une fonction allints(n=0,step=1) renvoyant un générateur pour N par
défaut et pour les entiers {n+ step× k | k ∈ N } en général.

On n’utilisera pas la fonction count du module itertools, car on est en train de la
redéfinir :-P

(191) Ecrire une procédure testgen(g,n) imprimant la liste des n premiers éléments
du générateur g. On doit avoir par exemple:

>>> testgen(allints(4,3),10)

[4, 7, 10, 13, 16, 19, 22, 25, 28, 31]

On supposera que g contient assez d’éléments.

(192) Écrire un prédicat isprime(n) (N→ bool) testant si un entier natureln est premier,
c’est à dire s’il est strictement supérieur à 1 et divisible seulement par 1 et n. (On
ne demande pas de documentation ni d’assert dans cet examen.)

(193) Écrire un générateur produisant tous les nombres premiers supérieurs ou égaux à
m. (m ∈ N).
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Part V

DIU EIL: Récursivité

Cette partie sert de support pour le cours de Récursivité du Diplôme Inter-Universitaire
Enseigner l’Informatique au Lycée (DIU EIL) que j’assure à Orléans (2019–2021). The
introduction on terminology also serves during the “Mise à niveau mathématique:
Induction” classes for third-year apprentices.

Étudiants INSA CVL:

Le fait que vous n’en soyez pas les destinataires principaux ne doit pas vous vous
empêcher d’aborder ces exercices. Certains d’entre eux — par exemple sur la mémoisa-
tion de la suite de Fibonacci, ou les relations de récurrence linéaires — sont d’ailleurs
tombés en examen.

Étudiants DIU EIL:

Les exercices marqués par ♠ seront traités en séance, en mode TP. Si vous êtes en
avance, vous pouvez donc passer à l’exercice marqué suivant.

Ceux marqués par ♣ seront survolés en séance, sous la forme d’un cours magistral.

Le reste peut servir de base au travail personnel, à plus long terme, et pourra être
abordé en séance le temps le permettant.

59 A Point on Terminology

“To understand recursion, one must first understand recursion.”
— Some wise guy.

The topic is recursion. There are two other, closely related words which we shall
encounter quite often when exploring the topic: induction, and recurrence.

I find it helpful to begin by clarifying their meaning; or at least making a good attempt
at that. Unfortunately, while the general idea of what those terms mean is quite easy
to grasp, their use is not always consistent across all authors. There are also slight
differences between the English and French use of the terms, specifically for recurrence.

Thus, the definitions I give below are not to be construed as universal or authoritative;
they merely represent my best attempt at putting the concepts into neat boxes that fit
most of the literature that I encountered. Your mileage may vary.

59.1 Recursion: self-reference, no strings attached

Recursion is the most general term. Anything that is defined with reference to itself,
any function that calls itself, directly or indirectly, is recursive. There are no restrictions
on what those self-references do, no demand for well-founded orders or base cases or
termination. The resulting object may not even be well-defined. Even when it is, it
may be very “hairy” and difficult to deal with.

59.2 Induction: well-founded structured recursion

Induction is a much more selective subset of recursion, applied to (1) recursive
definitions of sets of objects (or types), which are then said to have inductive structure,
(2) definitions of functions upon said structure, and (3) proofs — usually concerning
the functions in question — that rely on said structure.

59.2.1 Defining Inductive Types

The first class of inductive definition is a recursive definition whereby, from given
atomic objects, more complex objects are formed.

For instance, let us define the set E of arithmetic expressions by saying that any number
is an arithmetic expression, and that any two such expressions, separated by +, form
an arithmetic expression. (Use your imagination for other operators.)

We can formalise that by saying that E is the smallest set, with respect to inclusion,
such that

R ⊆ E and φ,ψ ∈ E ⇒ φ+ψ ∈ E .

Note that + here is just a symbol; we are working with the syntax of the expression.
Giving them semantics is another task.

We would instead write a formal grammar:

E → R | E+ E

With R a non-terminal coding real numbers. Other communities favour a “deduction
rule”-like syntax:

r ∈ R

r ∈ E

x ∈ E y ∈ E

x+ y ∈ E
.

Note that induction must proceed bottom-up (ay), constructing more and more complex
objects.

(ay)morally, at least; deduction rules build terms top-to-bottom, on the paper.
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Of particular interest for us is the inductive definition of integers, often referred to as
the Peano definition:

0 ∈ N
and

n ∈ N

n+ 1 ∈ N
.

Here n+ 1 is not to be understood as the application of some binary operator +, but
only as a syntax for “the successor of n”. Our usual notations are shortcuts:

1 = 0+ 1

2 = (0+ 1) + 1

3 = ((0+ 1) + 1) + 1

. . .

To avoid any confusion, in a very low-level discussion of Peano integers we shall often
use

0 ∈ N
and

n ∈ N

S(n) ∈ N

instead, with S(n) standing for “the successor of n”. Thus we have:

1 = S(0)

2 = S(S(0))

3 = S(S(S(0)))

. . .

Then, using this unambiguous syntax, we can define a binary operator + and later
show that n+ 1 = 1+ n = S(n), as a theorem, and henceforth the syntactic distinction
can be dropped without fear.

0 and S, or 0 and +1, are referred to as constructors, because that is what they do: they
construct new values of the type. 0() is a nullary, or atomic, constructor, it depends on
no previously constructed values and constructs. . . itself, essentially. S(·) is a unary
constructor: it takes a existing value and constructs a new one, more complex. The
0-rule is an axiom, and the S-rule is an inductive rule.

A derivation is an application of several rules generating a value:

0 ∈ N

S(0) ∈ N

S(S(0)) ∈ N
...

S(· · ·S(0) · · · ) ∈ N

Put another way, it is a deduction of the fact that, say, S(S(0)) ∈ N, in the inference
system defined by the construction rules.

There are many other interesting inductive types. Consider the type αℓ of (linked) lists
of elements of type α:

[] ∈ αℓ
and

a ∈ α l ∈ αℓ

a : l ∈ αℓ
.

Through longstanding tradition, staring with LISP, I believe, the empty list “[]” is
often called Nil, and the list constructor “:” is written Cons, because it is the seminal
constructor from which the line of thinking and the terminology presented in these
pages are generalised.

Let us build an interesting list: [1, 2, 3]:

1 ∈ N

2 ∈ N

3 ∈ N [] ∈ Nℓ

3 : [] ∈ Nℓ

2 : 3 : [] ∈ Nℓ

1 : 2 : 3 : [] ∈ Nℓ

Here we have employed the usual notations and taken the existence of the integers as
hypotheses, but we can fully develop that proof tree using the rules of both types:

0 ∈ N

S(0) ∈ N

0 ∈ N

S(0) ∈ N

S(S(0)) ∈ N

0 ∈ N

S(0) ∈ N

S(S(0)) ∈ N

S(S(S(0))) ∈ N [] ∈ Nℓ

S(S(S(0))) : [] ∈ Nℓ

S(S(0)) : S(S(S(0))) : [] ∈ Nℓ

S(0) : S(S(0)) : S(S(S(0))) : [] ∈ Nℓ

Interestingly, that proof tree is, visually, surprisingly evocative of a Spanish Galleon,
seen in profile. Or maybe I’m just tired.

The type of lists αℓ can easily be generalised to the type ατ of binary trees with nodes
and leaves of type α:

a ∈ α

a ∈ ατ
and

a ∈ α t1, t2 ∈ ατ

a(t1, t2) ∈ ατ
.
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For instance, we build:

4 ∈ N

3 ∈ N

1 ∈ N

1 ∈ Nτ

2 ∈ N

2 ∈ Nτ

3(1, 2) ∈ Nτ

5 ∈ N

5 ∈ Nτ

4
(
3(1, 2), 5

)
∈ Nτ

59.2.2 Defining Functions and Operators on Inductive Types

Now that we have inductive types, what can we do with them? We can define functions
acting on objects of those types; they will follow the rules though which those objects
have been constructed, and break them down, recursively dealing with the more
primitive sub-objects.

Let us assign a semantics to our arithmetic expressions:

∀r ∈ R, JrK = r, ∀e, e ′ ∈ E, Je+ e ′K = JeK + Je ′K .

Less trivially, let us equip our Peano integers with an addition. To avoid notational
confusion between addition and successor, we shall write+(x, y) instead of the addition
x+ y, and S(x) instead of the successor x+ 1:

+(x, 0) = x

+(x, S(y)) = S(+(x, y)) .

This is not the most trivial inductive definition on Earth, because we have two
parameters. Fortunately, in that case, using the inductive structure of either one of
them, leaving the other alone, suffices.

As an example on lists, let us define a function Σ : Rℓ→ R that sums the elements of a
list of real values:

Σ[] = 0, Σ(r : l) = r+ Σl .

Finally, for trees, let us define Σ : Rτ→ R that sums all the nodes of a tree:

Σa = a, Σ
(
a(t1, t2)

)
= a+ Σt1 + Σt2 .

All those belong to the second type of inductive definitions: functions acting on
inductive types, defined along the inductive structure. Note that those definitions are
top-down instead of bottom-up: you take an existing structure and break it down into
smaller ones, eventually finding an atom and stopping.

59.2.3 Implementing Such Types and Functions

There are languages that are particularly well-suited to the manipulation of inductive
types and functions, such as OCaml and Haskell. Unfortunately, we use Python in this
course.

Fortunately, however, since version 3.10, Python supports structural pattern-matching:
see Sec. 23.6[p65]: “Pattern matching: match..case” and Sec. 28[p109]: “Advanced
structural pattern matching”. Following the principles outlined in those sections,
implementing those types and functions is fairly straightforward:

class Zero: pass
Z = Zero()

@dataclass

class S:

i: object

def plus(n,m):

match n,m:

case n, Zero() : return n

case n, S(m) : return S(plus(n,m))

59.2.4 Proving Stuff on Inductive Types

The third use of induction is in proofs that rely on inductive structures. Just as the
construction rules of the induction definition of types dictates how functions must be
built, so do they enforce the structures of proofs. For Peano integers, built by the rules

0 ∈ N
and

n ∈ N

S(n) ∈ N
,

we have the following inductive proof pattern, for any property P(n) of integers n ∈ N:

P(0) ∀n ∈ N, P(n)⇒ P(S(n))

∀n ∈ N, P(n)
. (59.1)

This theorem is not arbitrary; it follows mechanically from the inductive definition of
N, and similar theorems can be derived for any other inductive type. For instance, it
holds that for every property P of α-lists, built by rules

[] ∈ αℓ
and

a ∈ α l ∈ αℓ

a : l ∈ αℓ
,

we have the inductive proof pattern

P([]) ∀a ∈ α, ∀l ∈ αℓ, P(l)⇒ P(a : l)

∀l ∈ αℓ, P(l)
. (59.2)
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For binary trees ατ, defined by

a ∈ α

a ∈ ατ
and

a ∈ α t1, t2 ∈ ατ

a(t1, t2) ∈ ατ
.

we have

∀a ∈ α, P(a) ∀a ∈ α,∀t1, t2 ∈ ατ, P(t1) ∧ P(t2) =⇒ P
(
a(t1, t2)

)
∀t ∈ ατ, P(t)

. (59.3)

59.2.5 General Forms of Induction

We have seen three inductive types, functions defined on them, and the corresponding
proof patterns. I have said that the proof patterns could be mechanically derived from
the inductive rules, but not how.

Let us now take a more abstract view, which will enable us to express that.

An inductive type I is defined by a finite number N ∈ N of deduction (or construction)
rules of the form

xk ∈ Xk ik ∈ Ik
Ck(xk, ik) ∈ I

where Xk is a product of non-inductive types (at least from the perspective of the type
I), and Ik = Ink for some nk ∈ N. That is to say, a rule has for premisses the existence
of a number of objects x and i, some of different, already existing types (X), and some
of its own type (I).

A rule where i is empty, that is to say, that does not depend on previously constructed
members of the type I, are called axioms, the others are said to be inductive rules.

An inductive type must have at least one axiom.

Take a minute to see how the three types we have defined so far all fit in this framework.

Given those rules, functions defined on those types will generally be given by N lines
of the form

f
(
a, Ck(xk, ik)

)
,

where a is a number of other arguments that do not require induction, but the definition
can of course be more complex if several arguments require simultaneous induction, or
if some require nested patterns like Ci(Cj(. . . )).

Given the rules, the proof pattern is derived as

∀k ∈ J1,NK, ∀xk ∈ Xk,
(
P(ik) =⇒ P

(
Ck(xk, ik)

))
∀i ∈ I, P(i)

,

In other words, for each constructor rule Ck, we assume that, for all possible inputs of
the constructor, it preserves the property. That is, if all “smaller” elements going into
the constructor satisfy the property, then the newly constructed element does as well.
As that is true of course no matter what non-inductive elements are involved in the
construction.

Note that in the case of axioms, the corresponding premise reduces to

∀xk ∈ Xk, P(Ck(xk)) .

59.2.6 Aside: Induction vs. Deduction

Those of you with a background in philosophy — or with friends with such
background — may come across contexts where induction is opposed to
deduction.

It bears mention that, in such contexts, the word induction (inductive reason-
ing) has a completely different meaning to that which is presented here.

In philosophy, where deduction means “applying general laws to a particular
case”, induction means “drawing reasonable inferences for a general law,
on the basis of particular observations”. Philosophical induction may yield
wrong conclusions even if the premises are true; deduction may not.

Our kind of induction, which is referred to as mathematical induction in the
context of proofs, is very much a deductive process. The deduction rules
(59.1)[p186], (59.2)[p186], and (59.3)[p187] are just that, deductions, theorems. If
the premises are true, the conclusion does follow, every time.

In computer science, there is seldom any ambiguity about which kind of
induction we use: we do not deal with philosophical induction as such. That
is not to say we never deal with imperfect knowledge or with notions of
“reasonable inference”. We do, in various fuzzy or probabilistic logics. But
those are deductive systems, where we reason deductively about our own
gaps in knowledge and uncertainties, and produce conclusions qualified by
our degrees of certainty.

For instance, in Bayesian logic, let us say that P(“the Butler did it”) = .6, that
is to say, you rather believe the Butler might have done it; it’s more likely
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than not. (az) Then it must follow, deductively, on pain of paradox, that P(“the
Butler did not do it”) = P(¬“the Butler did it”) = 1− .6 = .4. Not .35, not .5,
nothing but .4 does it.

The contexts where you are most likely to be exposed to possible confusion
are works that define logical systems to formalise some aspects of inductive
reasoning. For instance a quick search in E. T. Jaynes’ Probability Theory, The
Logic of Science shows many uses of the word induction/inductive, a majority
of which refer to mathematical induction, but a significant proportion refers
to the philosophical notion.

Thus, as this might crop up if you read about decision theory, AI, business
intelligence, etc, it bears keeping in mind to avoid potential confusion.

Back to the topic at hand. . .

59.3 Recurrence: Induction on N

Recurrence refers to a restricted kind of recursion, whereby an integer sequence or a
proof (ba) at rank n refers to previous ranks of itself, and only to previous ranks. The
Fibonacci sequence, for instance, is defined by recurrence:

F0 = 0, F1 = 1, n > 1⇒ Fn = Fn−1 + Fn−2 .

Recurrence therefore simply refers to the inductive structure of Peano integers, and is
therefore a subset of induction.

60 Les différents types de récursivité

Écrire les fonctions suivantes, de manière récursive:

(194) ♠ factorial, telle que n ∈ N⇒ factorial(n) = n!, où

n! =
n∏

k=1

k = 1× 2× · · · × n

On note que 0! = 1, élément neutre multiplicatif.

(az)I don’t want to make an aside in an aside (that would be too recursive) so I’ll just quickly mention that
Bayesian logic deals with an agent’s (rational) belief in a proposition, not with limits of relative frequencies
in outcomes of a hypothetical infinity of trials (the “frequentist” approach).

(ba)mostly in the French phrase “raisonnement / preuve par récurrence”; the English usage mostly uses
“proof by induction”.

Figure 6: Spirale de Fibonacci

(195) power, telle que a ∈ R, b ∈ N⇒ power(a,b)= ab. (sans utiliser ** ou pow)

(196) ♠ fibonacci, telle que n ∈ N⇒ fibonacci(n) = Fn, où la suite (Fn)n est définie
par la relation de récurrence suivante: F0 = 0, F1 = 1, n > 1⇒ Fn = Fn−1 + Fn−2.

(197) even et odd, testant la parité d’un entier n ∈ N.

On utilisera des définitions mutuellement récursives.

(198) ackermann, telle quem,n ∈ N⇒ ackermann(m,n) = A(m,n), où

A(m,n) =


n+ 1 sim = 0

A(m− 1, 1) sim > 0 et n = 0

A(m− 1,A(m,n− 1)) sinon.

Calculer à la mainA(1, 1). Sur machine, calculer égalementA(1, 2),A(2, 2),A(3, 2),
A(4, 2). Que se passe-t-il ?

Modifier la fonction de manière à mettre en évidence tous les appels récursifs.

Nous reviendrons sur cette fonction dans la question 238.

(199) syracuse (ou collatz) telle que n ∈ N⇒ syracuse(m,n) = S(n), où

S(n) =


1 si n ⩽ 1

S
(n
2

)
si n ≡ 0 (mod 2)

S(3n+ 1) sinon.
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Calculer les 100 premières valeurs de S.

Formuler une conjecture. Tester la conjecture sur les 105 premiers entiers. (bb)

(200) ♠Can you think of any legitimate use for a function calling itself without modifying
its arguments in any way?

For instance:

def f(args):

... # no side effects on args

f(args)

(201) What do you think of the list l:

>>> l=[1]

>>> l.append(l)

Think about it and experiment, then read Sec. 24.2.2.4[p73]: “Infinitely deep lists”.

Note that some language, such as Haskell, allow infinite structure without any
fuss (so long as you do not seek to consume them exhaustively). For instance

l = 1 : l

is a licit list definition in Haskell.

61 Combinatoire amusante — et récursivité

(202) ♠ Les arrangements ordonnés, ou permutations, de k objets parmi n, notés Ak
n,

sont donnés par les formules suivantes:

Ak
n =

n!
(n− k)!

= n(n− 1)(n− 2) · · · (n− k+ 1) k ⩽ n .

Donner une version directe de permut(k,n) = Ak
n, en utilisant factorial, suivant

la première formule donnée — attention au type de retour.

Donner une version récursive, suivant la seconde formule donnée – qui évite des
calculs inutiles.

On pourra utiliser une sous-fonction récursive, ou déduire et mettre à profit une
expression récursive de Ak

n.
(bb)La preuve de cette conjecture est trop longue pour le bas de page de ce TD. Et puis elle est ouverte

depuis 1937, et est considérée un des problèmes les plus difficiles des mathématiques. Ça n’aide pas. :-)

(203) Les combinaisons non-ordonnées de k objets parmi n, notées
(
n
k

)
, sont données

par la formule bien connue (qu’on ne demande pas d’implémenter)(
n

k

)
=

Ak
n

k!
=

n!
k!(n− k)!

=
k∏

i=1

n− i+ 1

i
0 ⩽ k ⩽ n .

On rappelle également la formule du binôme de Newton:

(x+ y)n =
n∑

k=0

(
n

k

)
xkyn−k =

n∑
k=0

(
n

k

)
xn−kyk .

Utiliser le théorème du binôme et l’identité évidente

(1+ x)n = (1+ x)n−1(1+ x)

pour trouver une expression récursive de
(
n
k

)
. On pourra aussi procéder par

dénombrement combinatoire, en isolant un élément et en comptant les cas où il
est pris ou laissé. On peut aussi connaître la relation de Pascal par cœur, mais c’est
moins drôle.

(204) Utiliser cette expression pour écrire une fonction binom telle que binom(k,n)=
(
n
k

)
.

Dessiner l’arbre des appels pour
(
4
2

)
.

(205) Prédire l’ordre et le nombre des appels récursifs. Indication: en Python, les
opérandes d’une addition sont exécutées dans l’ordre: i.e. pour x+ y, x est calculé
avant y.

(206) Modifier binom de manière à vérifier cette prédiction.

(207) Quels sont les types d’opérations élémentaires réalisées par binom(k,n) ? Dénom-
brer le nombre d’instances de chaque type d’opération durant l’exécution de
binom(k,n), et en déduire la complexité en temps T(k, n), que l’on exprimera
comme un Θ d’une expression simple. (On utilisera le modèle de coût uniforme:
les opérations élémentaires ont toutes le même coût).

(208) Quelle est la complexité en espace de binom(k,n) ? On pourra attendre d’avoir
traité la question (228)[p192].

(209) Après avoir complété la question (236)[p193], mémoïsez binom à l’aide d’un décora-
teur.

(210) Quelle est la nouvelle complexité en temps de binom, après mémoïsation ?

(211) Quelle est la nouvelle complexité en espace de binom, après mémoïsation ?

(212) GOTO q. (238)[p193]
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62 Tris et récursivité

Vous avez déjà vu des tris itératifs en O(n2) en moyenne et dans le pire des cas. Les
meilleurs algorithmes de tris, utilisés en pratique, sont basés sur des procédés récursifs.
Les deux principaux sont traités ici. On peut aussi mentionner le tris par tas, ou
heapsort.

(213) Écrire une fonction dicho telle que dicho(e,l) soit équivalent à e in l, si l est
une liste triée. On procédera par recherche dichotomique, et on utilisera des slices
pour créer les sous-listes dans les appels récursifs.

(214) Écrire une nouvelle version de la recherche dichotomique, telle que
dicho(e,l,a,b) effectue la recherche entre les indices a et b, inclus, et retourne
None si e < l, et un indice k tel que e = l[k] sinon.

(215) ♠ Le tri rapide, ou quicksort, de complexité moyenne O(n logn), pire des cas
O(n2), repose sur les observations suivantes, en notant τl un tri d’une liste l:

⋄ La liste vide [] est déjà triée: τ[] = [].

⋄ Toute liste singleton [e] est déjà triée: τ[e] = [e].

⋄ Soit une liste [p, e1, . . . , en]; alors la liste

τ[ei | ei ⩽ p] + [p] + τ[ei | ei > p]

est triée, et contient les mêmes éléments que l. On appelle p le pivot.

Donner une fonction qsort qui renvoie une version triée de la liste passée en
argument. On n’hésitera pas à utiliser la syntaxe en compréhension de Python,
cf. Sec. 24.5[p83]: “Comprehension expressions”.

Exemple: [2*i for i in range(5) if i != 2] renvoie [0, 2, 6, 8].

On pourra également utiliser le packing * pour décomposer la liste: p,*l =

[p, e1, . . . , en] donne p = e et l = [e1, . . . , en]. Voir aussi l’unpacking, question 227.
Pour plus de détails, voir Sec. 24.6[p89]: “Packing and unpacking”.

(216) Écrire une fonction merge permettant de fusionner deux listes déjà triées en une
nouvelle liste triée. On procédera par induction structurelle sur les listes.

Note sur les listes: ce que Python appelle “listes” correspond classiquement plutôt
à des tableaux dynamiques. Une liste classique est définie inductivement comme
étant soit

⋄ la liste vide []

⋄ un doublet ⟨e, l⟩ contenant un élément e (le “premier”) et une liste l (le
“reste”)

La liste [1, 2] est donc classiquement construite comme ⟨1, ⟨2, []⟩⟩.
L’implémentation classique est la liste chaînée, une structure contenant un élément
et un pointeur vers une autre liste — ou la même liste, si on veut une liste infinie.

Même si cette structure inductive ne correspond pas à celle implémentée par
Python, il est utile de la garder à l’esprit pour écrire des algorithmes récursifs sur
les listes. On pourra écrire l[0] pour le premier élément, l[1:] pour le reste (ou
utiliser le packing), [e]+l pour ajouter un nouvel élément au début, et enfin tester
si la liste est vide avec if l ou if not l. (bc)

(217) Le tri fusion, ou merge sort, de complexité moyenne et pire des cas O(n logn),
repose sur le principe suivant: pour trier une liste, on la coupe en deux morceaux
de tailles égales (±1), on trie chaque morceau, et on les fusionne. Écrire une
fonction msort qui réalise cela. Il va sans dire qu’on devra utiliser merge.

63 Les tours de Pizzanoï

Il est dit qu’au commencement du temps, le Monstre Spaghetti posa trois pieux, et
empila soixante-quatre délicieuses pizzas (imputrescibles et indestructibles jusqu’à
nouvel ordre) de diamètres décroissants sur le premier pieu.

Et en vérité il dit aux moines affamés: “Vous pourrez manger les pizzas lorsque vous
les aurez transférées, une par une, sur le troisième pieux. Mais sachez-le, vous ne
devez poser une pizza que sur un pieu vide, ou sur une pizza plus grande. Pourquoi ?
Parce que.”

Les moines ronchonnèrent et ruminèrent et réfléchirent et résolurent le problème pour
de petits nombres n de pizzas; par exemple pour n = 2:

(bc)Dans le contexte d’un test, Python traduit une valeur non-booléenne en booléen selon le principe: “si
c’est vide, c’est faux, sinon vrai”. if l, if len(l) > 0, et if l != [] sont donc presque équivalents. La
différence est que les deux premiers tests seront faux pour un tuple ou un dictionnaire vide, alors que le
troisième sera vrai. if l est donc la façon la plus agnostique du point de vue du type de tester si une
structure conteneur est vide.

For more information, cf. Sec. 22.6.5[p56]: “The semantics of and and or, & implicit Boolean conversion”.
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et n = 3:

(218) ♠ Pour quelles valeurs de n le problème admet-il une solution ?

Donnez un algorithme récursif.

(219) ♠ Lorsque le problème admet une solution, donnez une borne supérieure Tn au
nombre d’opérations nécessaires, exprimée par une relation de récurrence.

(220) ♠Montrer que la borne supérieure est aussi une borne inférieure – du moins si
vous avez trouvé la bonne solution.

(221) ♠ Donner une forme close de Tn, par toute méthode appropriée.

(222) En comptant en moyenne 10 secondes pour déplacer une pizza d’un pieu à l’autre,
dans combien de temps les moines pourront-ils passer à table ?

(223) Écrire un programme Python pour générer et représenter les étapes de résolution
du problème.

64 Suite de Fibonacci: piles & mémoisation (bd)

Soit la fonction suivante, qui implémente la suite de Fibonacci:

F0 = 0, F1 = 1, n ⩾ 2 ⇒ Fn = Fn−1 + Fn−2.

def f(n):

print("call f", n) # afin d’imprimer une trace des appels recursifs

return n if n <= 1 else f(n-1) + f(n-2)

(bd)Non, l’absence de “r” n’est pas une typo.

Note: closed form

It will be useful in some of the following questions to keep the rate of growth
of Fn in mind, which is clearer when seeing a closed form. Let

φ =
1+
√
5

2
≈ 1.6180339887 . . .

be the famous “golden ratio”; then we have

Fn =

[
φn

√
5

]
, for n ⩾ 0 ,

where [x] stands for “round x to nearest integer”. In fact, as n grows the
rounding error becomes vanishingly small.

Of course there are other closed forms, without any rounding or truncation,
but this one is the simplest, and serves well to illustrate the relevant fact: Fn
increases exponentially in n.

64.1 Arbre, pile, et nombre d’appels

(224) ♠ Sans utiliser la machine, prédisez ce que va afficher Python lorsqu’on exécute
print(f(5)).

(225) Soit Cn le nombre total d’appels à f lors du calcul de f(n) — i.e. , le nombre de
lignes “call” affichées. Exprimez Cn par une relation de récurrence.

(226) Exprimez la complexité en temps de calcul de f(n) comme unΩ d’une expression
simple, et en déduire qu’il est (au moins) exponentiel.

(227) ♠ Simulons la pile (be) d’appels avec le code suivant:

stack = []

def fstack(n):

stack.append(n) ; print(*stack)
r = n if n <= 1 else fstack(n-1) + fstack(n-2)

stack.pop() ; print(*stack)
return r

print(fstack(3),stack)

Sans utiliser la machine, écrire ce que Python afficherait si l’on exécutait ce code.

(be)Une pile – pensez à une pile de copies à corriger – est une structure de données suivant la discipline
LIFO (rien à voir avec le Laboratoire d’Informatique Fondamentale d’Orléans; cela signifie Last In, First Out).
On peut déposer un élément sur la pile, ou retirer l’élément sur le dessus de la pile. Et c’est tout.
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Note: l’* dans print(*stack) correspond ici simplement à un unpacking, où
les éléments d’un itérable sont passés en argument de la fonction. Le code
print(*[1,2,3]) correspond à print(1,2,3) et produit l’affichage 1 2 3. Voir
Sec. 24.6[p89]: “Packing and unpacking” pour plus de détails.

(228) Quelle est la profondeur maximale de la pile d’appel au cours de l’exécution ?
En déduire la complexité en mémoire de f(n). On peut maintenant traiter la
question 208.

64.2 Mémoïsation: vers la programmation dynamique

La grande complexité en temps vient de ce que les mêmes calculs sont effectués
de très nombreuses fois. On veut rendre la fonction plus efficace, spécifiquement
pseudo-linéaire (bf), en mémorisant les résultats des calculs déjà faits. On utilisera à
cette fin un dictionnaire.

A chaque appel, la fonction vérifiera si le résultat est déjà précalculé dans le dictionnaire;
s’il y est, elle renvoie cela directement au lieu de refaire le calcul; sinon, elle fait le calcul
et ajoute ce nouveau résultat au dictionnaire avant de le renvoyer.

Ceci décrit le principe général de la mémoïsation — on se laisse des memos, ou
memoranda, “choses qui doivent être retenues”, des calculs précédents.

(229) ♣ Écrire une nouvelle version de la fonction (en partant de la version précédente)
suivant ce principe; on complétera le code suivant

memo = {}

def ff(n):

print("call ff", n, memo)

...

Lorsqu’on invoque print(ff(5)) deux fois de suite, on doit obtenir

call ff 5 {}
call ff 4 {}
call ff 3 {}
call ff 2 {}
call ff 1 {}
call ff 0 {1: 1}
call ff 1 {1: 1, 0: 0, 2: 1}
call ff 2 {1: 1, 0: 0, 2: 1, 3: 2}
call ff 3 {1: 1, 0: 0, 2: 1, 3: 2, 4: 3}
5

# second call

(bf). . . c’est à dire linéaire en la valeur de l’entrée, par opposition à linéaire en la taille du codage de l’entrée,
ce qui est la vraie mesure de complexité algorithmique.

call ff 5 {1: 1, 0: 0, 2: 1, 3: 2, 4: 3, 5: 5}
5

(230) ♣ Explain this call trace by means of a traversal of the call tree.

(231) ♣ L’utilisation d’un dictionnaire limite-t-elle l’applicabilité de la méthode de la
question précédente à d’autres fonctions que Fibonacci ? Est-ce une restriction in-
hérente au principe de la mémoïsation ou contingente à nos choix d’implémentation
? Dans ce dernier cas, y a-t-il des alternatives ? Quelles propriétés seraient changées
?

(232) On veut encore une autre implémentation pseudo-linéaire de la suite de Fibonacci,
encore plus élégante et rapide, tenant compte du fait qu’il s’agit du cas particulier
d’une suite récurrente linéaire. L’idée est que nous n’avons besoin que des deux
dernières valeurs, et que nous pouvons donc transformer la récursivité double sur
une valeur en une récursivité simple sur un doublet.

Complétez le code suivant

def fff(n):

print("call fff", n)

if n == 0:

return (0,1)

.......

de manière à ce que fff(n)[0] = f(n), pour tout n ∈ N. Lorsqu’on invoque
print(fff(5)[0]), on doit obtenir

call fff 5

call fff 4

call fff 3

call fff 2

call fff 1

call fff 0

5

64.3 Foncteurs et décorateurs de mémoïsation

Python supporte les fonctions d’ordre supérieur, c’est à dire les fonctions qui prennent
en argument ou renvoient des fonctions. Nous nous intéressons ici aux transformations
fonction vers fonction. On parle parfois de foncteurs ou, dans le cas de Python, de
décorateurs.

(233) Écrire un décorateur memoize, tel que pour toute fonction monadique f d’argument
mutable, memoize(f) renvoie une version memoïzée de f. En exécutant
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f = memoize(f)

print(f(5))
print(f(5))

on doit obtenir

call f 5

call f 4

call f 3

call f 2

call f 1

call f 0

5

5

(234) Commenter le code de test précédent, et le remplacer par

g = memoize(f)

print(g(5))
print(g(5))

Obtient-on la même chose ? Pourquoi ?

Alerte: Autant certains aspects de la programmation – par exemple la sémantique
d’un if – relèvent dans une grande mesure du sens commun (bg) et sont transpos-
ables d’un langage à l’autre, voir d’un paradigme à l’autre, autant certains peuvent
varier et être assez subtils.

En l’occurrence, le comportement de memoize dépend de certains choix de language
design: clôtures lexicales & portées lexicales ou dynamiques, espaces de noms
mutables ou immutables, . . . qui seront mieux compris avec de l’expérience sur
plusieurs langages différents. Ne passez donc pas trop de temps sur le “pourquoi ?”
pour l’instant.

(235) ♣ Commenter (ou écraser) la définition de g de la question précédente, et tester le
code suivant:

@memoize

def g(n):

print("call g", n)

return n if n <= 1 else g(n-1) + g(n-2)

En déduire comment Python interprète l’annotation @memoize et pourquoi on
parle de “décorateur”.

(bg)Et encore, même pour le if il convient de distinguer les instructions des expressions conditionnelles. . .

(236) Nous avons supposé pour l’instant que la fonction à mémoïser f est monadique.
Altérez le décorateur memoize de manière à ce qu’il supporte toute fonction
variadique d’arguments non-mutables.

Indice: utilisez le packing (q. 215) et l’unpacking (q. 227). Dans le corps d’une
définition de fonction def f(*x), x est le tuple des arguments passés à la fonction.
Voir Sec. 24.6[p89]: “Packing and unpacking” pour plus de détails.

(237) GOTO q. 209.

(238) Appliquez maintenant le décorateur memoize à la fonction ackermann de la ques-
tion 198. Comme binom, c’est une fonction à deux arguments entiers. Obtient-on
les mêmes gains de complexité ? Pourquoi ?

65 Dynamic Programming for Difference Equations

The Fibonacci sequence is only the best known instance of a much larger class of
equations know as linear recurrence relations, or linear difference equations (bh).

A linear recurrence relation with real coefficients of order K is an equation of the form

un = a0 +

K∑
i=1

aiun−i ,

where a0, . . . , aK ∈ R, aK , 0. At least K initial values must be provided to define a
function N→ R.

When a0 = 0, it is said to be homogeneous.

(239) ♣ Can any linear difference equation be memoised?

(240) ♣Dynamic programming refers to the general idea of solving a complex problem
recursively by breaking it down into simpler subproblems. If an optimal solution
can be found by combining the optimal solutions of the subproblems, then the
problem is said to have optimal substructure, and is well-suited for the approach.

Memoisation can be thought of as a top-down approach to dynamic programming:
the problem is broken down and, at the final steps of the recursion, the values are
calculated and stored.

Can you imagine what a bottom-up approach would look like? Apply this
intuition to provide a linear implementation of the following function, without
using recursion.

(bh)Note to be confused with differential equations, of course.
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def lin_diff_eq(n, init, *a):

"""This variadic function returns the list of the n first terms

of the linear recurrence relation

f(0) = init[0], ..., f(m) = init[m],

f(n) = a[0]*f(n-1) + a[1]*f(n-2) + ... + a[k-1]*f(n-k) + a[k]

, for n > m

where k = len(a)-1 and m = len(init)-1. If init is too small,

an AssertionError should be raised.

For instance, lin_diff_eq(10, [0, 1], 1, 1, 0) corresponds to

the first terms of the Fibonacci sequence

f(O) = 0, f(1) = 1, f(n) = f(n-1) + f(n-2), for n >= 2 .

Furthermore , an *efficient* implementation , in O(n) time, is required.

"""

Here are a few test cases; let us start with our good friend Fibonacci:

u0 = 0, u1 = 1, un = un−1 + un−2

>>> lin_diff_eq(10, [0, 1], 1, 1, 0)

[0, 1, 1, 2, 3, 5, 8, 13, 21, 34]

Let us check the efficiency of our function by computing u999, an impossible feat
with a naïve implementation:

>>> round(log10(lin_diff_eq(1000, [0,1], 1,1,0)[999]))

208

Now for a non-homogeneous variant of Fibonacci, which is relevant for a question
in another exercise (but I’m not telling you which one!):

u0 = 0, u1 = 1, un = un−1 + un−2 + 1

>>> lin_diff_eq(10, [0, 1], 1, 1, 1)

[0, 1, 2, 4, 7, 12, 20, 33, 54, 88]

A simple geometric sequence:

u0 = 1, un = 2un−1

>>> lin_diff_eq(10, [1], 2, 0)

[1, 2, 4, 8, 16, 32, 64, 128, 256, 512]

and a staggered, order 2 variant:

u0 = 0, u1 = 1, un = 2un−2

>>> lin_diff_eq(10, [0,1], 0, 2, 0)

[0, 1, 0, 2, 0, 4, 0, 8, 0, 16]

Finally, an order 4 variant of Fibonacci:

u0 = 0, u1 = 1, u2 = 0, u3 = 0, un = un−1 + un−2 + un−3 + un−4

>>> lin_diff_eq(18, [0,1,0,0], 1, 1, 1, 1, 0)

[0, 1, 0, 0, 1, 2, 3, 6, 12, 23, 44, 85, 164, 316, 609, 1174, 2263, 4362]

Note for mathy types: The ultimate implementation would of course solve the
equation into a closed form, which is always possible in the linear case, but (1)
requires quite a bit of legwork (and specialised knowledge) and (2) won’t work in
the non-linear case, as non-linear difference equations are often unsolvable (they
have no closed form).

(241) ♣ Our difference equations have two major restrictions: the coefficients being
constants, and the linearity of the recursive expression. The first prevents us from
dealing with, for instance, the factorial sequence:

f0 = 1, fn = nfn−1 ,

and the second excludes very important sequences, such as the logistic map, which
is a quadratic difference equation:

xn+1 = rxn(1− xn) . (65.1)

Do you think those restrictions are important for our application of dynamic
programming?

An aside on the logistic map:

Consider a population P. At what rate does it grow over time? Given
unlimited space and resources — that is to say, whatever pressures
are at play to encourage reproduction or death do not depend on the
population — the average offspring per capita and death per capita will
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boil down to a constant r, which means that the growth is proportional
to the current population, and we have

dP
dt
= Pr ,

which solves into

P(t) = P0e
rt

WhereP0 is the initial population. This is the Malthusian (Thomas Robert
Malthus, 1766–1834) model of population, which is quite restrictive since
it boils down to either one of three behaviours: unlimited exponential
growth if r > 0, eventual extinction if r < 0, or endless stagnation if
r = 0.

Let us now assume, as did Pierre François Verhulst (1804–1849), that
there are other forces at play — limited resources — so that the greater
the population, the lesser its growth rate. More specifically, let us say that
each new individual in the population increases everybody’s mortality
by some amount s. We obtain

dP
dt
= P(r− sP) ,

which can be rewritten (rescaling P by s
r

) in the more convenient form

dP
dt
= rP(1− P) .

What is the connection between this differential equation and the
quadratic difference equation (65.1)?

As humans, we are used to the idea of population growth happening
continuously, as our generations overlap. That is not true of all species.
Consider an insect population that breeds then dies, leaving eggs which
hatch much later — an example of this is Dawson’s burrowing bee.

Parents never live to meet their offspring, generations are nonoverlap-
ping. In that case, growth still happens, but in discrete steps: P is a
sequence, where Pn represents the population at generation n. We have,
for unlimited ressources, an equation of the form

Pn+1 = rPn .

Though we adjusted the meaning of the constant for the sake of simplicity
— our r here would intuitively correspond to 1 + r in the continuous
version — the same arguments as before apply, leading to

Pn+1 = Pn(r− sPn) ,

and, by taking xn = s
r
Pn, to equation (65.1) again.

The logistic sequence not only models real-world populations very well,
but it also exhibits extremely interesting, unintuitive behaviours which
are, sadly, out of the scope of this course.

Let us just note that it is quite chaotic for some values of r, to the extent
that is was used as a very simple pseudo-random numbers generator in
early computers — though it is not quite up to modern standards for
that use case.

The logistic map therefore stands as a good introduction to the basic
observation at the heart of chaos theory: the fact that non-linear systems,
though simple to define, can have extremely complex and unpredictable
dynamic behaviours, and that this is every bit as true for discrete
recurrence relations as it is for continuous differential equations.

Of course, equation (65.1) cannot even be solved — that is to say,
expressed as a non-recursive, closed form — except for some few fixed
values of r. I believe the only closed forms are for r ∈ {−2, 2, 4 }.

(242) ♣ In all generality, a recurrence relation of order k (bi) is an equation of the form

un = φ(n,un−1, un−2, . . . , un−k) with n ⩾ k ,

where φ is a function of type N× Sk → S for some set S. Given at least k initial
values, this defines a function u : N→ S.

Give a general dynamic programming implementation of recurrence relations as a
function of the form

recrel(n, init, φ, k=None)

that efficiently yields the list of the first n elements of the sequence, given a list
init of initial values, and φ as above. We shall assume that init contains exactly
k values, which enables the function to determine the order without needing to
analyse the arity of φ (bj). Otherwise, the order of the relation must be passed
explicitly as the parameter k.

Let us try it on a few interesting relations. . . First, the factorial equation

f0 = 1, fn = nfn−1

(bi)Also often called simply a difference equation. This usage can be ambiguous, though, as some authors
apply the term difference equation exclusively to some specific forms of recurrence relations, involving
differences of successive terms in a sequence. In this document, I subscribe to the more general terminology.

(bj)This could be done using inspect.getargspec, but playing with introspection is not the goal of this
exercise.
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becomes:

def rr_fac(n,u): return n*u

>>> recrel( 10, [1], rr_fac)

[1, 1, 2, 6, 24, 120, 720, 5040, 40320, 362880]

The Fibonacci sequence:

def rr_fib(n,u,uu): return u+uu

>>> recrel( 10, [0,1], rr_fib)

[0, 1, 1, 2, 3, 5, 8, 13, 21, 34]

A quadratic variant of the Fibonacci sequence:

F0 = 0, F1 = 1, n ⩾ 2 ⇒ Fn = F
2
n−1 + F

2
n−2.

def rr_fibs(n,u,uu): return u**2 + uu**2

>>> recrel( 10, [0,1], rr_fibs)

[0, 1, 1, 2, 5, 29, 866, 750797, 563696885165, 317754178345286893212434]

And finally, the logistic map. Since the logistic map has a parameter, we have to
be careful with the signature of φ. We cannot include r as a parameter of φ itself,
as that would confuse recrel. The solution is to use a higher-order function:

def logistic(r):

return lambda n,u : r*u*(1-u)

which would admittedly be much more elegant in a language supporting curry-
ing (bk), such as OCaml or Haskell, but hey, you do with what you got, as they
say.

We can play with different values of r to exhibit some of the sequence’s fun
behaviours:

# two values oscillation

>>> list(map(lambda x:round(x,1), recrel( 10, [.99], logistic(3) ) ))

[1.0, 0.0, 0.1, 0.2, 0.5, 0.7, 0.6, 0.7, 0.6, 0.7]

>>> list(map(lambda x:round(x,1), recrel( 10, [.3 ], logistic(3) ) ))

[0.3, 0.6, 0.7, 0.6, 0.7, 0.6, 0.7, 0.6, 0.7, 0.6]

(bk)Currying is a way of reducing functions with multiple arguments into unary higher-order functions.
That is, the correspondence between f : X× Y → Z and its curried version f ′ : X → (Y → Y). Functional
languages of the ML family handle multiple arguments that way.

# four values oscillation

>>> list(map(lambda x:round(x,1), recrel( 10, [.01], logistic(3.5) ) ))

[0.0, 0.0, 0.1, 0.4, 0.8, 0.5, 0.9, 0.4, 0.8, 0.5]

# chaotic behaviour

>>> list(map(lambda x:round(x,2), recrel( 100, [.01], logistic(3.99) ) ))

[0.01, 0.04, 0.15, 0.51, 1.0, 0.01, 0.05, 0.19, 0.6, 0.95, 0.18, 0.58,

..., 1.0, 0.01, 0.05, 0.18, 0.58, 0.97, 0.11, 0.4, 0.96, 0.16]

(243) ♣ Can you apply recrel to the Ackermann function (198)[p188]?

(244) ♣ Can you apply recrel to the Collatz function (199)[p188]?

66 Dérécursivation — si, si, c’est un mot, ça.

Tout algorithme récursif peut se réécrire de façon itérative, à l’aide d’une pile (et
vice-versa). En pratique, c’est comme cela que nos programmes récursifs tournent sur
machine: la pile d’appel gère les appels récursifs.

Si l’on en ressent le besoin – par exemple si l’on écrit un compilateur, ou si l’on se
trouve limité pas des problèmes de stack overflow (bl) – on peut donc “dérécursiver”
un algorithme.

66.1 Récursitivé terminale

Le cas le plus intéressant est celui de la récursivité terminale, ou tail recursivity — tailrec.
Une fonction est récursive terminale si elle n’effectue aucune opération après un appel
récursif.

Dans ce cas, on peut très facilement éliminer la récursivité. En effet, comme on n’a
jamais besoin de revenir à un contexte d’exécution antérieur, gérer une pile d’appel est
inutile.

Notons que de nombreux compilateurs détectent la récursivité terminale et effectuent
cette transformation automatiquement. C’est en particulier le cas de tous les langages
fonctionnels, tels que OCaml, Haskell, Lisp, Scheme, et cetera. Ce n’est malheureuse-
ment pas le cas de Python.

De manière abstraite, un algorithme récursif (simple) est de la forme suivante, en
pseudo-code style Python:

(bl)En Python, on peut augmenter “à l’arrache” la taille du stack par, e.g. , sys.setrecursionlimit(99999).
Dans d’autres langages ça peut être géré au niveau de l’OS.
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def A(x):

if C: I ; A(τx) ; F

else: T

⋄ A est l’algorithme sous considération

⋄ x est l’argument – ou la liste des arguments – de A

⋄ C est une condition portant sur x

⋄ τ est une transformation des arguments

⋄ I, F, T sont des traitements, initial, final, et terminal, dépendant de x.

Pour se simplifier la vie, on supposera que C, I, F, T, τ ne font pas d’appels à A.

Si F est vide, alors l’algorithme est récursif terminal, et est équivalent à

def A(x):

while C: I ; x := τx

T

(245) ♠ La fonction factorial de la question (194)[p188] est-elle récursive terminale ?
Pourquoi ? Réécrivez-la pour mettre sa structure C, I, F, T, τ en évidence.

(246) ♠ Transformer factorial de manière à effectuer le traitement des données dans
une sous-fonction récursive terminale.

(247) ♠ Réécrivez la sous-fonction pour mettre sa structure C, I, T, τ en évidence.

(248) ♠ En appliquant la transformation générale donnée dans cette section, dérécursiver
la sous-fonction.

(249) ♠ Intégrer la sous-fonction dans le corps de la fonction.

66.2 Récursitivés complexes: simuler la pile d’appel

Lorsque les récursivités sont trop complexes pour pouvoir être transcrites en récursivités
terminales de cette manière (bm), il faut simuler les appels récursifs à l’aide d’une pile.
Une autre façon de voir les choses est que la récursivité n’est qu’une écriture astucieuse
d’un empilement.

Quoi qu’il en soit, en pratique, lorsque votre programme récursif tourne sur un
ordinateur, c’est en réalité un algorithme itératif utilisant une pile qui s’exécute, la

(bm)Il existe une approche générale pour tout convertir en récursivité terminale: Continuation-Passing Style.
Il s’agit d’une technique avancée de programmation fonctionnelle, souvent utilisée dans les compilateurs.
Comme sa petite cousine impérative, Single Static Assignment (Form), elle est rarement utilisée directement
par un programmeur.

récursivité n’étant pas une caractéristique primitive des architectures matérielles
actuelles (ou passées).

La version dérécursivée avec une pile de l’algorithme A, non récursif terminal, est
comme suit:

On définit new et end, deux symboles distincts, indiquant si l’on empile le début d’un
nouvel appel, ou le retour d’un ancien.

def A(x):

if C: I ; A(τx) ; F

else: T

devient

def A(x):

calls = [new,x] #pile d’appels.

ret = None # valeur de retour

while calls:

x = calls.pop() # on recupere les arguments de l’appel

state = calls.pop()

if state == new: # nouvel appel; on traite le debut de A

if C:

I

calls.extend((end,x))

# quand on aura fini l’appel recursif qui suit,

# il faudra terminer cet appel: il reste F

# On stocke le contexte d’ex\’ecution

# ici, le parametre de la fonction

calls.extend((new,τx))

# On lance un nouvel appel A(τx)

else:
T

# les return sont traites

# comme une affectation a ret

elif state == end: # fin d’ancien appel a terminer

F # meme remarque que pour T

return ret

(250) ♣ Dérécursiver la fonction factorial de la question 194 en utilisant le patron
ci-dessus.

(251) ♣ Que faire pour les récursivités multiples, mutuelles, ou imbriquées ?
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Part VI

Python Project 2024–2025: AIge of
EmpAIres

Short version: Implement a bare bones “Age of Empires”-style RTS engine for AI-vs-AI
battles.

67 What is an RTS / AoE?

The astute reader might notice that this projet is related to, though distinct from,
Part X[p216]: “Archived Python Project 2021–2022: Age of Cheap Empires”. If you are
not familiar with Real Time Strategy (RTS) games, especially in the Age of Empires
(AoE) series, you are invited to get some idea of the general principles.

It should go without saying that you do not need to buy or play any of these games.
You can get all relevant information by watching videos of AoE I and II on the internet,
and consulting the wiki or the official site:

⋄ https://ageofempires.fandom.com/wiki/Age_of_Empires

For a more hands-on look on that genre, you can install 0 A.D., a game originally made
as a mod for Age of Empires II, now entirely free software. You can install it on most
modern Linux distributions with a single command; for instance:

sudo apt install 0ad # Debian-based

sudo pacman -Syu 0ad # Arch-based

0 A.D. is its own thing, with its own unique mechanics, but remains extremely similar
in look and feel to AoE I and II, so it can give you a general idea of how a game like
that plays.

For large screens, you may want to create a file ~/.config/0ad/config/local.cfg

containing a line of the form gui.scale = "1.875", to scale up the GUI elements,
including the fonts — here by a factor of 1.875, to replace by what works for you.

The remainder of this document assumes basic familiarity with the concepts of those
games.

68 Scope of the Project

Unlike the 2022 project, the aim is not to implement an RTS game. I want to avoid
giving too much focus to technically uninteresting aspects such as user interface and
gameplay mechanics. We shall have the bare minimum of buildings and units, and
focus entirely on AI-vs-AI matches, with no direct input from the user during the
matches. Your main tasks will therefore be to (1) develop a game engine, and (2)
fine-tune various AI profiles (defensive, aggressive, etc).

You will demonstrate the quality of the final product by showing large battles between
multiple AIs deploying sophisticated strategies.

68.1 List of Requirements

AoE2 is my reference point, and we shall take a minuscule subset of rules from it.

(1) The game takes place on a map, which is a grid of size N×M tiles. The absolute
minimum size you must be able to handle is 120× 120, which corresponds to a
“tiny” map in AoE2.

(2) The maps will be randomly generated — a fact that you must be able to demon-
strate.

(3) You will support at least two different types of randomly generated maps, each
with strategic and tactical implications: for instance one with generous resources
dotted across the map (take the Arabia map from AoE2 as reference for what that
looks like) and one where all the gold is at the centre of the map.

(4) Population limit =maximum number of units per player: 200.

Actual limit in play determined by houses and town centres, within that maximum.

(5) The following resources:

a. Wood (W), 100 per tile (tree)

b. Food (through farms only) (F), 300 per farm

c. Gold (G), 800 per tile

(6) Units:

a. Villager: v
Cost 50F, 25 HP, Training time 25s,
2 attack (1 attack per second for all units), speed 0.8 tile/second.
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Can build buildings.

The nominal building time t of a building given below is the time required for
one Villager to construct a building alone.

If n Villagers are used, and t is the nominal building time remaining, the
actual building time will be 3t

n+2
.

Can collect resources at rate of 25/minute, can carry 20.

b. Swordsman: s
Cost 50F+20G, Training time 20s,
40HP, 4 attack, speed .9.

c. Horseman: h
Cost 80F+20G, Training time 30s,
45HP, 4 attack, speed 1.2.

d. Archer: a
Cost 25W+45G, Training time 35s,
30HP, 4 attack, 4 range (Euclidean distance; norm 2), speed 1.

(7) Buildings:

a. Town Centre: T
Cost 350W, Build time 150 seconds,
1000 HP, 4x4, Spawns Villagers, Drop point for resources
Population: +5.

b. House: H
Cost 25W, Build time 25 seconds,
200 HP, 2x2, Population: +5.

c. Camp: C
Cost 100W, Build time 25 seconds,
200HP, 2x2, Drop point for resources

d. Farm: F
Cost 60W, Build time 10 seconds,
100HP, 2x2, Contains 300 Food.
Note: this is the only walkable building, cf. AoE2.

e. Barracks: B
Costs 175W, Build time 50 seconds,
500HP, 3x3, Spawns Swordsmen

f. Stable: S
Costs 175W, Build time 50 seconds,

500HP, 3x3, Spawns Horsemen

g. Archery Range: A
Costs 175W, Build time 50 seconds,
500HP, 3x3, Spawns Archers

h. Keep: K
Costs 35W, 125G, Build time 80 seconds,
800HP, 1x1,
Fires arrows: Attack 5, range 8

(8) Starting conditions:

a. Lean: 50F, 200W, 50G,
Town Centre, 3 Villagers

b. Mean: 2000(F,W,G)
Town Centre, 3 Villagers

c. Marines: 20000(F,W,G)
3 Town Centres, 15 Villagers, 2 (Barracks, Stable, Archery Range)

(9) Agile implementation.

Do not try and implement all units and buildings in one go, before starting work
on the systems that depend on them.

First implement only villagers and town centres, give them large starting resources
and implement villager wars.

Then, once the game loop is shown to work, go back and implement more variety
of resources and units.

If at the end of the day you do not have a complete product in the sense that some
units and buildings are missing, but you can otherwise demonstrate that what
you have does work as expected, that won’t be ideal, but the outcome will still be
honourable. You’ll indeed have made a game AI, albeit a limited one.

On the other hand, if you tell me that you have, technically, implemented every
unit and every building, but none of them actually moves of builds or fights, then
you don’t actually have anything of any worth.

(10) Bare-bones main “menu”.

Do not spend much time implementing a sophisticated game menu with a pretty
background and music etc. I could hardly care less.

I care about functionality. You must be able to create a new game with various
parameters, save and load a game efficiently. Whether you do this through a GUI
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or entirely through command line options, it must be easy and fast to use during
the demonstration.

I would not accept, for instance, that your game can only have one (or three, or
five) save file(s) because of limitations in your menu GUI. If you must have a menu
GUI, use the standard file open dialogues for such purposes. TkInter is fine for
that type of tasks.

(11) Map visualisation: terminal

Just like the game of chess is independent of the gameboard you use — wooden or
glass pieces? on the table or on a computer or purely via chess notation through
email or snail mail or . . . — the logic of your game must be independent of its
graphical visualisation.

This is extremely important to understand, with far-ranging consequences on
development time, quality and reliability of code, etc.

To force you to separate the logic of the game (the rules, its state in the abstract)
from how it is visualised, I ask you to provide two visualisations.

The first one is a terminal view. It does not need to show everything, but should
still be sufficient to get a general idea of what’s going on for small games on very
small maps.

You will use the letters given for each building / tile to represent the map. For
instance

s s W WWWWWW

WWWW WWWW

vFTTTT W W WWWW

FFTTTT

TTTT GGv CC

TTTT GGvCC K

Hv v

H

represents a small village with a Town Centre, a gold mine to the east, guarded by
a Keep, woods to the north-east, two soldiers to the north-west, a farm to the west,
with a villager walking on it (presumably building it or farming), and two other
villagers to the south-west, next to houses (presumably building the houses).

One must be able to pause the game with P, to scroll the map using ZQSD and
directional keys (+Maj to go fast).

Pressing TAB will pause the game and open a webpage (generated HTML file)

listing all units in the game and their stats (HP, position, etc) and current tasks, as
well as any relevant data on the states of player AIs. (This is purely a snapshot of
the current state; it need not be regenerated as the game progresses!)

For instance, one could learn that the soldiers have lost HP, and the farmer is
currently building the farm.

You will not spend too much time making the page look pretty, but do give some
thought to making it readable and searchable (collapsible sections) etc.

(12) Map visualisation: 2.5D

Separately from the terminal visualisation, you shall provide a graphical, top-down
2.5D (isometric, sprites-based) visualisation of the game map, in the style of AoE.

That means you can start or load a game either in terminal of GUI mode, or even
switch between them on the fly, using the F12 button.

You may the use the sprites of AoE or other games, if you can extract or download
them. It’s a programming project, not an art class.

You will need a graphical framework for this task. Various possibilities include:

⋄ PyGame, https://www.pygame.org is the most common choice among
students for this type of projets.

⋄ the Arcade Library https://api.arcade.academy

https://learn.arcade.academy.
Very fresh, but active; a few groups used it and had a good experience.

⋄ TkInter,

⋄ PySimpleGUI (with TkInter backend only; simpler to begin with)

⋄ PyQt5 or PyQt6 (more powerful, more complex, external requirements (bn))

⋄ wxPython, https://www.wxpython.org

Bindings to wxWidgets, similar to PyQt.

⋄ PursuedPyBear, https://ppb.dev

This one seems very fresh out of the oven, and not documented.

⋄ Kivy, https://kivy.org

⋄ or anything that works with Python, really, I’m not picky, what matters is the
result.

(bn)https://pypi.org/project/PyQt5/; cf. http://doc.qt.io/qt-5/examples-graphicsview.html
pour de la documentation C++. C’est à adapter à la version Python, car PyQt5 est juste une bibliothèque de
liens (bindings) vers Qt5.
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Test the different possibilities, and choose wisely.

Do not attempt to do this in full 3D.

(13) Minimap (2.5D):

The 2.5D view should include a minimap for fast navigation — this will be of great
use during the demonstration.

This can take the form of an actual minimap always present in the corner as in
AoE, or be a global, zoomed-out view activated through the M key. You can also
have both, if time allows.

(14) Resources visualisation:

One should be able to see the stored resources (Food, Wood, Gold) for all players
at all times. Additional information such as number of each unit types, etc could
be useful as well. If all this obscures too much of the screen, use F1 through F4 to
activate / deactivate some or all of the displayed information.

(15) Save and load.

Those games can be long. You must be able to save the game state whenever you
want, and load it without loss of information. Note that,if you have an AI, that
includes what the AI knows about the world, and more generally its state of mind
(planning an attack, game plan, etc).

You must be able to handle an arbitrary number of saves, manipulating them as
standard files.

This will be extremely important for the defense, as you will not have time to play
several full games during the demonstration. Instead you will load saved games,
taken at interesting points of various games, to show off big battles, AI gameplan,
etc.

F11 = quick save
F12 = quick load

Part VII

Python Projet: Practical Modalities V2

pyproj_modalities.tex WORK IN PROGRESS !

VERSION 2

69 Groups: size and composition

This project is done in groups of 5 or 6.

Groups will be determined “randomly”, not chosen by students. The aim is both to
save time and avoid reproducing the usual cliques.

It is recommended that each group designate a “project secretary”, whose tasks include
keeping track of who does what; he should have a global vision of the state of the
project, and be able to inform me of it efficiently. He will probably be the main writer of
the final report, so pick somebody who likes to write (French or English, I don’t care).

None of this should take much time, so only a slight reduction in overall programming
or design tasks is acceptable for the group secretary.

Nor is he automatically the taskmaster, bossing others around. If that’s what you want,
why not, but how you organise yourselves in the group is entirely up to you.

70 Evaluation

At the very end of the semester, each group will:

⋄ Hand over a short report, a couple of days before the defence, summarising which
requirements have been met, the individual contributions of each member, and
the individual score of each member, agreed upon by group consensus.

⋄ Present their work (15 minutes). This is referred to as “the defence” / “la
soutenance”. It is mostly a live demonstration of the work, with the help of a few
very specific slides.

⋄ Hand over the git history of the whole project (all source code and assets).
Immediately before the defence.

⋄ Hand over the slides used for the defence. Immediately after.

An individual mark shall be given to each student on the basis of all that.

Neither the report not the defence are marked in and of themselves. They are tools
to communicate and assess the scope and quality of your work, and that is what we
endeavour to evaluate.
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71 Short report

The report must be a single PDF file, not exceeding 5Mb, titled “<group number>
python report.pdf”. Only one must be uploaded on Celene for the group.

It must contain the following things:

(1) A recent photograph of each member of the group, with the corresponding names,
arranged so that all fits on one A4 page, vertical / portrait.

(2) A screenshot of the 2.5D view of your project, showing as many things as possible.
Again, must fit on a single A4 portrait page.

(3) A synthetic list of requirements:

The project has a number of requirements, numbered in the document, each with
a title in bold.

For each requirement, in order and using the same numbering scheme as me, and
using the same titles in bold as me, you will state whether it is fully met (green),
partially met (yellow), or not met (red), with a few lines of text explaining, where
applicable, how your implementation deviates from the requirements.

(4) A detailed description of the contributions of each. It must be clear enough, in
conjunction with the presentation, to enable the jury to mark the work of each
student.

Each member must write a paragraph listing their useful contributions to the
project.

The whole group must read every such paragraph, and a consensus must be
reached that they are accurate. If a consensus cannot be reached — which will
reflect poorly upon the whole group — a dissenting opinion must be written in a
paragraph below the offending paragraph.

For instance, suppose that X claims to have done all the GUI, and Y and Z think
they have meaningful contributions to it, and the rest of the group has not followed
what happened in that part of the code.

Y and Z protest X’s claims in his contributions paragraph when the group reads it.
X refuses to modify his paragraph. Then Y and Z should add a dissenting opinion
under X’s paragraph, explaining what they disagree about. X cannot modify
their dissenting opinion, anymore than Y and Z can modify X’s contributions
paragraph.

The final report must of course bear the imprimatur of all group members, but
this is especially vital for those paragraphs.

(5) A zero-sum scoring of the contributions of each group member.

Il vous est demandé de pondérer la quantité de travail (utile, justifiable) de chacun
par consensus du groupe. Par exemple: tout le monde a fourni le même travail,
sauf X qui a travaillé 2 fois plus (fourni deux fois plus d’“utilité”, pas seulement
“remué deux fois plus vent”) que les autres. Ces pondérations affecteront la note
individuelle.

Qu’entend-on par travail utile, justifiable ?

Le plus facile à évaluer est la quantité de fonctionalités conçues et implémentées,
pondérées par leur importance pour le projet.

Des aspects plus indirects ou flous de l’ordre du managérial ou “aide à la cohésion
du groupe” sont à prendre en compte avec modération et beaucoup de prudence.
Ne donnez pas un poids élevé à “ce gars a maintenu notre moral en faisant des
blagues hénaurmes toutes les 5min” ou même au plus sérieux “il a joué le Boss
et fait les diagrammes de Gantt de tout le monde” – sauf si c’était vraiment très
utile, finement détaillé techniquement, et a vraiment eu une influence forte sur
le groupe. Mais même dans ce cas, c’est un travail d’ingénieur qu’on note, pas
de manager. S’il a fait les deux c’est un bonus, mais s’il n’a fait que le manager le
score doit être faible, car ce n’est pas ce qui est demandé.

On note les “résultats”, pas juste le temps passé. Quelqu’un qui bosse jour et nuit
mais fait surtout des bêtises ou dessine 50 versions des icônes dont personne n’a
besoin pendant qu’il reste des bugs urgents doit avoir un bas score. Quelqu’un
qui fait ça alors que le groupe insiste pour qu’il fasse autre chose, mais est ignoré,
doit avoir un très bas score.

Notons que “résultat” n’implique pas que, si ça n’apparaît pas dans le produit
fini, ça ne compte pas. Le débuggage d’un bug complexe est un travail à valoriser
dans le score, même si au final la partie du code qui a été debuggée a fini par être
retirée du projet pour d’autres raisons.

La question est “au moment où le travail a été entrepris, était-il pertinent étant
donné les connaissances du groupe à ce stade”.

Par exemple, un travail de recherche en profondeur est tout à fait valorisable,
même si le résultat final n’est pas à la hauteur des espérances – mais évidemment
c’est toujours beaucoup mieux s’il l’est !

De même, aider un camarade est aussi valorisable – là aussi dans la mesure du
raisonnable.
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Le rapport doit obligatoirement fournir la pondération de la manière suivante,
obtenue par consensus (bo) au sein du groupe:

Chaque membre du groupe i est assigné un score / une pondération pi ∈ N, de
manière à ce que le ratio pi/pj reflète bien la proportion de travail utile fourni
par i par rapport à j. Vous devez donc CONCRETEMENT rendre une liste
d’association “membre du groupe 7→ score (nombre entier)”.

(Note: use your full name, of the form “FAMILY Given-name” for this, not just
your first name. My lists are sorted by family name, and I don’t know by heart
who “Bob” is. Bonus points (morally, at least) if you sort by family name.)

Par exemple, si l’on a pBasil = 2, pCunégonde = 1, et pQuetzalcoatl = 8 cela signifie que
Basil a en gros été deux fois plus productif que Cunégonde, mais bon globalement
Quetzalcoatl est un dieu et a bien porté le groupe, ayant fourni

pQuetzalcoatl

pBasil + pCunégonde + pQuetzalcoatl
=

8

11
= 73%

du travail total – en supposant un groupe de trois.

Pour discuter des scores de chacun, il peut être utile d’utiliser des nombres de
points “intuitifs”.

Par exemple, si
∑

i pi = 100, i.e. on a 100 points au total à distribuer entre tous les
membres, alors pi représente la proportion du projet (produit fini ou travail de
recherche valide) attribuable au travail de i, exprimée en pourcents.

On peut aussi partir de pi = 100 pour chacun (tout le monde est égal est moyen)
et ajuster en rajoutant des points aux membres moteur (par exemple, Machin
est à 120% par rapport au membre moyen, donc pMachin = 120) et en enlevant
aux membres qui ont été plus tirés par le groupe pTruc = 80, en essayant de
maintenir l’invariant

∑
i pi = 600 (pour un groupe de 6), afin de préserver l’idée

que 100 représente le score du membre moyen du groupe. (Même si ça fait
chaud au cœur de dire “tout le monde est au dessus de la moyenne du groupe”,
mathématiquement ça ne marche pas. L’utilisation d’un score “zero sum” évite ce
biais.)

Having
∑

i pi be a nice, round number is not strictly necessary, but it helps me
check that I have copied the numbers correctly on my spreadsheet. In any case,
tell me what

∑
i pi is supposed to be, so that it can serve as a checksum of sorts.

Note: ce score ne doit pas être ajusté par le groupe pour prendre en compte des excuses,
valides ou non. Si A et B ont objectivement moitié moins avancé que la moyenne

(bo)pas majorité; ce n’est pas un vote. On en discute ensemble jusqu’à ce que tout le monde tombe d’accord.
Voir plus bas si l’on n’y arrive pas.

(notée à 100) alors tous deux doivent avoir un score de 50. Le fait que A a passé la
moitié du semestre à jouer à Minecraft alors que B a passé la moitié du semestre à
l’hôpital suite à une attaque de Vélociraptor (non-provoquée) ne doit pas intervenir.
Les excuses valides d’ordre médical ou autres sont prises en compte par le corps
enseignant à divers niveaux; en ce qui concerne l’auto-évaluation, ce n’est en aucun
cas votre problème.

Note: this score must must be computed with respect to the whole group, not
wrt. subgroups. For instance, one group was broken into 3 pairs with different
tasks, and each pair was given an equal number of points to distribute between
them. This is not valid, as it bypasses the hard work of evaluating the value and
difficulty of each task.

Note: Consensus , Vote:

A way some groups have “achieved consensus” in previous years is by averaging
or summing scores given (sometimes anonymously !) by all members to each
member. This has a chance of being a meaningful metric only if everybody is very
well-informed about every other member’s contributions. Otherwise it tends to
produce noise, which tends to yield poorly differentiated scores. You may use such
techniques if you wish, but it must be a mere starting point that is then discussed by
the group until nobody is shocked by any mark.

I consider vote-based methods a bit of a “cheat code” when it comes to achieving
consensus. Votes are a conflict-breaking tool, not a truth-finding tool. The only
consensus truly achieved by taking a vote about X is the meta statement “the
outcome of the vote about X, whatever it is, holds value.” This actually says
nothing about X or whether that outcome is correct.

That’s fine if the question is “what colour should the bike shed be”, because to the
extent that there might be a right answer here, it’s probably “whichever colour
most people want” anyway. Even if many (or even all (bp)) people dislike the result,
the most important thing is not to waste more time on the issue, and to avoid
fighting over it. Let’s just pick a colour and move on.

The situation is quite different when matters of fact must be decided, with real
stakes and decidedly right (correct, accurate,. . . ) or wrong answers. The scientific
method does not proceed through votes.

Votes should only be used when there is a conflict to break, not before, and this
only if there is a pressing need to coalesce to a decision. Whenever possible, a

(bp)If you average the result of a vote on colour, you’ll probably get a vomit-inducing khaki nobody wanted
:-)
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consensus obtained through rational discussion of all available evidence must be
preferred.

Do not use voting as a clever tool to circumvent rational, possibly heated, discussion,
and avoid having to actually formulate, defend, and change your opinions.

I want a consensus on the quality of the work of each, obtained through thorough discussion
— and I know it can be hard — not a consensus on a hack to avoid really having said
discussion.

The last thing I want is for a group (I take an extreme theoretical case) where
everybody wants all the points to average anonymous votes and come up with the
same score for everybody. . .

Si la pondération donnée par le groupe est manifestement fausse, c’est tout le
groupe qui sera pénalisé.

Par exemple si le groupe dit “ben tout le monde a travaillé pareil, 100 à chacun”,
alors que pendant la soutenance on voit bien qu’il y a une personne qui sait
répondre à toutes les questions, que ce soit sur la vue d’ensemble ou sur le
fonctionnement du code, et une autre qui découvre la sujet et le logiciel le jour de
la soutenance, ça va mal se passer. Soit tout le monde était tellement à la masse
pendant le projet que personne n’a remarqué les grosses différences entre membres,
soit le groupe est trop disfonctionnel pour avoir une conversation bilan honnête
entre ses membres.

Les étudiants se plaignent souvent – et à raison ! – que les notes des travaux de
groupe sont injustes; c’est l’occasion de rectifier le tir et, les enseignants n’ayant pas
le budget pour une boule de cristal ou de chevaux de Troie dans vos ordinateurs,
vous êtes encore les mieux placés pour le faire.

Si un consensus ne peut pas être atteint au sein du groupe (essayez, quand-même,
parce que ça n’amusera personne de gérer ça et risque de pénaliser le groupe
globalement) proposez plusieurs pondérations (e.g. celle soutenue par A, B, D,
et E, selon laquelle C et F sont des glandeurs, et celle soutenue par C et F, selon
laquelle ils ont tout fait) et nous en discuterons calmement.

Si le groupe atteint tant bien que mal un consensus mais qu’un (ou plusieurs)
membre (ou sous-groupe) n’est pas satisfait, mais pas tout à fait au point de refuser
entièrement le consensus (i.e. “J’accepte, mais pas content !”, versus “Je refuse !
Révolution !”), ce membre peut joindre au rapport, sous le consensus, une opinion
dissidente expliquant ce qui le chiffonne un peu dans le consensus tel qu’il est.

Le rapport peut également mentionner si le consensus a été obtenu facilement ou
s’il a été difficile à négocier.

FAQ : comment la pondération donnée par le groupe affectera-t-elle la note
individuelle, exactement ? Y a-t-il une formule ?

Nous noterons au mieux, dans un monde imparfait, avec les informations dont
nous disposons.

There is indeed a formula that is being (somewhat) systematically applied. Fol-
lowing Goodhart’s law (bq), I will not share it.

I would just note that in 2018–2019, the maximal difference between the worst
and best marks within a group was 9 points out of 20. (The minimal intra-group
difference was 0.1 points. The average intra-group difference was 4 points.)

The upshot is that you should not expect to get a good mark merely because other
people are working and the end product is good. You have to contribute to it.

Conversely, if you are unlucky and end up in a disfunctional group, this does not
automatically mean your mark will be terrible, so long as you can show meaningful
contributions.

Overall, this system, while imperfect, proved much better, meaning much fairer,
than handing out the same mark to everybody in each group, as was the case
previously.

The cost is to force the group to confront and to evaluate the very real differences
of skill and investment within the group, and confront one’s autoevaluation to
that of the group, which are very socially difficult exercises, without a doubt, but
necessary ones.

72 The defence

Il y aura une journée de soutenances à la fin du semestre, où chaque groupe présentera
très rapidement ses travaux, en fera une démonstration, et répondra à des questions.

Les modalités exactes sont comme suit:

72.0.1 Horaires de passage

Le planning sera en ligne sur Celene.

Deux salles seront réservées pendant les soutenances: c’est le jury qui passe d’une salle
à l’autre.

(bq)When a measure becomes a target, it ceases to be a good measure.
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De cette manière chaque groupe peut s’installer tranquillement pendant que le groupe
précédent soutient dans l’autre salle.

72.0.2 Timing

Each group will have a 30min slot. You will have 15min to talk without interruption.
The remainder of the time will be for questions / remarks.

Your talk will spend

⋄ 2 minutes max on slides — In the next paragraph I’ll tell you exactly what your
slides are going to be. You will open with this.

⋄ 13 min of live demonstration.

Be extremely strict on time. I shall interrupt you mercilessly the instant you go
overboard either on the slides of the global duration.

You will be ready to switch back and forth between the slides and the demonstration
during the questions.

72.0.3 The slides

Each slide will have your group number somewhere.

There will be no animation or slide transition, or generally anything that does not
perfectly translate into a two page PDF.

You will have exactly the following slides:

(1) A synthetic table of requirements met (green/yellow/red), like in the short report,
but with fewer details so that it all fits on a single slide.

You will speak for about 1m30 maximum to summarise the important points,
especially to make us understand the scope of the limitations regarding the
yellow/red requirements.

(2) A single slide with a recent photograph of each member, their name, their individual
score (as in the report — the scores must of course be the same as in the report !),
and a few keywords as to the nature of their contributions.

About 30s maximum will be spent on this; the aim is the have a rough idea how
uniformly (or not) the work was allocated before beginning.

We may use the slides as support during the questions phase.

72.0.4 The live demonstration

The demonstration must convince the jury that every requirement you claim to have
met is indeed met.

Prepare it and rehearse it well in advance, like a theatre play, using functionalities
of your project to help you, such as save and load. In your discourse, use the same
keywords as in the requirements list, and quickly state the corresponding requirement
number, to make it clear what requirement(s) you are demonstrating.

The demonstration must be live, we will not accept prerecorded videos or screenshot
slide shows.

During the questions phase, you must be ready to let the members of the jury interact
directly with your project.

While every member of the group must be present and answer direct questions from
the jury, not every member needs to talk equally (or indeed at all) during your 15min.
Again there is no mark for the defence itself; the aim is to convey the scope and quality
of your work. Apportion the presentation time among your group in order to maximise
the clarity of the defence.

Les démonstrations peuvent se dérouler soit sur l’ordinateur de la salle (celui connecté
au vidéo projecteur), soit sur votre ordinateur portable personnel.

Dans tous les cas, évitez les temps morts dus à des contraintes techniques. Do
everything on a single computer rather than spending time fighting the video projector
each time you switch machines.

Vérifiez aussi la connexion de l’ordinateur servant à la démo avec le vidéo-projecteur
avant le jour J.
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Part VIII

Archived Project 2019–2020 & 2023–2024:
Evolutionary Game of Life

73 Generalities

The aim is to create a “Game” (br) centred around a visual and interactive simulation of
natural selection.

The serious purpose behind the game is to provide a refresher on evolutionary
mechanics, both as a matter of general culture and as a prelude to the study of AI and
metaheuristics in general.

In particular, genetic – and, more broadly, evolutionary – algorithms are a vast class of
approaches simulating aspects of Darwinian biological evolution for the purpose of
solving complex problems for which brute force or analytic approaches are unsuitable.

Figure 7: NASA’s ST5 satellite antenna, designed via evolutionary algorithms to meet the
stringent and very specific requirements of the mission. It is the first such object to have been
sent to space (2006).

The results thus obtained can be very good, but are often a bit “alien-looking”, as
evolutionary processes, whether “real” or simulated, often defy human intuition,

(br)I couldn’t come up with a fun name for it, preferably with a pun or a gratuitous insersion of “INSA” in
it, so I’m just calling it “the Game”, for now.

aesthetics, and engineering principles. (A look at deep-sea creatures should convey
that quite well.)

For instance, the NASA’s ST5 antenna in Fig. 7 was obtained by evolutionary processes.
It performs quite well compared to human-designed antennae. The figure actually
shows the second version of the antenna: the first was more tree-like. A minute change
in mission parameters resulted in two completely different antenna layouts, where
humans would come up with more incremental changes.

Of course, no human intervention was really needed to adjust the design the second
time: the simulation was already set up, so entering the new constraints and pressing a
button was all that was needed (plus a few days of computing time on a supercomputer).

A challenge with evolutionary processes (from both the points of view of computer
science metaheuristics and biology) is how difficult it is to accurately predict the effects
of a change in parameters, and how easy it is to come up with plausible-sounding
“just-so” stories that don’t pan out in the end.

The Game should provide a fun experimental platform to play with populations by
altering several aspects of the creatures and their environment, and seeing how they
react and evolve. It should generate high-quality graphs showing the evolution of
those characteristics over time.

To be clear, while the process of programming the Game is in itself a way to teach
evolutionary processes to INSA students, the final product should be a good tool to
help present those notions to, say, high school students and such.

Compared to the related Clockwork (Part XIII[p230]: “Archived Project 2017–2018:
Mon(s)tres”) and Automata (Part XII[p225]: “Archived Project 2018–2019: Automata
GUI”) projects, this one is rather less open-ended and ambitious, as you are not required
to actually design, set up, and deploy metaheuristics on a given open problem, but
merely to simulate some very specific traits in a very specific simulation.

However, I shall be a bit more demanding when it comes to feature-completeness,
stability, and usability of the final product. Furthermore, there is room for the more
ambitious groups to considerably expand the scope of the project once they have
covered the basics.

I give in this document some design choices that must be respected, so as to make it
easier to compare the projects of different groups.
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74 Specifications

The Game simulates a world. Since our divine powers are quite limited, our worlds
shall be quite modest: a grid of size N ×M, with N = M = 100 by default (but this
should be an easily modifiable parameter; every numerical value I give should be so;
the values will be tweaked as your groups progress and experiment with them, so that
they yield relatively stable populations.).

The Game should represent this world graphically, at the very least with a view from
the top.

I strongly recommend setting up a terminal-only graphical engine first — take full
advantage of the fact that the terminal can display colours and special characters. This
should be fast and easy to make.

For the final product, additional support for a 2.5D isometric view – in the style of “old”
games like Diablo I & II, Age of Empires I & II, etc – is also strongly recommended.

It should be reasonably cool-looking, without taking you too much time to make.

It is probably not a good idea to try and support full 3D rendering, unless some
members of your group already have strong experience in that domain. I’m not even
sure what a good library for that would be. Perhaps Panda3D?

The Game should of course have a GUI allowing the user to play with all the parameters
of the simulation.

Here are a few possible choices of framework:

⋄ PyGame, https://www.pygame.org is the most common choice among students
for this type of projets.

⋄ the Arcade Library https://api.arcade.academy

https://learn.arcade.academy.
Very fresh, but active; a few groups used it and had a good experience.

⋄ TkInter,

⋄ PySimpleGUI (with TkInter backend only; simpler to begin with)

⋄ PyQt5 or PyQt6 (more powerful, more complex, external requirements (bs))

(bs)https://pypi.org/project/PyQt5/; cf. http://doc.qt.io/qt-5/examples-graphicsview.html
pour de la documentation C++. C’est à adapter à la version Python, car PyQt5 est juste une bibliothèque de
liens (bindings) vers Qt5.

⋄ wxPython, https://www.wxpython.org

Bindings to wxWidgets, similar to PyQt.

⋄ PursuedPyBear, https://ppb.dev

This one seems very fresh out of the oven, and not documented.

⋄ Kivy, https://kivy.org

⋄ or anything that works with Python, really, I’m not picky, what matters is the
result.

Note that the execution of the simulation should be independent from the rendering,
as rendering takes a lot of processing power. Thus not only should the two run in
separate threads, but it should be possible to simply activate and deactivate rendering
at will while a simulation is running. Specialised “game-oriented” frameworks should
take care of this fairly straightforwardly, without requiring you to do much system
programming.

In the world, there live creatures; they are all named Bob. There are initially P = 100 of
them.

Bobs should be graphically represented by sprites that present as clearly as possible
their individual attributes (speed, size, memory, etc). The representation should be
as user-tweakable as possible to allow emphasis on whatever characteristics they are
interested in at the time. For instance, I should be able to set things up so that faster
creatures are bluer, and bigger creatures are redder, resulting in various hues of blue,
red, and purple. Then I should be able to change it completely. Bobs’ size should at
least support a representation acting on the size of the sprites.

Each Bob spawns in a random cell in the world grid at the beginning of the simulation.

The simulation proceeds by time increments, or ticks: at each tick all Bobs perform an
action, for instance walking to the next cell.

How complex their tasks and actions are depends on the number of characteristics
which will be simulated.

74.1 Basic level: food hunting

Let’s say that a day amounts to D = 100 ticks. Each day, a total quantity F = 200 of
food points spawns randomly in the World, each containing EF = 100 energy. There is
nothing preventing several instances of food from spawning in the same cell, in which
case the energy values add up.

Any food left uneaten disappears at the end of the day, just before the new food is
spawned in.
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Each Bob has an energy level, starting at Espawn = 100, when they spawn, and capping
out at Emax = 200.

This energy goes down by 1 each time they move, and they move at random each tick,
going to an adjacent cell. Diagonal moves are not allowed (because they are at a greater
distance; we’ll talk about that later).

When a Bob finds food (is in the same cell as food), it instantly eats as much of it as
it can, gaining all its energy. If its energy caps out in the process, there are leftovers.
It can then stay stationary so long as there is food, but each tick spent stationary still
consumes 0.5 energy.

If two Bobs access the same food at the same tick, one of them gets all, arbitrarily.

If a Bob’s energy level ever falls at or below zero, it dies.

If a Bob’s energy level caps out, it reproduces via parthenogenesis, spawning a new
Bob in the same cell (several Bobs can occupy the same cell). The new Bob spawns at
Ebirth = 50 energy, while the “mother” Bob loses Emother = 150 energy (putting her at
Emax − Emother = 50 energy).

Experiment with this and tweak the values to see what effects the different parameters
have, until the values yield a stable population with interesting rates of births and
deaths.

74.2 Velocity

At the basic level, all Bobs were identical. Let’s change this, and start introducing
individual characteristics that can be acted on by natural selection.

Let’s start by adding velocity to the simulation.

The default Bobs all had a velocity of 1, moving 1 cell in 1 tick, at a cost of 1 energy.

Now, each Bob B has its own velocity, initially Bv = 1, but each Bob that spawns may
mutate a bit in that respect: say that C is born of B. Then Cv should fall uniformly in
the range [Bv −Mutv, Bv +Mutv], where Mutv = 0.1 is the mutation rate for velocity.
(Bv = 1 for initial Bobs)

Note that since velocity is not an integer quantity, handling it properly is not trivial. At
each tick, the fastest moves first, and eats all it can. If a Bob has a non integer movement
velocity, say, 1.6, then there are two ways to handle it:

⋄ partial actions: (bt) on the next tick, it will move through an entire cell (eating all),
and half a cell, eating 60% of the food energy there. On the next tick, it will eat the

(bt)This was the original proposal.

remainder (if nobody beat him to the punch), and move through another whole
cell.

⋄ speed buffer: (bu) on the next tick, it will act with a velocity of ⌊1.6⌋ = 1, and store
the excess 0.6 into a “velocity buffer”. On the following tick, the buffer will be
consumed and added to the velocity before the process is repeated: thus this Bob
will functionally have velocity 1.6+ 0.6 = 2.2 for this tick, acting as though it were
of velocity 2 and storing 0.2 in the buffer for subsequent ticks.

The buffer proposal is probably the best, as it avoids having to attempt giving a meaning
to all partial actions: what is “partial reproduction”, for instance?

Speed has a cost, however. We are going to follow physics roughly, here. The kinetic
energy of an object is given by

1

2
mv2 ,

so, following that, on each tick, B will consume Bc = B
2
v energy to move. For instance,

double the speed means quadruple the energy cost. (It’s a bit more complicated in real
life, because that only accounts for the cost of acceleration, but this formula is sufficient
to introduce clear, intuitive trade-offs in our simulation.)

To avoid Bobs becoming immortal simply by virtue of not moving at all, we say
that a Bob consumes, at a minimum, Etmin =

1
2

energy per tick. The actual energy
consumption is therefore

B ′
c = max(Etmin, Bc)

This applies for all other versions of Bc below.

Run the simulation and see how speed evolves over time.

The impact of each of characteristics such a this should be configurable in real time – for
instance if I want to remove speed from the equation I should be able to setMutv = 0
whenever I want.

74.3 Mass

Now let’s add the possibility for Bobs to evolve some serious muscle mass. Mass will
be, like velocity, a genetic characteristic. Our default Bobs had mass Bm = 1. Like
velocity, mass is genetic, and mutates in the same way. We do not model a cost on
birth, however, mass has a cost on mobility. Following the kinetic energy model, mass
multiplies the movement cost on each tick: a Bob will therefore consume

Bc = BmB
2
v

(bu)This is the revised proposal after discussions with students.
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energy on each tick for movement.

Mass should be reflected in the size of the sprites in the graphical representations. Note
that mass is proportional to volume, and volume is proportional to the cube root of
mass, so the size of the sprites should scale like 3

√
Bm.

What is the benefit of being bigger? You can eat (much) smaller creatures. If Big Bob B
and small bob bmeet (are in the same cell at the same tick, even if one of them is only
“partially” there due to non-integer speeds), and the difference in size is important
(bm

Bm
< 2

3
) then, Big Bob can, and will, eat small bob. Small bob dies. Big Bob’s energy

level Be is updated according to the equation

Be := Be −
1

2

bm

Bm
be +

1

2
be = Be +

1

2
be

(
1−

bm

Bm

)
The idea is that the fight takes some energy out of Big Bob, although less and less the
bigger is he in proportion to small Bob, and he gains up to half of small bob’s energy
level. In this model, he always gains some energy from eating another Bob.

It should be easy to change this model within the code.

If bm

Bm
⩾ 2

3
, they ignore each other.

74.4 Perception

Now that there are predators and prey in the world, it help to be able to avoid the ones
and pursue the others.

Each Bob initially had a perception score Bp = 0meaning that they are blind as bats –
but without any cool echolocation either. Bp measures of course the distance at which
they can determine whether a cell contains noting, food, or Bobs. It is the radius of the
circle of detection.

This is a genetic characteristic. Unlike speed and mass, we are going to keep that value
integral, and mutate it by 0 or ±1, equiprobably.

Since we are in a discrete world, some care will have to taken to compute those circles
properly. Given that diagonal moves are disallowed, the notion of distance that matters
is not actually that of the standard Euclidean geometry (ℓ2 norm), but the Manhattan
distance (ℓ1 norm); in dimension 2, which is what we shall work in, it is computed as

d1(A,B) = |xB − xA|+ |yB − yA|

Compare to the Euclidean distance:

d2(A,B) =
√
(xB − xA)2 + (yB − yA)2.

Circles in Manhattan geometry actually look like squares do in Euclidean geometry –
with a π

4
rotation, so, pointy-end up.

At Bp = 1, all adjacent cells are detected.

Up till now, The Bobs’ decisions have been purely random. Now, whenever they detect
food, they make a beeline for it. Unlike in Euclidean geometry, there are many different
shortest paths to take. Take the algorithm: so long as you’re not there, reduce either
your x or y-distance, with same probability.

Of course, if at any time Bob detects a new food source, while on its way to another,
it should reevaluate its plan and make a beeline towards the closest one. If it detects
several food sources, it should favour the bigger ones.

By food sources, we mean both spawned food and unlucky smaller Bobs. Since how
good a food source a prey Bob is depends on its energy level, and that a prey Bob may
run away, a predator Bob will always favour stationary spawned food to other Bobs.

When several prey Bobs are detected, the smallest ones will be favoured.

When a Bob detects a larger Bob, it moves to maximise distance between the two. When
it detects several larger Bobs, it moves to maximise the distance to the closest one, and,
ceteris paribus, to the others.

When a Bob detects prey and predators simultaneously, its prey behaviour overrides
its predator behaviour: survive first, hunt second.

Perception cost is not affected by either mass or velocity. It does require eyes and
a big brain, though, which requires constant energy expenditures. (A human brain
consumes about 20% of the body’s total energy.)

Let’s say that for each point of perception radius, there is a flat 1
5

penalty (again, the
GUI must allow this to be modified at will) to energy each tick. The consumption
becomes:

Bc = BmB
2
v +

1

5
Bp

74.5 Spacial memory

A big brain has other uses. An important one is to remember the existence of stuff
that’s not visible right now.

Currently, unless they are making a beeline for some kind food, or running away, Bobs
have a 1

4
probability of going back where they just came from, which is not optimal to

find spawned sources.
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Now, let’s introduce the inheritable characteristic memory space. Each Bob B has
currently Bmem = 0 memory points. Again, this will remain an integral value, and
mutate by 0,±1, equiprobably.

A Bob has several (mutually exclusive) ways to use its memory points:

A Bob can remember the 2 × Bmem cells it visited, and hereafter avoid them, unless
doing so would lengthen a path to food or escape.

With higher priority than that, a Bob can use its memory points to remember a place
where it saw spawned food not currently in its view. This can happen if a Bob detects
two food sources at opposite ends of its perception, and goes towards the one, therefore
losing sight of the other one. Or if it sees food while running away from a predator.

It uses one memory point to remember one food location (therefore forgetting two of
its oldest visited locations). It remembers the respective energy levels of the food.

It only uses this point upon leaving sight of the food. The point is freed the instant a
remembered food comes into sight again.

While not pursuing food currently in its view (that has the priority, even if it remembers
a larger food source farther away), or running away, a Bob will make a beeline for the
largest food source it remembers seeing.

The cost is again a flat penalty per point.

Bc = BmB
2
v +

1

5
Bp +

1

5
Bmem

74.6 Other characteristics

Each group should invent, define, and implement a few other characteristics; put your
own spin on the subject. They should be explained in the report, and well-specified.

What I outline explicitly in this document should be construed as the bare minimum as
expect from each group. Once that basis is assured, be creative. Your features must be
deactivable, so that the jury can compared your projet to other groups under the same
constraints.

The is best achieved in the same style as the features listed above: set things up so that
your features are governed by constants that, for some values (0, 1,. . . ) remove the
feature from consideration.

I would be delighted to see additions tackling the evolution of altruism, or aggression
strategies (hawks vs doves), etc.

It would be advisable to plan the more ambitious “freestyle” features somewhat in
advance, and to consult me before investing significant time in them.

74.7 Sexual reproduction

So far, Bobs have reproduced solely by parthenogenesis. Now, let’s add sex to the mix –
though we will consider that Bobs are hermaphrodites, like snails, and not attempt to
distinguish Bobs and Bobettes.

On top of still having the option of parthenogenesis, when two Bobs B and C meet,
and don’t eat each other, and have high energy levels Be, Ce ⩾ 150, they mate, losing
100 energy each, and creating a new Bob D at initial energy De = 100.

Note that, compared to parthenogenesis, more total energy is invested into the new
Bob, and it starts out with a higher energy level, but less is required from each parent.
This is meant to model the advantages of shared parenthood.

Of course all those values should be easily modified parameters.

D has all his genetic characteristics set to the average of its parents, and then mutation
is applied as usual.

For those characteristics, such as perception, which are integral, the cleanest way to
handle this is probably to actually store floating point values in the “genetic code” of
Bobs, and round them to the nearest integer whenever you actually use them — but not
during reproduction. That way, if B and B ′ reproduce, with Bp = 1 and B ′

p = 2 then
their offspring C will have, before mutation, Cp = 1.5. In practice, its perception shall
be rounded to 2. But if C then reproduces with B, the offspring D will have perception
1.25; in practice, it will be rounded to 1. And so on.

Sexual reproduction can be toggled on and off; parthenogenesis as well.

It will be interesting to see the effects of this addition on the speed of adaptation to
changing conditions.

75 Save & Load

The user must be able to save to file, and load from file,

⋄ the parameters of the game (N, P, etc)

⋄ the state of the game, that is to say, the state of each and every Bob in the game,
including their perception, memory, strategy, etc.

Those two aspects must be handled separately; one may want to change the parameters
in bulk while the game is running. Probably the “state” save should also include
parameters.
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Part IX

Archived Python Project 2022–2023: Avé
INSA!

The aim of the project this year is to implement a city-buildling (CB) game in the style
of the Caesar game series, which I take to include Caesar I, II, and III, Pharaoh, Zeus, and
Emperor by studio Impression Games, published by Sierra at the turn of the millennium.

Specifically, we shall aim to produce little clones of (a subset of) Caesar III with the
Augustus engine, (or maybe, for some groups, Pharaoh, Zeus, or Emperor). We shall
endeavour to keep the subset thereof which is cloned as close as possible to the original.

The features and level of polish expected will vary enormously between the FISA and
FISE versions, with the FISA version being a much shorter project of smaller scope —
five weeks in total, I believe, ending mid-December.

FISE have, approximately, until the end of January.

76 Resources and brief overview of game principles

76.1 Resources

⋄ Teacher-provided resources: http://files.vhugot.com/Restricted/Caesar3

⋄ Game on Steam: https://store.steampowered.com/app/517790/Caesar_3/

⋄ Game on GOG: https://www.gog.com/en/game/caesar_3

⋄ The Augustus engine: https://github.com/Keriew/augustus

⋄ Fan site: https://caesar3.heavengames.com/

⋄ FAQ on c3_model.txt (modding & game data extraction):
https://gamefaqs.gamespot.com/pc/63635-caesar-iii/faqs/14466

⋄ Sprites Extractors:
https://github.com/bvschaik/citybuilding-tools

https://github.com/lclarkmichalek/sgreader

http://pecunia.nerdcamp.net/downloads/utilities (.exe)
Take note that the build instructions need updating.
Fill in TARGET = sgreader in .pro file and use qmake-qt4.

⋄ References for housing levels:
https://impressionsgames.fandom.com/wiki/Housing_(Caesar_3)

https://web.archive.org/web/20060713205809/http://caesaralan.co.uk/

strategy/houselevels.html

⋄ Blog by developers of a similar game, with interesting technical insights:
https://nepos.games/nebuchadnezzar/blog

76.2 Running the game

This game is a bit complex, and I don’t think there is a good substitute to playing its
tutorial missions and reading the game’s manual and the in-game documentation.

After obtaining the game files through whatever means suit you most, note the welcome
presence of the Manuals folder. Then install Augustus following the instructions on
github. We shall use Augustus as the reference implementation.

The sprites used by the game are minuscule on today’s high-pixel-density screens. In
the options, set “Display scale” to something suitably high. On my 1440p display, I set
it to 205%; on my 1080p, 155%. Avoid round values like 200%, because that obviates
the need for smoothing, and make everything more pixelated than it needs to be.

Leave all gameplay options on the defaults settings, which are closest to the original
game. We shall focus on the buildings and mechanics from the original game, not those
introduced in Augustus. An exception to that is the Roadblock building (present in
later games, i.e. Pharaoh for roadblock, and Emperor for selective roadblock) and, as
you wish, global labour pool (idem, starting with Zeus).

76.3 Overview of game principles

The general principle is this: they are CB games inspired by historical civilisations. For
the sake of this overview, we shall focus on the Roman civilisation and the mechanics
of Caesar III, which is the main target of this project.

The player starts with an empty terrain, and can buy buildings to place on the map.
The aim is to build a bustling city.

The challenge revolves around the evolution of houses. When you buy houses, they
are not immediately built. First, the terrain is marked as residential, and if the city is
not unattractive, people will come from outside the map, to erect small tents and live
there. “People” manifest as walkers, that appear at a specific point at the edge of the
map, and follow the road to their destination.

Tents provide room for few people, but those people have few needs, and you can put
them to work. When you place a building that provides a service, it requires a number
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of workers. The unemployed in your population, if any, will apply to work. When the
building has enough workers, it provides the service (possibly less efficiently if not
fully staffed).

To provide a service, a building usually generates one or several walkers, who follow
the roads randomly for some distance, then go back to base. While they walk, they
provide the service to nearby houses / buildings.

For instance, a market will generate a merchant; when the merchant walks near a
house, it replenishes the house’s stores of whatever they need, and depletes the stores
of the market. Likewise, a doctor’s office generates a walker (doctor) that reduces the
probability of plague in serviced housing, and so on.

There are a few exceptions, where buildings directly influence an area around them,
with no walkers as intermediaries. Gardens positively affect desirability in a small
radius; wells make water available to nearby housing, etc.

The gameplay structure is as follows:

⋄ set some houses, or rather tents; the people populating them can staff a few basic
services.

⋄ once some of those services are available to the houses, they become more attractive,
and evolve, for instance the tent may become a mud hut, which occupies the same
space, but has room for more people.

⋄ those new people can staff new services and the industries they depend upon,
thereby making parts of the city even more attractive, and causing the residences
to evolve again.

⋄ the process repeats with a set sequence of needs, until the tents have been replaced
by luxurious and dense residences, assuming all goes well.

All does not always go well. Less than perfect coverage means some parts of the city
could catch fire or fall victim to plagues, or go without some basic resource and regress.
If some crucial industry is disrupted, then a need may no longer be met once stores
run out. When that happens, housing may brutally devolve into lesser states, and evict
many citizens for want of space.

And if that happens, then suddenly the city may no longer have enough workers to
staff some other essential industry, thereby leading to a second wave of devolution,
then a third. Homelessness favours criminality, which causes more fires and vandalism
if the police coverage is inadequate. All of this makes the city unattractive, causing
more citizens to leave and preventing new settlers from immigrating even if there is
the space to do so.

A badly built city may collapse like a house of cards at the first crisis, unless judicious
emergency actions are taken (like shutting down luxury industries to ensure a steady
supply of workers for the necessities).

Building a city well means taking a lot of constraints into account when placing
buildings, to ensure that all required walkers have predictable paths and that there is a
level of redundancy.

It would be a shame to see a city collapse because a fireman chose to go left three
times in a row, thereby allowing a fire to kickstart a death spiral for the city. Since the
luxury villas house far fewer people than the high-density housing they replace, even
a successful transition towards a patrician neighborhood, when badly-handled, may
kickstart shortages that may spiral out of control!

And then there is the money; you spend it to make buidings, pay your workforce,
throw festivals, import what you can’t or would rather not produce yourself, and you
get it back through taxes and trade with nearby cities. If you run out of it, it’s bad; if
your taxes are too high, the people will grumble and eventually leave.

There are, in Caesar III, dozens of building types and services.

Quoting from the manual:

To reach its highest level, housing needs access to a nearby market supplied
with four different foods, pottery, oil, furniture and two varieties of wine.
Regular visits by workers from a bathhouse, a doctor’s clinic, a barber’s
shop, a priest of each god’s temple, and representatives of a school, academy,
library, theater, amphitheater, colosseum and hippodrome are also required.
If you can supply all of these goods, and access to all of these buildings,
then reaching the highest values is simply a matter of enhancing desirability.
Right- click on housing to discover why its growth is stagnant. The panel that
appears shows what the house lacks, or the nearest negative influence on its
desirability.

Furthermore, there is a sophisticated administration interface (that gets even more
sophisticated in later games!) to control the priorities of the various building types
in terms of staffing: who gets the available workers in case of shortage, and in what
proportions? Buildings may also be “paused” on a case by case basis. It all gets rather
complex.

This is, in the end, an exercise in Python programming, not in game design. Keep
things relatively simple, at least at first. If you can make the game work with a couple
of services and house types, then you can theoretically make it work with a dozen;
the technical challenge is essentially the same. Only take the time to refine the “game”
aspect once the technical ones are solid.
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Stick with Caesar III and its mechanics, with few exceptions like maybe convenient
features from later games such as selective roadblocks, and implement them in order:
basic needs first, and the industries required to sustain them. Use the game’s sprites
for graphics. Do not skip steps in those needs, or oversimplify them. This will simplify
the comparison of how far different groups went.

If I see patrician villas, I should know that you have implemented grapes and wine
industries and distribution, because that is a requirement in the original game.

However, you may simplify or omit things outside of the “main path” of the game,
which I consider to be housing. For instance, the mood of individual gods, or Caesar’s
favour, may be done without. The need for water or oil may not.

The precise needs for different levels of housing are given in c3_model.txt.

77 Expected features

Features marked as A or E are required of FISA or FISE, respectively. Features marked
as a or e are partly required, or optional but recommended.

The main difference between what’s expected of FISE and FISA is the complexity of the
game mechanics. The the game works with just one type of houses and one service, it’s
enough for a good project in FISA, but will be considered the bare minimum in FISE.

The text may offer more nuance on what should be implemented and suggest simple
approaches to satisfy the requirement without too much pain, or more advanced
approaches for those who want to show off their skills.

Both simple, conservative choices, implemented very competently, and more ambitious
ones, even not fully realised in the implementation — but realised enough to showcase
their potential — can result in excellent marks. Choose tactically.

Any feature not marked as required is entirely optional.

(1) AE: Done in Python 3.

In case there was any doubt, this is a Python project. . .

You may need to use some older version of Python (3.7, 3.8,. . . ) for compatibility
with some libraries or dependencies that may not be updated very frequently, like
PyGame.

(2) AE: GUI framework of your choice

The game should of course have a GUI.

You may choose

⋄ PyGame, https://www.pygame.org is the most common choice among
students for this type of projets.

⋄ the Arcade Library https://api.arcade.academy

https://learn.arcade.academy.
Very fresh, but active; a few groups used it and had a good experience.

⋄ TkInter,

⋄ PySimpleGUI (with TkInter backend only; simpler to begin with)

⋄ PyQt5 or PyQt6 (more powerful, more complex, external requirements (bv))

⋄ wxPython, https://www.wxpython.org

Bindings to wxWidgets, similar to PyQt.

⋄ PursuedPyBear, https://ppb.dev

This one seems very fresh out of the oven, and not documented.

⋄ Kivy, https://kivy.org

⋄ or anything that works with Python, really, I’m not picky, what matters is the
result.

Test the different possibilities, and choose wisely.

Based on previous experiences, and the nature of this project — especially the RTS
aspect — I think PyGame is the safest choice for this project, in that most groups
in previous years have used it and done satisfactory things.

PursuedPyBear seems too fresh.

PyGame is far from perfect, so I’m exceedingly interested in hearing from you if
you make something else work.

I haven’t seen wxWidgets used in projects, but it ought to be nearly as mature and
usable as PyQt.

(3) AE: Graphical representation of the map.

The map must be represented graphically, ideally in a near identical way to Caesar
III if possible.

The view may be 2D, top-down, using sprites (by far the simplest option — you
can even have a terminal-based one as a fallback and to develop the logic before a

(bv)https://pypi.org/project/PyQt5/; cf. http://doc.qt.io/qt-5/examples-graphicsview.html
pour de la documentation C++. C’est à adapter à la version Python, car PyQt5 est juste une bibliothèque de
liens (bindings) vers Qt5.

213

https://www.pygame.org
https://api.arcade.academy
https://learn.arcade.academy
https://www.wxpython.org
https://ppb.dev
https://kivy.org
https://pypi.org/project/PyQt5/
http://doc.qt.io/qt-5/examples-graphicsview.html


more sophisticated rendering engine is available), isometric 2.5D (as in Caesar III;
similar views have been consistently achieved by most groups year after year in
similar projects, so it is really recommended), or full 3D (do not even attempt this
unless you already have considerable experience with a suitable framework. Tests
have been done last year with Ursina and Panda3D, but neither has been found
suitable for use in this project).

If you go the 2D route, note that fan sites have a collection of 2D sprites which can
probably be downloaded and used.

For 2.5D, the original sprites of the game should be used — note that, for copyright
reasons, this severely restricts the diffusion of your project.

(4) aE: Sprite Upscale x2

If you use the original sprites of Caesar 3, you will notice that they are very small
by today’s standards, and can’t really be used at native resolution.

I recommend using an AI upscaler such as waifu2x-ncnn-vulkan, and whatever
image manipulation operations you deem necessary, to double their size.

This has the added benefit, from my point of view, of making sure you cannot
simply use the Julius and Augustus projects as rendering backends, since they
won’t work on differently-sized sprites.

(5) AE: Save and load. Pause.

Those games can be loooong. You must be able to save the game state whenever
you want, and load it without loss of information. That includes the state of every
walker and building etc.

This will be extremely important for the defense, as you will not have time to
play several full games during the demonstration. Instead you will load saved
games, taken at interesting points of the life of your cities, and from those specific
points you can add or remove buildings, shutdown or activate industries, and
thus demonstrate the impact of those actions upon your city.

The quality of your defence plays a huge role in your final mark, not because
it is evaluated as such, but because it determines what the jury understands of
your project. Consequently, you must anticipate features of the game which make
showing it off easy. Save and load is one of those. Being able to pause the game
would be another. You may think of other things in the same vein. Do not hesitate
to implement them and discuss it with me.

(6) AE: Faithful Caesar III mechanics and sprites.

I would really appreciate it if you would all use the same sprites as the original

game, as much as possible, and implement clear subsets of the mechanics of the
game. This is not to stifle your creativity, but to facilitate quick understanding of
what you are doing.

If all groups use the same kind of units, buildings, and mechanics, with somewhat
the same balance, it becomes easier to understand at a glance what’s going on, and
how two groups differ. This is especially crucial during the defence.

You have a very short time in which to show off your work — if much of that time
is spent explaining that your drones need to mine unobtainium to build starships,
rather than mine clay in order to make pottery, in the end that is time not spent
showcasing how many features you support and how fast the game runs, which is
probably not to your advantage.

Instead, if everybody uses the same basic concepts and vocabulary, some level of
background knowledge can be assumed and we can quickly concentrate on the
aspects that truly differentiate the groups. Water and oil and clay all play the same
role for everybody, because everybody copies Caesar III, and we all know what
we are looking at.

That being said, if you absolutely yearn to make a space-themed CB game, or a
fantasy-themed game, or a horror-themed game (please, not that one), I will not
explicitly forbid you from doing so, but be aware that you will need to communicate
your mechanics extremely efficiently, and convince the jury that they are more or
less equivalent what is expected.

Either way, sprites should be as recognisable as possible. I shall try and provide
them in a convenient package.

Of course, as stated before, the point is not to re-implement everything. It is to
implement a well-chosen subset, avoid having to reinvent game balance from
scratch, and facilitate communication. Start with the basic aspects of the game,
following the tutorial, and taking values (price of buildings, number of workers
required, distance walked by the walkers,...) from gamefiles and wikis. Tweak
only when you need to. Again, this is not a game design course; the game is a
pretext for coding.

Do not needlessly deviate from Caesar III mechanics and values: this is a complex
game, whose balance rests on carefully tweaked numbers. Balancing all the con-
straints may simply not be possible or fun if some numbers change. Experimenting
with many sets of gameplay parameters is not a tactical investment of your energy.

Again, if that tickles your fancy to be original and go with different units, I’ll
technically allow you to do that, in the same sense as I’ll allow you to shoot yourself

214



in the foot. At the end of the day, it’s your foot. I just don’t recommend that course
of action.

If you simply must differentiate your project from the other groups, perhaps
targeting a faithful copy of another game of the same series (Pharaoh, Zeus,
Emperor) would be the safest bet.

The main risk I see here is that it is still more explaining to do to the jury, in
particular the “candide”, who might just be getting familiar with C3, but not with
the other games. The second risk I see is that I have fewer resources to provide to
help, and there is nothing equivalent to like Julius or Augustus for those games.
Those risks are still manageable overall.

Regardless, if you plan on deviating from C3, please talk to me about it during the
lab classes.

(7) AE: Real-Time Aspects.

Note that such a game is inherently “real time” in the sense that there are no
discernible turns. The many buildings and citizens and walkers of the city live
their lives simultaneously, and the city must remain reactive to any action taken
by the player at any time.

This real time aspect can be tricky to implement correctly. You will need a well
thought-out architecture and probably some form of concurrency (multithreading,
multiprocessing,. . . Sec. 31[p119]: “Parallelism and concurrency”) which you will
have to figure out on your own, since that is mostly taught during the second
semester.

You can also try doing most everything in one thread, but it has its own difficulties:
if the main game loop is not fast enough, you will have terrible input lag, dropped
inputs, and more.

Libraries like PyGames usually offer examples and propose standard ways of
handling inputs, event queues etc. By starting from pertinent examples, you
should be able to get things working.

I thought this aspect ambitious last year, when I gave my first RT-based project
(the previous ones were either turn-based or radically different types of work), but
to my surprise and delight, no group had much trouble with it.

FISA:

Keep the game very simple and lean so that any architecture can be made to work.
For instance, if animating your sprites becomes a problem, then just don’t animate
them.

(8) aE: Walker visualisation

Caesar III offers a variety of views of your city, each focused on one industry or
service. For instance, one view lets you see water coverage, and related walkers,
while hiding all other aspects. You must (FISA: should) implement such a view
for each of the aspects you introduce in your project. Again, this is essential (FISA:
useful) for a good defence, as it is otherwise difficult to quickly showcase one
particular mechanic — especially if you have implemented many of them.

(9) e: Variable Speed

Saved games help you show off specific game configurations, but to really get an
idea of the flow of the game, it is best to see the city evolve. But we don’t have
time for that in a defense.

Thus, it would be helpful if the speed of the game could be changed — specifically
increased — so that we can see the town react on fast-forward.

Of course, how fast the game can run when at full speed will depend upon both
your machine and the quality of your implementation. Thus, for the defense, you
can also prepare time lapse videos showing the relevant points.

Note that this can be complex to get right, as it divorces real time from game time.
If you want that feature, you should plan for it from the start; adding it post facto is
liable to break things badly.

(10) No procedural map generation.

Caesar III has fixed maps, designed in an editor. For that type of game, where
one stays hours on the same map, and the exact shape of the map is an important
factor to the difficulty, this is enough. There is no need to implement procedural
map generation.

(11) e: Trading

Have neighbouring cities with which to trade specific goods, as in CIII.

(12) e: Administration

Implement some degree of global control over your city to adjust tax levels,
industry priorities, visualise service coverage (this is the most important part, as
discussed previously), and so on.

(13) Disasters and Invasions/War

There are some combat mechanics in CIII; you can implement them if you want.

(14) Gods and favour of Caesar
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Beyond providing services, temples also serve to appease the gods, who might
send a disaster your way if they feel neglected. Likewise, Caesar may attack you
if you mishandle your treasury too much.

It would be interesting to implement those aspects, but they are not at all essential.
Focus first on more visible services and industries, and their walkers.

Part X

Archived Python Project 2021–2022: Age
of Cheap Empires

The aim of the project this year is to implement a strategy game in the style of the Age
of Empires game series — specifically, the first two. The first one being simpler, it seems
a better starting point.

The features expected will vary enormously between the FISA and FISE versions, with
the FISA version being a much shorter project of smaller scope — five weeks in total, I
believe, ending mid-December.

FISE have, approximately, until the end of January.

78 Resources and brief overview of game principles

78.1 Resources

If you are familiar with those games, splendid. If not, it should go without saying that
you do not need to buy or play any of these games. You can get all relevant information
by watching videos of AoE I and II on the internet, and consulting the wiki or the
official site:

⋄ https://ageofempires.fandom.com/wiki/Age_of_Empires

⋄ https://ageofempires.fandom.com/wiki/Buildings_(Age_of_Empires)

⋄ https://ageofempires.fandom.com/wiki/Units_(Age_of_Empires)

⋄ https://ageofempires.fandom.com/wiki/Technology_(Age_of_Empires)

⋄ https://www.ageofempires.com/tech-tree/greek/

The wiki shall serve as a reference document on technologies, unit types and statistics,
etc.

For a more hands-on look on that genre, you can install 0 A.D., a game originally made
as a mod for Age of Empires II, now entirely free software. You can install it on most
modern Linux distributions with a single command; for instance, for any Debian-based
system,

sudo apt install 0ad

will do the trick. 0 A.D. is its own thing, with its own unique mechanics, but remains
extremely similar in look and feel to AoE I and II, so it can give you a general idea of
how a game like that plays.

For large screens, you may want to create a file ~/.config/0ad/config/local.cfg

containing a line of the form gui.scale = "1.875", to scale up the GUI elements,
including the fonts — here by a factor of 1.875, to replace by what works for you.

I am hoping that enough students will have played an AoE game before — or at least
some similar RTS game — that I can affect one per group, and that they can serve as
“RTS experts” within the group. If not, too bad, but it should not be much of a problem.

78.2 Overview of game principles

The general principle is this: they are real-time strategy games (RTS) inspired by
historical civilisations and battles, where players control units on a map. Several
players share a map; the last one standing wins.

You start with villagers and a Town Center.

Villagers can acquire resources: they can forage, hunt, fish, or farm for food, fell trees
for wood, and mine for gold or stone — all of which takes time. Once they drop
resources at the town center (or other compatible drop points), the player can use them.

For instance, for 50 food, the town center can create a new villager — a process that
takes 20 (bw) to 25 (bx) seconds, and during which the town center cannot create other
units or research technologies. A technology is researched at a building, and changes
some aspect fo the civilisation, generally for the better: given access to new buildings
or types of units, improve existing units, etc.

Villagers can also build new buildings (by) — which costs wood, and even stone for
things like castles. They are poor fighters, though. If you want a fighting force, build
(bw)AoE I
(bx)AoE II
(by)In AoE, military units cannot build anything — with the exception of the Sicilian Serjeant, a unique unit

introduced in 2021.
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a Barracks, and train soldiers there. They cost food, along with wood for archers,
pikemen etc, and some gold. The more powerful units are usually more gold intensive.
Cavalry units (the horse is not treated as separate) are also quite food-intensive. There
is a kind of rock-paper-scissors relationship between the different unit types. For
instance archers are generally good against infantry, that tends to die before getting to
them and be vulnerable to shoot and run tactics, but weak against cavalry. Some units
have special bonuses against others; for instance, in AoE II, the dirt-cheap Pikemen
infantry line has massive bonuses against cavalry, reflecting the historical fact that
cavalry charges fare poorly against rows of long, pointy sticks.

There is a population cap: 50 in AoE I, 200 in AoE II — and I believe it can be set up to
500 in AoE II Definitive Edition, but I never heard of anybody plays with those settings.
The difficulty of the game is to balance your economy (villagers gathering resources)
and your army.

There are limited resources on the map — how much exactly depends on the map
type and on random generation. Most maps include a gold and a stone mine not far
from your starting position. Others you find by exploring the map; or other players
find them before you. They contain a fixed quantity of the resources; when they are
depleted, that’s it. Tree don’t regrow — though there are a lot of them, — nor do the
berry bushes, or the animals.

Farms can be planted, that generate a lot of food (though still a fixed quantity) for a
modest wood investment. They are the main source of income starting midgame.

In a typical game, stone and gold run out late-game. Wood doesn’t, typically, and if
wood doesn’t, neither does food. But it may on some map type: in a map comprised of
very small islands, there may not be a lot of wood available, which constrains the use
of a large navy. . .

The games offer a fairly large number of civilizations. They are, however, symmetric
RTS, since the all civilisations share the same units and technologies, with only minor
variations (and one or two unique units in AoE II). This is opposed to asymmetric RTS
like Starcraft, with fewer factions, each with entirely different building, units, resources,
and strategies. (bz)

In our small project, we can pretty much ignore the “multiple civilisations” aspect. One
is enough, provided it has access to enough unit archetypes — e.g. infantry, cavalry,

In 0 A.D., from what I have seen, military units are also builders — and only they can build military
buildings. I’d prefer sticking with AoE villagers in your game.

(bz)AoE IV is not released yet, but it seems to be designed as an asymmetric RTS, to a large extent. Which I
approve, because having the same “armored guys with two handed swords” as infantry in European, Arabic,
and Mesoamerican civilizations was a bit jarring. It was not a problem in the original release, with only
European civilisations, but twenty years and twenty-two new civilisations later, it looks a bit weird (even if
the Unique Units help in that regard).

archery, siege, priests/monks (ca), perhaps a navy — to enable different strategies. At
least two of those would be nice.

The most important technology available to a player is “going up an age”. AoE I for
instance has the Stone Age (starting age), Tool Age, Bronze Age, and Iron Age. Moving
up the ages is expensive, but essential, as in unlocks a large number of buildings, units,
and technologies, as well as upgrading existing buildings and units.

You may include such a mechanic if you have time, but it is not absolutely essential.
This is, in the end, an exercise in Python programming, not in game design. Keep
things relatively simple, at least at first. If you can make the game work with one age
and two military unit types, you can also make it work with four ages and five types:
the technical challenge is essentially the same. Only take the time to refine the “game”
aspect once the technical ones are solid.

79 Expected features

Features marked as A or E are required of FISA or FISE, respectively. Features marked
as a or e are partly required, or optional but recommended.

The text may offer more nuance on what should be implemented and suggest simple
approaches to satisfy the requirement without too much pain, or more advanced
approaches for those who want to show off their skills.

Both simple, conservative choices, implemented very competently, and more ambitious
ones, even not fully realised in the implementation — but realised enough to showcase
their potential — can result in excellent marks. Choose tactically.

Any feature not marked as required is entirely optional.

(1) AE: Done in Python 3.

In case there was any doubt, this is a Python project. . .

You may need to use some older version of Python (3.7, 3.8,. . . ) for compatibility
with some libraries or dependencies that may not be updated very frequently, like
PyGame.

(2) AE: GUI framework of your choice

The game should of course have a GUI.

You may choose

(ca)They can convert enemy units. . .
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⋄ TkInter,

⋄ PySimpleGUI (with TkInter backend only; simpler to begin with)

⋄ PyQt5 or PyQt6 (more powerful, more complex, external requirements (cb))

⋄ PyGame, https://www.pygame.org

⋄ wxPython, https://www.wxpython.org

Bindings to wxWidgets, similar to PyQt.

⋄ Kivy, https://kivy.org

⋄ the Arcade Library https://api.arcade.academy

https://learn.arcade.academy

⋄ PursuedPyBear, https://ppb.dev

This one seems very fresh out of the oven, and not documented.

⋄ or anything that works with Python, really, I’m not picky.

Test the different possibilities, and choose wisely.

Based on previous experiences, and the nature of this project — especially the RTS
aspect — I think PyGame is the safest choice for this project, in that most groups
in previous years have used it and done satisfactory things.

PursuedPyBear seems too fresh, and I have never had any group try Kivy or the
Arcade — but then again, I have never explicitly proposed them before.

PyGame is far from perfect, so I’m exceedingly interested in hearing from you if
you make something else work.

I haven’t seen wxWidgets used in projects, but it ought to be nearly as mature and
usable as wxWidgets.

(3) AE: Graphical representation of the map.

The map must be represented graphically.

The view may be top-down, using sprites (by far the simplest option), isometric
2.5D (à la Baldur’s Gate; an ambitious choice, though not too complex compared
to 2D if done well), or full 3D (do not even attempt this unless you already have
considerable experience with a suitable framework. Tests have been done last year
with Ursina and Panda3D, but neither has been found suitable for use in this
project).

(cb)https://pypi.org/project/PyQt5/; cf. http://doc.qt.io/qt-5/examples-graphicsview.html
pour de la documentation C++. C’est à adapter à la version Python, car PyQt5 est juste une bibliothèque de
liens (bindings) vers Qt5.

(4) AE: Save and load.

Those games can be long. You must be able to save the game state whenever you
want, and load it without loss of information. Note that,if you have an AI, that
includes what the AI knows about the world, and more generally its state of mind
(planning an attack, game plan, etc).

This will be extremely important for the defense, as you will not have time to play
several full games during the demonstration. Instead you will load saved games,
taken at interesting points of various games, to show off big battles, AI gameplan,
etc.

(5) ae: AoEI-adjacent “antique” theme and units.

I would appreciate it if you would stay with roughly the same theme an units as
AoE I. This is not to stifle your creativity, but to facilitate quick understanding of
what you are doing.

If all groups use the same kind of units, buildings, and mechanics, with somewhat
the same balance, it becomes easier to understand at a glance what’s going on, and
how two groups differ. This is especially crucial during the defense.

You have a very short time in which to show off your work — if much of that time
is spent explaining that your drones need to mine unobtainium to build starships,
which are weak to laser attacks but strong against Psykers, . . . in the end that is
time that is not spent showcasing how smart your AI is and how fast the game
runs, which is probably not to your advantage.

Instead, if everybody uses the same basic concepts and vocabulary, some level
of background knowledge can be assumed, we can quickly concentrate on the
aspects that truly differentiate the groups.

That being said, if you absolutely yearn to make a space-themed game (cc), or
a fantasy-themed game, or a horror-themed game (please, not that one), by all
means do so, but be aware that you will need to communicate your mechanics
extremely efficiently, and convince the jury that they are more or less equivalent
what is expected.

Either way, sprites should be as recognisable as possible. If you can find AoE I or
II’s own sprites somewhere, whether from the original or “Definitive” editions ,
that’s perfect.

You can and should also dip into the wiki, linked above, for ideas as to units and
technologies.

(cc)Star Wars Galactic Battleground (2001) is precisely AoE II with a Star Wars skin.
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Of course, the point is not to re-implement everything. It is to avoid having to
reinvent game balance from scratch. Pick a few units, lift the health, attack values,
cost, creation time etc from the wiki, and start from there. Tweak only when you
need to. Again, this is not a game design course; the game is a pretext for coding.

You can go nuts with game design when your engine is solid; spending too much
time pondering how many hit points and armor your hoplites should do is not a
tactical investment of your energy.

Again, if that tickles your fancy to be original and go with different units, I’ll allow
you to do that. I just don’t recommend it.

(6) aE: Human vs. AI match.

This is a game of war. What is war without an opponent? Since multiplayer is an
entirely different kettle of fish (cd), you will need to implement some kind of AI.

For FISE, it is expected — or at least hoped — that an AI can take control of a
civilisation, exactly as the player does — preferably without cheating, but if you
must, you can give it extra resource or a discount. . . If you do, however, you must
include an option or difficulty setting to disable that.

Regardless, it must have a recognisable game plan: gathering resources, building
stuff, researching technologies, training units, mounting assaults.

To understand what it means to have a game plan, you can learn from good AoE
players: there is a general consensus on what you should do at the beginning
of a game to ensure a good position — a concept similar to overtures in Chess.
What should the villagers gather in priority, what should they build and when, to
optimise the early economy. For instance, this video covers the beginning of the
game for AoE II. You can try and do something similar for your own game, and
implement it as an AI strategy.

For FISA — or for FISE who are in over their heads — you should probably keep
things simpler, and have an opponent that plays by different rules. You could have
savages or raiders or demons or what have you spawn from special buildings —
let us call them Hell Gates — at an increasing rate, and from time to time they
all converge upon your buildings and kill everything in sight, then, for a change,
burn everything in sight. No resource management needed, nor any particular
intelligence beyond untrammelled aggression — and maybe the good sense not to
leave to Gates undefended.

(cd)It is quite possible that you will be called upon to add multiplayer functionality to the game during the
next semester, as part of the Network Project. I haven’t talked to Mr. Toinard about this yet.

The aim of the game becomes to find and destroy the Gates before being over-
whelmed or running out of resources.

In what follows, we shall speak of “AI” only if the computer emulates a human
player, playing by the same rules (+/- mild cheats).

(7) ae: Real-Time Strategy.

FISE:

The real time aspect can be tricky to implement correctly. You will probably need
a good architecture and some form of concurrency (multithreading, multiprocess-
ing,. . . Sec. 31[p119]: “Parallelism and concurrency”) which you will have to figure
out on your own, since that is mostly taught during the second semester.

You can also try doing everything in one thread, but it has its own difficulties: if
the main game loop is not fast enough, you will have terrible input lag, dropped
inputs, and more.

That is not to say it is impossible for you to get an RTS working, only that it seems
ambitious. Libraries like PyGames usually offer examples and propose standard
ways of handling inputs, event queues etc. By starting from pertinent examples,
you should be able to get things working.

However, let us note that it is in fact the first time I propose a Python project
that is not intrinsically turn-based. That makes you pioneers, boldly going where
no third-year, first semester STI student has gone before. That, or guinea pigs.
Depending how you look at it.

If you fancy yourself neither a pioneer nor a lab rat, you may want to adapt the
game to be somewhat turn-based.

FISA:

Keep the game very simple and lean so that any architecture can be made to work.
For instance, if animating your sprites becomes a problem, then just don’t animate
them.

Or, you can go with a barebones turn-based adaptation of the game, played with
much fewer units on a much smaller map; a bit like a chess game.

(8) Variable Speed — if RTS

Saved games help you show off specific game configurations, but to really get an
idea of how your AI works, it is best to see a game in full. But we don’t have time
for that in a defense.
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Thus, it would be helpful if the speed of the game could be changed — specifically
increased — so that we can see the AI build its town, mount its assaults, and react
to your own, all at a reasonable pace.

Of course, how fast the game can run when at full speed will depend upon both
your machine and the quality of your implementation. Thus, for the defense, you
can also prepare time lapse videos showing the relevant points.

Note that this can be complex to get right, as it divorces real time from game time.
If you want that feature, you should plan for it from the start; adding it post facto is
liable to break things badly.

(9) ae: Procedural map generation.

AoE generates its maps randomly, following a set of constraints regarding starting
positions, resource allocations, terrain and elevation, etc.

You should probably do something like that. That said, it is not essential, so you
should start by creating a single map, and getting things working on it first.

Map generation is not essential, but is a nice addition and should be very simple to
implement and integrate, while adding spice to the game — especially combined
with fog of war. Thus it is recommended, if you have time.

(10) e: Fog of War

AoE uses a fog of war: the map is revealed by your units, and enemy units are
only visible while in the line of sight of one of your own.

This is nice to have, but not essential to the game.

Note that if it is implemented, then the AI must obey the same rules as the player,
and not gain any information from what happens outside its visibility. This is not
trivial to implement correctly, and even less so to assess in a defense — how does
one differentiate between AI knowledge and guesses? . . . especially while the AI is
itself hidden under our fog of war.

(11) Replay games

Likewise, beyond save games, that preserve the state of the world at a given time
t, you could try saving “replays”, that save the game at every time, and enables us
to replay it like a video, but in the game engine.

Of course, the implementation would not make 100 normal saves a second. The
idea instead would be to save the commands sent by each player during the course
of the game, and resend them with exact timing.

That relies on the game engine being entirely deterministic. Not such a simple
assumption, especially combined with real time aspects. Even if perfectly im-
plemented, such recordings break at the slightest change in game logic — notice
that nearly every game offering such features announces with each update that
old replays are incompatible with the new version — AoE II and Tekken 7 are
examples of such games.

That means that if you fix a bug in, say, the AI, just before the defense, your replays
may — and likely will — break.

For those reasons, pursuing this feature is not recommended.

(12) e: More than 2 players.

The minimum that must be implemented is Human vs AI, and since we eschew
multiplayer, there is at most one human player. AoE games support up to 8 players.
You can do the same if you wish. Human vs 7 AI can be fun.

If you do so, implementing diplomacy to create factions would be relevant.

https://ageofempires.fandom.com/wiki/Diplomacy

If you do that, you will probably need to have different map sizes.

(13) e: AI vs. AI. Let them fight!

Gaming is hard work. Sometimes, you just want to watch a good war, but leading
an army is too much work.

If you have a working AI, there should be nothing preventing you from creating a
game with only AIs, and watch them duke it out.

(14) Civilisation variety.

AoE games implement a great many civilisations, each with different technology
trees, bonuses, and unique units (in AoE II).

As discussed in the overview, I do not advise emulating that. One civilisation is
quite enough, provided it is a bit versatile.

(15) ae: Ages.

“Aging up” is the most important technology in the AoE games. Gameplans
revolve around the trade off of aging up now for a power boost, at the cost of
resources and time, or using the resources to mount a raid against your opponent,
in the hope of ruining their economy and delaying their own capability to age up.

Having something like that would be nice, but is not absolutely essential for the
project.
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If you do implement ages, just go with two of them rather than four or more. At
least that is my advice unless you already have an extremely solid engine.

(16) aE: Starting resources.

You should be able to start a game with varying quantities of resources, not just
the default. Ideal, you could even tweak this per player, making this a very cheap,
but very effective way to control game difficulty.

Letting the AI start with lots of resources can be a good way to showcase its game
plan.

(17) AE: Cheats and AI commands.

AoE has many fun cheats. Cheat codes in games are not just there for the benefit
of players, however. They are useful to test the game. Here are the cheat codes
that you should implement (lifted directly from AoE I and II)

⋄ NINJALUI: get 10000 of each resource.

⋄ BIGDADDY: spawn very powerful unit at town center.

⋄ STEROIDS: training, building, research, foraging, farming, and mining times
are instantaneous. . . for all players, not just you.

⋄ REVEAL MAP: Reveal the entire map, exactly as though you had explored
it, which means that enemy units are not revealed, while trees, and stone and
gold mines are. Enemy buildings are not revealed. Issuing the command
again toggles effect.

⋄ NO FOG: Remove the fog of war. Any explored part of the is therefore fully
visible as though under the line of sight of your units. Issuing the command
again toggles effect.

Additionally, you should have a few commands to influence the AI, force it to
launch an immediate attack, check its state of mind, put your civilisation on
autopilot, or simply exchange the civilisations you and the enemy AI control.

The idea is that you should have commands that enable you to debug and show
off your AI. What commands those are will depend on your AI.

Part XI

Archived Python Project 2020–2021:
Dungeons & Dunces

80 Overview

The aim is to create a Computer Role-Playing Game (cRPG) loosely based on an
extremely simplified version of the D&D 3.5 or Pathfinder first edition ruleset, in the
style of games such as Baldur’s Gate, Neverwinter Nights, Pathfinder: Kingmaker, etc.

The following links offer exhaustive references to the rulesets in question.

https://www.d20srd.org/index.htm

https://www.d20pfsrd.com/

The Pathfinder system is preferred where these differ, but the DnD page is linked as
well because it is a bit simpler to read and navigate in my opinion. They are very
similar in any case.

If you are completely unfamiliar with those systems, or with RPGs in general, take
a few minutes to read up on the general principles, or better yet talk with a fellow
student with experience in such games before reading on.

The focus will be on a dungeons crawling for a small (3 max), low level (level ≈ 1-5)
party, with classes covering at least the three archetypes: Fighter, Mage, Rogue.

81 Features, Required and Optional

Any feature not marked as optional is required.

(1) Done in Python 3.

In case there was any doubt, this is a Python project. . .

(2) GUI framework of your choice

The game should of course have a GUI.
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TkInter (simpler to begin with) and PyQt5 (more powerful, more complex, external
requirements (ce)) are two possibilities for building it. I hear good things about
PyGame as well.

(3) Graphical representation of the map.

The maps must be represented graphically.

The view may be top-down, using sprites (by far the simplest option), isometric
2.5D (à la Baldur’s Gate; an ambitious choice, though not too complex compared
to 2D if done well), or full 3D (do not even attempt this unless you already have
considerable experience with a suitable framework).

(4) Grid or no grid, that is the question.

The game will need to solve whether two units are in contact, how much space
they occupy, whether they are in range of some effect or ability, and how they
move.

To do so, you can use a grid, which can traditionally be square or hexagonal, or
simply compute the Euclidean distance within a floating point Cartesian coordinate
system.

The latter is recommended. Grids are only used in tabletop games because gamers
are not keen on computing squares and square roots by hand multiple times every
round. With the help of a computer, this is no longer a problem.

(5) Level / Campaign editor.

The user must be able to build his own dungeons / maps, possibly involving
multiple levels and connectivity between them, and them play them.

It is not required that the user can implement complex logic in the campaign,
e.g. set triggers, handle quests etc.

It is required that levels can be built, connected to one another, and populated
with enemies, NPCs, traps, and treasure, fixed or random to some extent. In that
case, the campaign is simply a dungeon crawl.

(6) Save and load

Of course, the player must be able to save his game – at least outside of combat –
and load the game later.

(7) Random level /maze generation. (Optional but strongly recommended)

(ce)https://pypi.org/project/PyQt5/; cf. http://doc.qt.io/qt-5/examples-graphicsview.html
pour de la documentation C++. C’est à adapter à la version Python, car PyQt5 est juste une bibliothèque de
liens (bindings) vers Qt5.

One approach can be to build a fairly impressive, static campaign to show off the
game engine’s capabilities.

Another would be to generate levels randomly, Roguelike-style.

The two approaches can be mixed as well; for instance, a campaign could well be
static, but include, at some point, a maze that is procedurally-generated, to catch
returning players off-guard.

(8) Exploration and line of sight.

Maps can be pre-explored, under fog of war, or completely unexplored when the
party first enters it. The unexplored map is revealed as the party moves, taking
into account the lines of sight of all.

Mobile units are only visible if a member of the party can see them.

Of course, you need to provide a map /minimap of the current level to the player,
respecting fog of war rules.

For bonus points, allow the player to consult the maps of previously visited levels
the party is not currently in, and to put their own notes and points of interest on
the map.

(9) Last known position (Optional).

If the party loses sight of a mobile unit, there may be an option to display a “last
known position” marker for that unit on the map.

If you go for “advanced AI”, you will need at least enemy units to remember
where they last saw the party, so as to mount ambushes etc.

Note that, for all intents and purposes, the player party is treated as a single unit
for the purpose of line of sight, knowledge of the map and enemy positions, etc.
That is to say, for instance, whatever the Fighter knows or sees, the Mage is aware
of as well.

(10) Talking NPCs and merchants. The game will be focused on dungeon-crawling,
but it must be possible to talk to and trade with some NPCs.

(11) Turn-based or RTWP.

It is strongly recommended to make the game Turn-Based.

Implement at least standard and move actions; preferably full-round attacks as
well, if your game supports classes or levels with more than one attack per round.

If you are feeling adventurous, you can attempt to go with Real Time With Pause
(RTWP), but it can get more messy.
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(12) Area of effect imprint.

Some spells and abilities, such as Fireball, affect a wide area; the game should let
you see the "imprint" of the spell before you cast it, so you can position it exactly.

(13) Single player + AI.

The game must support a single player mode, facing off against AI-controlled
enemies.

Those enemies must be able to detect and engage the player party, making use of
their basic attacks and abilities, even if they may lack good judgment in applying
them, and display no sense of self-preservation.

If one creature detects the player, it may be acceptable that all of them immediately
shares that knowledge.

(Sadly this describes the AI of most cRPGs. . . )

(14) Advanced AI (Optional).

It would be great if the AI could be more sophisticated.

In that case, each monster should have its own knowledge of the party and other
allied monsters, and be able to run away from the party to alert its friends –
possibly bringing an army back on its heels! This necessitates modeling at least
basic communication between enemies.

It should use discernment in avoiding dangerous Areas of Effect, whether the
party’s or his own.

This intelligence can be conditional on the creature having a high enough INT
stat; some creatures may be designated as leader of a group of its lesser kin or
subordinates, and coordinate their actions so long as it as able to communicate
with them, making it a priority target.

Different creatures may have different level of aggressiveness and courage or
morale, leading them to either fight to the death of flee as the slightest hint they
are outmatched. This of course may be influenced by the presence of a designated
leader or of powerful paragons of their race on the battlefield.

(15) Classes.

Of course the point is not to implement 50 classes or esoteric D&D mechanics.

Just pick the main features of Fighter or Barbarian, Sorcerer or Wizard (henceforth
called "Mage), and Rogue.

You will implement all attributes (STR, DEX, CON, INT, WIS, CHA), and their
basic effects on attack and damage rolls, armor class, etc. Use your common
sense and do not try to implement every feature in the rule set. Start with those
features which are most important for combat: Hit Points, armor, attack rolls,
saves, etcetera.

Each class should support a few levels with one or two feats, and two or three
spells for the mage. Of course XP gain must be implemented. XP may be granted
by killing monsters or by reaching deeper levels of the dungeon.

Rogues should implement Sneak Attack.

Mages should preferably be modelled after Sorcerer rather than Wizard due
to simpler casting mechanics and higher usefulness in dungeon-crawls. Their
spell-casting progression can be copied from Wizard, on odd levels instead of
even ones, so as to boost their usefulness at low level. (Spellcasters are weak at
low levels and shine at higher levels; since this game will stay at low level, Mages
need all the help they can get). Cantrips shall follow the pathfinder model and be
at-will.

If you introduce diseases, poisons, curses, or other mechanics, implementing
Cleric as well is a must.

Enemies may have custom classes, or they may simply use the same ones as player
characters, just with different attributes and bonuses.

(16) Multiclassing. (Optional)

You may allow multiclassing; that it to say, to take levels in more than one class,
for instance, the first level as Rogue, and the second as Fighter, the third as Rogue
again, etc.

Note that this may complicate the character sheet, so if you choose to implement
this, plan ahead rather than trying to add the feature after the fact.

(17) Races. (Very optional) You don’t need to implement multiple races. Humans will
suffice. But of course you can provide other races if you want, and there is nothing
more urgent to do.

(18) Skills.

Only a small subset of available skills need be implemented. Among them are
Stealth, Disable Device, and Perception (as in Pathfinder), essential for the Rogue
class.

Everything else is very optional. If you implement poisons, you will need Heal as
well.
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Use Magic Device is not necessary; assume the Mage and maybe the Rogue can
use the wands they find.

Of course, the full complexity of each implemented skill need not be present; the
basics will suffice.

Skill points per levels will need to be adjusted depending on how many skills you
implement.

(19) Resting mechanics.

Of course, resting mechanics must allow characters to regain HP and spells. To
simplify, have characters regain everything in a single rest.

There must be a risk of being attacked during the rest if enemies are nearby.
This can be handled as new enemies spawning out of nowhere or as enemies
making their way from other parts of the level to attack you, the latter being more
advanced.

(20) Items.

There should be a few items available in the level or and/or from vendors: swords,
and other weapons, armors, robes, wands, potions (in particular healing potions),
rings, amulets, etc.

Just one or two different items for each category will suffice.

(21) Customisable hotbars and keyboard shortcuts

The GUI must provide hotbars where each character may organise their abilities,
spells, etc.

The player must be able to customise the keyboard shortcuts used to access those
abilities.

(22) Combat logs.

The game must provide extensive combat logs. For instance every attack must
show what attack score was rolled against what AC, and it must be possible to
find out where the attack and AC scores come from. That is to say, if I see my
Fighter is rolling against an AC of 19, I must be able to find out how much of this
AC comes from a Dexterity bonus, how much from an amulet, what kind of bonus
it is each time, etc.

This will be crucial to debugging the game and checking that abilities and items
work as intended.

(23) Detailed character sheet.

Likewise, the player’s character sheets must detail the computations involved in
the character’s AC, Attack bonus, saves etc.

(24) Inventory management.

The inventory management may be based solely on weight, or on weight and
grid geometry, with larger objects occupying more slots (in the style of Diablo or
Neverwinter Nights).

(25) Multiplayer (Optional)

If you are *really* in need of a challenge, you can implement a multiplayer mode
so that your friends can connect to your game and take control of some characters
in the party from their own machines.

82 For apprentices

(1) There is much less time dedicated to that project: 5 weeks in total. (end: at the end
of december).

(2) The level editor need not be fully functional. Do whatever you need so that you
can use it to create a few levels, but it need not be usable by the end user.

(3) The DnD aspect can be toned down considerable, or even done away with entirely,
as you will not (edit a year later: I never finished that sentence and somehow nobody
noticed)
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Part XII

Archived Project 2018–2019: Automata
GUI

83 Vue d’ensemble

Le but du projet est de réaliser une application – avec interface graphique – pour la
construction de graphes orientés et de diagrammes sagittaux (cf) d’automates d’états finis,
avec des facilités automatiques et semi-automatiques pour produire des diagrammes
naturels, plaisants, et lisibles, exportés au format LATEX/TikZ. Voyez les figures émaillant
ce document pour quelques exemples. (cg)

Cette application a pour vocation de venir en aide à la minorité peu considérée des
professeurs de théorie des langages, qui ont très envie d’illustrer leurs diapositives
et polycopiés avec de nombreux et beaux diagrammes, mais qui n’ont pas le luxe
de passer à chaque fois une heure à se reconnecter avec leur artiste intérieur afin de
d’imaginer comment l’automate devrait être disposé pour être “joli”, et encore une
heure à se battre avec LATEX et TikZ pour coder une version approximative de cette
vision.

Ce document donne des pistes quant à ce qui est attendu, mais ne doit pas être abordé
comme une spécification exhaustive. Posez des questions !

Ceci est à réaliser en Python 3; le choix est ouvert pour la partie graphique, PyQt5 étant
le choix par défaut (ch).

Un prototype, réalisé dans le cadre du projet d’application en fin d’année par vos
prédécesseurs, est mis à votre disposition pour démarrer — mais rien ne vous empêche
de recommencer à zéro. C’est même fortement recommandé.

(cf)i.e. diagrammes avec des ronds et des flèches. Même racine latine, sagitta, “flêche”, que le signe
Sagittaire... ici dans un contexte plus scientifique.

(cg)Sources: mes polys, http://www.texample.net/tikz/examples/feature/

automata-and-petri-nets/, https://www3.nd.edu/~kogge/courses/cse30151-sp18/Public/

Assignments/tikz_tutorial.pdf, https://tex.stackexchange.com/questions/148158/

make-a-tikz-automata-edge-pass-outside-the-automata,. . .
(ch)cf. http://doc.qt.io/qt-5/examples-graphicsview.html pour de la documentation C++. C’est à

adapter à la version Python, car PyQt5 est juste une bibliothèque de liens (bindings) vers Qt5.

84 Qu’est-ce qu’un automate ?

On abordera le module de théorie des langages en seconde période. Pendant la première
moitié du projet, on verra donc les automates purement comme des diagrammes, et je
ne donnerai (à l’oral) qu’une vague intuition de leur sémantique – ce qu’ils “veulent
dire”.

On aura malgré tout besoin de la définition formelle de la structure, afin d’avoir le
vocabulaire nécessaire pour communiquer.

Un automate fini non déterministe est un 5-uplet A = (Σ,Q, I, F, δ) où:

⋄ Q: ensemble fini d’états

⋄ Σ: alphabet fini

⋄ I ⊆ Q: états initiaux

⋄ F ⊆ Q: états terminaux

⋄ δ ⊆ Q× (Σ ∪ {ε})×Q: relation de transition

(p, a, q) ∈ δ
notation
≡ p

a−→ q δ(p, a) = {q | p
a−→ q}

Voici un petit diagramme sagittal d’automate, illustrant les différentes conventions de
représentation:

1

2 3

b

ε

a
a, c

a

L’alphabet est l’ensemble des étiquettes de transition, i.e. les lettres lues par l’automate.
Le symbole ε ne fait pas partie de Σ, il est utilisé pour une transition qui se déclenche
sans rien lire. On a

Σ = {a, b, c }

Les états sont les ronds:

Q = { 1, 2, 3 }

225

http://www.texample.net/tikz/examples/feature/automata-and-petri-nets/
http://www.texample.net/tikz/examples/feature/automata-and-petri-nets/
https://www3.nd.edu/~kogge/courses/cse30151-sp18/Public/Assignments/tikz_tutorial.pdf
https://www3.nd.edu/~kogge/courses/cse30151-sp18/Public/Assignments/tikz_tutorial.pdf
https://tex.stackexchange.com/questions/148158/make-a-tikz-automata-edge-pass-outside-the-automata
https://tex.stackexchange.com/questions/148158/make-a-tikz-automata-edge-pass-outside-the-automata
http://doc.qt.io/qt-5/examples-graphicsview.html


Les états initiaux sont indiqués par une flèche entrante déconnectée:

I = {1}

Les états finaux sont indiqués par un double cercle ou par une flèche sortante décon-
nectée:

F = { 1, 3 }

Notons qu’il n’est pas du tout classique d’utiliser ces deux conventions dans le même
automate; ou même dans le même document. L’automate ci-dessus commet donc une
faute de goût.

Restent les transitions:

δ = { (1, b, 2), (1, ε, 3), (2, a, 2), (2, a, 3), (2, c, 3) }

Faites le même exercice avec les automates suivants:

q0 q1 q2
0

1
1

0

1

q1 q2 q3

0

1

1
0

0, 1

a

c
b

a

85 Partie graphique /manuelle

Difficulté modérée; progression incrémentale; programmation objet; algorithmique simple;
travail de documentation bibliothèques Python, LATEX, TikZ. Groupe de 3 recommandé.

Réaliser un diagramme sagittal d’automate est largement une activité de dessin, régie
en partie par des considérations purement esthétiques et en partie par des conventions
et habitudes liées au domaine scientifique et favorisant la lisibilité des diagrammes.

Le point de départ de l’application est donc in fine un logiciel de dessin vectoriel assez
ordinaire, grandement simplifié par le faible nombre de figures de base dont on a
besoin: flèches, droites ou incurvées, cercles simples et doubles, étiquettes en langage
mathématique (entrée en LATEX), et c’est tout.

Le logiciel utilisera le vocabulaire “automates” et non le vocabulaire “dessin”, par
exemple “état” et non “cercle”. Si un jour il nous vient l’envie d’avoir des états
rectangulaires, cela doit être possible...

Placer des états et définir des transitions doit être aussi simple et rapide que possible
pour l’utilisateur .

Notons que, bien que les noms des états soient arbitraires, on voudra parfois les nommer
par des formules. Par exemple, l’automate suivant est obtenu via un algorithme de
déterminisation, et il est essentiel de pouvoir faire apparaître les sous-ensembles dans
les états afin d’illustrer la démarche:

∅ {1} {2} {1, 2}

{3} {1, 3} {2, 3} {1, 2, 3}

a, b
a b

ab
a, b

b

a
a

b

a

b

a

b

De même, dans l’automate suivant, ce sont les transitions qui portent des étiquettes un
peu “compliquées”, et pas seulement une seule lettre — pour ceux que ça intéresse il

226



s’agit ici en fait d’une machine de Turing:

qa

qb

qd

qc

qe

0,1,L

1,1,R

1,1,L

0,1,L

0,1,L

1,0,R1,1,R

0,1,R

1,0,R

Il n’est pas totalement nécessaire que les formules mathématiques soient rendues cor-
rectement dans l’interface graphique – le code LATEX peut être conservé tel-quel jusqu’à
l’export vers LATEX/TikZ. Ce serait toutefois appréciable si les formules pouvaient être
rendues directement dans l’interface. Si c’est le cas, il faut toutefois que l’utilisateur
puisse désactiver cette fonctionnalité, car le rendu dépend du contexte d’évaluation
(LATEX est essentiellement un langage de programmation) et le code de l’utilisateur peut
donc ne prendre sens qu’au sein de son document.

Ceci peut poser certains problèmes au moment d’évaluer la taille des états, par exemple.
A vous de proposer des solutions pour gérer ces cas de la manière la plus automatique
et flexible possible.

Ces briques de base, ronds et flèches, doivent pouvoir être manipulées à la fois finement
et semi-automatiquement.

Par “semi-automatiquement”, j’entends par exemple l’alignement sur une grille – ou
plusieurs grilles – et la disposition de tout ou partie des états selon certains schémas;
par exemple, voici un automate contenant plusieurs sous-figure régulières: deux en

disposition linéaire, et deux en cercles (ou pentagones en l’occurrence).

s 2 3 4 15 16 17 18 19 t
5

6

7

8

9 10

11

12

13

14

L’interface doit permettre à l’utilisateur de réaliser semi-automatiquement ce type
de figure. Spécifiquement l’utilisateur doit être capable de sélectionner des groupes
de noeuds et de les arranger selon des figures géométriques régulières telles que des
lignes, des cercles, et cetera.

Les arrangements faisant partie d’une telle figure géométrique – que l’on appellera
un groupe – doivent pouvoir être sélectionnés et déplacés collectivement. On doit
aussi pouvoir régler les paramètres de chacun; par exemple le diamètre d’un groupe
déjà défini doit pouvoir être modifié par la suite. De plus, plusieurs groupes doivent
aisément pouvoir être uniformisés – par exemple, leur donner le même diamètre, placer
leur centre de gravité à des endroits alignés horizontalement ou verticalement, etc.

Les éléments doivent aussi pouvoir être manipulés finement; par exemple, on a finement
déformé la transition de 3 à 10 pour éviter le premier pentagone; dans l’automate
suivant, on doit pouvoir déformer la transition de q1/0 à q ′

3/1 de manière à éviter le
croisement, obtenant ainsi la nouvelle transition en rouge.

q0/ϵ

q ′
0/1

q1/0

q2/1

q3/0 q ′
3/1

a

b

a

b

a

b

a

b

a

b

a

b
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86 Import et export

L’application devra pouvoir sauvegarder et restaurer ses diagrammes dans un format au
moins partiellement lisible par l’être humain et proche du formalismeA = (Σ,Q, I, F, δ)

– avec bien sur quelques informations supplémentaire d’ordre cosmétique, telles que
couleurs, courbure, localisation (x, y), etc.

Au delà de cela, il est absolument essentiel qu’elle soit capable d’exporter au format
TikZ. La qualité de l’export TikZ est un facteur important, car l’utilisateur aura peut-être
envie de retoucher le code généré.

Comme exemple de code TikZ, l’automate

1

2 3

b

ε

a
a, c

a

est codé par

\begin{tikzpicture}[fst]

\node[state, initial above, accepting] (1) {$1$};

\node[state, below left of=1] (2) {$2$};

\node[state, below right of=1, accepting right] (3) {$3$};

\draw

(1) edge[above] node{$b$} (2)

(1) edge[below, bend right, left=0.3] node{$\eps$} (3)

(2) edge[loop left] node{$a$} (2)

(2) edge[below] node{$a, c$} (3)

(3) edge[above, bend right, right=0.3] node{$a$} (1);

\end{tikzpicture}

qui est assez lisible et descriptif. Le paramêtre fst (pour Finite-State Transducer) est
un style personnalisé défini dans ce document.

Il y a bien d’autres façons de coder cette figure, telle qu’un matrice, ou des positions
(x, y) dans le plan explicites. Une grande flexibilité au niveau de la génération du code
final est attendue.

À vous de vous documenter sur LATEX et TikZ pour voir les différentes possibilités
offertes par ces langages. L’application doit en tirer parti autant que faire se peut, afin

que le diagramme final puisse être ajusté le plus finement possible avant l’export, et
minimiser les besoins en retouches au niveau du code généré.

Au delà de la figure, on doit aussi pouvoir exporter du code LATEX pour la définition
formelle de l’automate sous forme A = (Σ,Q, I, F, δ). Les transitions doivent pouvoir
être générées sous forme d’ensemble, comme plus haut, ou sous forme de tableau de
transition.

87 Partie automatique

Difficulté élevée (pour obtenir de bons résultats); algorithmique poussée; recherche documentaire;
réflexion poussée. Groupe de 3 recommandé.

Même avec une bonne interface graphique, tous ces choix et ajustements esthétiques
prennent énormément de temps. Du point de vue de l’utilisateur final, la partie “dessin
manuel” de l’application est donc à réserver pour les figures importantes, qui doivent
être réalisées avec une qualité parfaite.

Dans la plupart des cas, l’utilisateur veut juste définir son automate “en vrac” et en
quelques clics, appuyer sur un bouton et obtenir instantanément une (ou plusieurs)
proposition de diagramme, calculées programmatiquement, qui soient d’une qualité
passable. Ceci implique de minimiser les croisements (pas toujours possible à éviter
entièrement – on verra au second semestre la notion de graphe planaire, et le fait que
tous les graphes ne sont pas planaires), de disposer les états à intervales réguliers de
façon à assurer un “niveau de gris” homogène dans la figure, etc.

Il existe de nombreuses techniques spécifiques au dessin automatique de graphes,
ainsi que des métaheuristiques générales potentiellement applicables, telles que les
algorithmes révolutionnaires / génétiques, le recuit simulé, et les colonies de fourmis,
pour n’en citer que quelques-unes.

Mettre en oeuvre ces méthodes nécessitera un gros travail de recherche documentaire
et de réflexion poussée pour comprendre des concepts difficiles au niveau 3A.

À ceci s’ajoute une difficulté supplémentaire: il ne s’agit pas de n’importe-quels
graphes, mais d’automates; les conventions de dessin ne sont pas les mêmes; utiliser un
algorithme de dessin arborescent ou fractal donnerait généralement des résultats peu
appropriés, même s’ils peuvent être “jolis”. On voudra généralement partir de l’état
initial, aller plutôt de gauche à droite et de haut en bas, disposer les états sur une grille,
sauf certains cycles et autres motifs à détecter et à mettre en exergue, et ainsi de suite.

Il n’y a pas (ou peu) de littérature disponible sur le sujet spécifique “comment dessiner
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des automates”. Les dessins sont faits par les scientifiques “au feeling”, influencés par
l’habitude et le mimétisme sans que les conventions soient verbalisées.

Dans cette partie du projet, il vous appartiendra d’inférer une partie de ces conventions
à partir d’exemples, de les verbaliser, et de les programmer.

Un mode interactif, permettant à l’utilisateur de fournir certaines informations sé-
mantiques à l’application pour guider ses choix (par exemple, ce groupe d’états va
ensemble, cet état est important, etc), ou bien de choisir entre plusieurs alternatives
(algorithme évolutionnaire avec sélection (semi-)manuelle, est à considérer.

De plus, ces outils doivent pouvoir être appliqués semi-automatiquement au cours de
l’utilisation de l’interface pour faciliter la vie de l’utilisateur – par exemple, en détectant
automatiquement quand une nouvelle transition est créée si elle croise quelque-chose,
auquel cas elle sera créée courbe et non droite, ou bien en offrant des suggestions
d’agencements dans la marge, applicables en un clic, etc.

La partie du rapport consacrée à ces réflexions doit être assez détaillée.

88 Répartition des tâches

Il est conseillé de procéder par groupes de 6, par exemple en deux trinômes, un pour la
partie manuelle et l’import / export, et l’autre pour la partie automatique.

Dans ce cas, les trinômes doivent évidemment communiquer et intégrer leur code au
projet commun de façon très régulière – les tâches ne sont pas indépendantes et la
répartition ci-dessus n’est qu’une suggestion.

Il a été noté que l es deux partie sont de difficultés et de natures différentes, la partie
manuelle étant colorée “développeur” et l’autre “recherche”.

Choisissez bien la partie sur laquelle vous travaillerez en fonction de vos goûts et de
vos capacités.

La partie automatique peut potentiellement déboucher sur une très bonne solution (et
donc une note stratosphérique) en deux semaines de réflexion et 200 lignes de code,. . .
mais vous pouvez tout aussi bien passer un semestre à pondre 10 000 lignes de code
produisant une bouillie infâme et inexploitable, de valeur 0.

En revanche, la partie manuelle est difficile à rater si on travaille régulièrement, (mais
il faudra pondre beaucoup de lignes que l’on ait les bonnes idées ou pas).

Pour minimiser le risque d’avoir une mauvaise note individuelle sur la partie au-
tomatique en cas d’échec, il serait une bonne idée de contribuer un peu à l’interface

graphique. Les cas simples comme la détection de croisement sont idéaux pour cela.

Il est bon également que tout membre du groupe ait une vue d’ensemble de l’application,
même des parties écrites par les autres.
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Figure 8: De droite à gauche: remontoir, roue de couronne, rochet et son cli-
quet, barillet, diverses roues, certaines portant des aiguilles, roue d’échappement,
ancre de balancier, balancier et son ressort. Voir l’animation sur https://

scratch.mit.edu/projects/26004123/#fullscreen, et la vidéo https://www.wimp.

com/1949-how-a-watch-works/.

Part XIII

Archived Project 2017–2018: Mon(s)tres

89 Vue d’ensemble

Le but de ce projet, à réaliser en Python 3 par groupes de 4 à 6, est de réaliser un
générateur automatique de mécanismes horlogers pour montres mécaniques doté, de
plus, d’une fonction de visualisation.

La génération se fera au moyen d’algorithmes évolutionnaires, une classe de métaheuris-
tiques qui imite l’évolution biologique pour résoudre des problèmes complexes pour
lesquels une approche directe (résolution d’équations) n’est pas faisable, et où l’espace
de recherche est trop grand pour une approche par force brute. Plus spécifiquement,
on utilisera des algorithmes génétiques.

Le principe est le suivant: nous générons aléatoirement une population de montres...
ou plutôt de monstres, car un mécanisme généré aléatoirement a peu de chances d’être
utile pour savoir l’heure... Cette population est ensuite soumise à des conditions de
sélection, telles que les monstres qui sont de meilleures montres – i.e. qui sont plus

b b

a

c

Figure 9: Une alternative au balancier: l’échappement à ancre, utilisant un pendule.

utiles pour mesurer le passage du temps, ou plus efficaces – ont de meilleures chances
de se reproduire, et moins de périr. Quelques mutations peuvent aussi avoir lieu.
Après de nombreuses générations, on doit obtenir d’excellentes montres.

90 Les sous-problèmes

90.1 La modélisation des monstres

On impose une abstraction au niveau des pièces d’horlogerie: nos monstres évoluent
dans une soupe primordiale de remontoirs, roues dentées (faisant office de rochet,
couronnes, etc. On considère que toutes les roues ont entre 3 et 1000 dents, identiques
pour toutes les roues sauf l’échappement (ci)), roues d’échappement (si l’on veut la
considérer séparément, ce qui est conseillé), ancres, balanciers, ressorts (on pourra
considérer un ressort comme un ressort moteur ou un ressort de balancier), tiges
(pouvant faire office d’aiguilles ou de tiges de pendule). Le boîtier est considéré comme
une pièce toujours présente. On ignorera totalement les frottements.

Selon les ambitions de votre groupe, vous pourrez choisir d’ignorer totalement les
considérations d’espace:

90.1.1 Mode connexion libre

Chaque pièce peut se connecter à n’importe-quelle autre pièce à certains points de
connexion: par exemple, une roue dentée peut se connecter sur son axe, et sur ses

(ci)On pourra tout de même aussi considérer la roue d’échappement comme une roue dentée ordinaire
dans un premier temps, pour simplifier.
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dents. Si une roue dentée se connecte à une autre sur leurs dents, on s’attend à ce que
l’une entraîne l’autre; si elles se connectent sur leurs axes, on obtient un pignon. Rien
n’empêche une troisième roue de se connecter sur le même axe.

Une tige peut se connecter aux deux bouts; par exemple, une tige connectée au boîtier
à un bout et à n’importe-quel autre objet, par exemple une roue, à l’autre bout, forme
un pendule. Une tige connectée à un axe de roue dentée d’un côté, et libre de l’autre,
fait office d’aiguille. En revanche, connecter une tige aux dents d’une roue stoppe le
mécanisme.

Une ancre peut se connecter aux dents (à une roue d’échappement), et sur son axe, par
exemple à un balancier ou à une tige.

Un ressort spirale peut se connecter en son centre et à son extrémité; par exemple, un
ressort connecté à deux roues dentées coaxiales, l’une par le centre, l’autre par les dents
(on imagine que le ressort se connecte sous les dents), forme un début de moteur.

Un remontoir peut se connecter sur l’axe ou sur les dents d’une roue, avec les mêmes
effets.

A vous de définir le reste des règles de connexion entre les pièces, et de prévoir leurs
effets.

90.1.2 Mode 2D1
2

:

Le mode précédent ignore un certain nombre de problèmes. Il n’est en réalité pas
immédiat de connecter n’importe quelle pièce à n’importe quelle autre. Par exemple,
les roues dentées ne sont pas de taille arbitraire: comme les dents doivent être
compatibles pour les roues connectées entre elles, le nombre de dents est proportionnel
à la circonférence, et il n’est donc pas possible d’en varier la taille arbitrairement.
Pour connecter deux roues distantes entre elles, on doit souvent avoir recours à des
pignons fous. Le mode précédent, ignorant de tous ces aspects, va donc résulter en
des constructions dignes d’Escher, impossibles à mettre en oeuvre sans rajouter des
composants pour assurer les liaisons.

En mode 2D1
2

, les pièces posséderont des dimensions largeur/hauteur, et on les placera
sur un plan; on aura également besoin d’une dimension de profondeur, discrète. Par
exemple, une roue avec pignon occupe deux plans superposés: un pour la roue,
et un pour le pignon. Un moteur occupe au moins trois étages, un pour chaque
roue et un pour le ressort. Les connexions se feront lorsque les pièce sont situées
approximativement au bon endroit pour se toucher.

90.1.3 Que choisir ?

Le premier mode sera a priori plus aisé à mettre en œuvre du point de vue des
algorithmes évolutionnaires – il y moins de possibilités – mais obtenir des visualisations
intéressantes sera nettement plus difficile.

90.2 Mutation, sélection, reproduction

Pour utiliser des algorithmes génétiques, il ne suffit pas de savoir comment représenter
les monstres eux-mêmes (le phénotype), mais il faut aussi décider d’un codage génétique
de cette représentation: le génotype d’un monstre. C’est ce génotype qui est l’objet des
croisements et mutations qui donnent son pouvoir à la méthode.

La choix du génotype vous est laissé. Pour des connections libres, une simple matrice
d’adjacence peut faire l’affaire. Dans tous les cas, on peut aussi avoir une représentation
en chaîne binaire, éventuellement découpée en chromosomes – c’est la méthode
classique.

Il faudra ensuite définir comment fonctionnent les accouplements (enjambements en
un point, en deux, uniformes, semi-uniformes ?), les mutations, et la sélection (par
rang, proportionnelle,... taille de la population, etc).

Il est très fortement conseillé d’implémenter vos propre algorithmes plutôt que d’utiliser
une bibliothèque toute faite. Tous ces choix de modélisation devront être faits quoi
qu’il arrive, et vous devrez savoir les argumenter dans tous les cas.

Il est essentiel que le phénotype puisse être calculé assez rapidement à partir du
génotype, car il faut bien l’évaluer (section suivante), et ce de très nombreuses fois.
Il s’agit là d’une étape de calcul qui peut gagner énormément à être parallélisée
(sur machine multi-processeur; faire ça sur de multiples machines est hors cadre ce
semestre).

90.3 La mesure d’un monstre

La survie d’un monstre dépend de son utilité en tant qu’instrument de mesure du
temps. Il s’agit de simuler un environnement hostile aux monstres qui ne sont pas
ponctuels; c’est ici que nous allons injecter quelques connaissances d’horlogerie et nos
conceptions subjectives de ce qui fait une bonne montre. On doit écrire une fonction –
utilité, ou fitness – attribuant un score à chaque monstre, qu’on cherche à maximiser.

Il est important que ce score soit assez fin pour détecter de petites améliorations.

On supposera toujours la présence d’un boîtier, mais un boîtier seul ne sert strictement
à rien.
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Une roue dentée, connectée au boîtier sur son axe, est un peu meilleure. On peut lui
donner une impulsion et attendre qu’elle s’arrête pour mesurer un intervalle de temps.
C’est pénible mais très légèrement mieux que rien.

Un ressort tout seul peut jouer un rôle similaire; on attend qu’il finisse de vibrer.

Un pendule est nettement mieux: on peut compter les secondes tranquillement, pendant
un temps raisonnable.

Un moteur avec un système d’échappement est nettement mieux qu’un pendule, car il
va durer beaucoup plus longtemps (durée à calculer). Il est aussi moins encombrant, et
peut se déplacer.

Mais tout ça est limité, car il faut garder l’œil sur le dispositif, seconde après seconde, et
c’est peu lisible. Si une aiguille tourne avec, c’est mieux. Si plusieurs aiguilles tournent
à des rythmes différents, c’est mieux. Si leurs rythmes se rapprochent d’une rotation
par minute, heure, et jour, c’est encore mieux. Si en plus on a aussi semaine /mois, etc,
c’est encore mieux.

Si on a moins de pièce, ceteris paribus c’est mieux. En particulier, on ne veut pas 50
moteurs à remonter. Mais attention, ceci doit rester un critère secondaire, sinon aucun
mécanisme complexe n’aura le temps d’évoluer.

De même, si le mécanisme est plus compact, ceteris paribus c’est aussi mieux (en
particulier pour la représentation 2,5D) – une roue à 1000 dents n’est pas indiquée pour
une montre-bracelet.

Et ainsi de suite.

En revanche, on ne trichera pas en récompensant des étapes intermédiaires pour des
engrenages complexes qu’on a déjà en tête. La NASA n’aurait pas obtenu l’antenne
ST5 (cf. figure) s’ils avaient dressé leurs algos à imiter leurs ingénieurs.

L’exercice consiste donc principalement d’une part à simuler le comportement d’un
mécanisme donné (calculer la vitesse de rotation des pièces), et d’autre part à détecter
les configurations qui nous plaisent et déplaisent, en choisissant judicieusement les
poids pour chaque critère.

Ce calcul va être réalisé de très nombreuses fois; il est donc impératif qu’il soit très
efficace. Encore une fois, on va négliger les frottements et l’usure.

90.4 Stockage des populations

Les calculs étant longs, il est nécessaire de pouvoir les interrompre et les reprendre
sans crainte. Il faudra donc pouvoir sauvegarder (et charger) la population en cours et

Figure 10: Antenne ST5 de la NASA, obtenue via algorithmes évolutionnaires; premier
objet créé de cette manière à aller dans l’espace (2006).

quelques statistiques pertinentes des générations précédentes. Par exemple, les stats
de fitness au cours du temps, et les meilleurs individus de chaque génération.

Il serait aussi bon de pouvoir fusionner des populations enregistrées pour former une
nouvelle population initiale.

90.5 Visualisation graphique des monstres

Il va bien falloir jeter un œil aux monstres pour évaluer et exploiter les résultats produits,
car personne ne va s’amuser à lire une matrice d’adjacence ou un code binaire. Ce n’est
donc pas du tout optionnel.

Un graphe indiquant la connexion entre les pièces est un strict minimum, mais l’on
attend plutôt un schéma ou un dessin décrivant le mécanisme de façon aussi claire et
proche de la réalité que possible; cf. les deux premières figures. Ceci est bien plus aisé
dans le mode 2.5D; on peut imaginer un découpage niveau par niveau. Si on peut faire
ça en vraie 3D, encore mieux. (cj) C’est interactif ? Mieux. Animé ? Encore mieux.

La visualisation doit absolument être capable d’indiquer la vitesse de rotation de
chaque composant, et ce de manière claire et lisible; cette fonction doit pouvoir être
activée et désactivée.

90.6 Interfaces graphique et ligne-de-commande

Il faut absolument avoir une interface ligne de commande claire, robuste et bien
documentée permettant de lancer, sauvegarder, et charger des évolutions, ainsi de de

(cj)Uniquement si on n’a rien d’autre à faire. VPython est une bonne bibliothèque, mais n’est pas compatible
avec les dernières versions de Python3. On ne s’engagera dans la 3D que si on a déjà une bonne visualisation
par ailleurs, ou alors si on a déjà beaucoup d’expérience de la 3D en Python.
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visualiser les meilleurs individus d’une population (en ouvrant une fenêtre graphique
et/ou en générant un fichier graphique).

Il est aussi bon que le programme ait une GUI (ck) permettant de visualiser en temps réel
l’évolution de la population et ses meilleurs individus, et si possible d’ajuster les poids
de certains critères en temps réel, tels que l’importance de la compacité du mécanisme.

91 Répartition des tâches

Il est conseillé de procéder par groupes de 6, par exemple en trois binômes focalisés
sur les trois parties principales:

⋄ Algos génétiques (choix de génôme, mutation, crossover, parallélisation des calculs
(multi-processeurs)...),

⋄ Évaluation des monstres (horlogerie / simulation, fonction de fitness)

⋄ Interface graphique, interactivité, et visualisation.

D’autres tâches annexes sont à répartir entre les membres: e.g. stockage et gestion des
populations, ligne de commande. . .

Les binômes doivent communiquer et intégrer leur code au projet commun de façon
très régulière – les tâches ne sont pas indépendantes et la répartition ci-dessus n’est
qu’une suggestion. Le choix de modélisation des monstres doit être fait au plus tôt, et
concerne tout le monde.

(ck)PyQt, PyGTK, TkInter,. . . au choix
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